×

A modified incremental harmonic balance method based on the fast Fourier transform and Broyden’s method. (English) Zbl 1347.65201

Summary: A modified incremental harmonic balance (IHB) method is introduced, where Fourier coefficients of the residual of nonlinear algebraic equations are approximated by the fast Fourier transform, and the Jacobian of the nonlinear algebraic equations is approximated by Broyden’s method. The modified IHB method is first illustrated by solving Duffing’s equation, whose solutions from the modified IHB method are in excellent agreement with that from Runge-Kutta method. The calculation time for the modified IHB method is almost two orders of magnitude less than that for the original IHB method. By showing that the Jacobian of the path function in Broyden’s method is invariant, the arc-length method with the path-following technique is used to calculate an amplitude-frequency response curve of Duffing’s equation. Bifurcations of Mathieu-Duffing equation are also studied using the modified IHB method.

MSC:

65T50 Numerical methods for discrete and fast Fourier transforms
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979) · Zbl 0418.70001
[2] Bajkowski, J., Szemplinska-Stupnicka, W.: Internal resonances effects-simulation versus analytical methods results. J. Sound Vib. 104, 259-275 (1986) · Zbl 1235.70066 · doi:10.1016/0022-460X(86)90267-1
[3] Lau, S.L., Cheung, Y.K., Wu, S.Y.: A variable parameter incrementation method for dynamic instability of linear and nonlinear elastic systems. ASME J. Appl. Mech. 49(4), 849-853 (1982) · Zbl 0503.73031 · doi:10.1115/1.3162626
[4] Szemplinska-Stupnicka, W.: The generalized harmonic balance method for determining the combination resonance in the parametric dynamic systems. J. Sound Vib. 58(3), 347-361 (1978) · Zbl 0377.70017 · doi:10.1016/S0022-460X(78)80043-1
[5] Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. ASME J. Appl. Mech. 48, 959-964 (1981) · Zbl 0468.73066 · doi:10.1115/1.3157762
[6] Lau, S.L., Cheung, Y.K., Wu, S.Y.: Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems. ASME J. Appl. Mech. 50(4a), 871-876 (1983) · Zbl 0527.73052 · doi:10.1115/1.3167160
[7] Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140(2), 273-286 (1990) · doi:10.1016/0022-460X(90)90528-8
[8] Leung, A.Y.T., Chui, S.K.: Non-linear vibration of coupled doffing oscillators by an improved incremental harmonic balance method. J. Sound Vib. 181(4), 619-633 (1995) · Zbl 1237.70008 · doi:10.1006/jsvi.1995.0162
[9] Sinha, S.C., Pandiyan, R.: Analysis of quasilinear dynamical systems with periodic coefficients via Liapunov-Floquet transformation. Int. J. Nonlinear Mech. 29(5), 687-702 (1994) · Zbl 0826.70017
[10] Sinha, S.C., Pandiyan, R., Bibb, J.S.: Liapunov-Floquet transformation: computation and applications to periodic systems. J. Vib. Acoust. 118(2), 209-219 (1996)
[11] David, A., Sinha, S.C.: Versal deformation and local bifurcation analysis of time-period nonlinear systems. Nonlinear Dyn. 21, 317-336 (2000) · Zbl 0986.70015 · doi:10.1023/A:1008330023291
[12] Raghothama, A., Narayanan, S.: Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. J. Sound Vib. 226(3), 469-492 (1999) · doi:10.1006/jsvi.1999.2264
[13] Raghothama, A., Narayanan, S.: Bifurcation and chaos in escape equation model by incremental harmonic balancing. Chaos Solitons Fractals 11, 1349-1363 (1999) · Zbl 0962.70023 · doi:10.1016/S0960-0779(99)00044-2
[14] Huang, J.L., Zhu, W.D.: Nonlinear dynamics of a high-dimensional model of a rotating Euler-Bernouli beam under the gravity load. J. Appl. Mech. 81(10), 101007 (2014) · doi:10.1115/1.4028046
[15] Xu, G.Y., Zhu, W.D.: Nonlinear and time-varying dynamics of high-dimensional models of a translating beam with a stationary load subsystem. ASME J. Vib. Acoust. 132(6), 061012 (2010) · doi:10.1115/1.4000464
[16] Hsu, C.S., Cheng, W.H.: Applications of the theory of impulsive parametric excitation and new treatments of general parametric excitation problems. ASME J. Appl. Mech. 40(1), 78-86 (1973) · Zbl 0289.70015 · doi:10.1115/1.3422976
[17] Friedmann, P., Hammond, C.E., Woo, T.H.: Efficient numerical treatment of periodic systems with application to stability problems. Int. J. Numer. Methods Eng. 11(7), 1117-1136 (1977) · Zbl 0367.73059 · doi:10.1002/nme.1620110708
[18] Ling, F.H., Wu, X.X.: Fast Galerkin method and its application to determine periodic solution of non-linear oscillators. Int. J. Non Linear Mech. 22, 89-98 (1987) · Zbl 0606.73025 · doi:10.1016/0020-7462(87)90012-6
[19] Mitra, R.K.: Dynamic stability of time-delayed feedback control system by FFT based IHB method. WSEAS Trans. Appl. Theor. Mech. 4(8), 292-303 (2013)
[20] Lu, W., Ge, F., Wu, X.D., Hong, Y.S.: Nonlinear dynamics of a submerged floating moored structure by incremental harmonic balance method with FFT. Mar. Struct. 31, 63-81 (2013) · Zbl 1170.70367
[21] Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 327-344 (1965) · doi:10.1090/S0025-5718-65-99952-7
[22] Gay, D.M.: Some convergence properties of Broyden’s method. SIAM J. Numer. Anal. 16(4), 623-630 (1979) · Zbl 0453.65034 · doi:10.1137/0716047
[23] Leung, A.Y.T.: Nonlinear natural vibration analysis by selective coefficient increment. Comput. Mech. 5, 73-80 (1989) · Zbl 0692.73053 · doi:10.1007/BF01046880
[24] Shen, J.H., Lin, K.C., Chen, S.H., Sze, K.Y.: Bifurcation and route-to-chaos analysis for Mathieu-Duffing oscillator by the incremental harmonic balance method. Nonlinear Dyn. 52, 403-414 (2008) · Zbl 1170.70367 · doi:10.1007/s11071-007-9289-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.