×

The lower dimensional Busemann-Petty problem for bodies with the generalized axial symmetry. (English) Zbl 1190.52007

The lower dimensional Buseman-Petty problem asks whether \(n\)-dimensional centrally symmetric convex bodies with smaller \(i\)-dimensional central sections necessarily have smaller volumes. The answer to this problem is known to be positive for \(i=1\), and negative for \(i>3\), but it is still open for \(i=2,3\), with \(n>4\). The answer is also known to be positive when the body with smaller sections is a body of revolution. This paper extends this result to the case where the body with smaller sections is invariant under rotations, preserving mutually orthogonal subspaces of dimensions \(l\) and \(n-l\), so that \(i+l\leq n\).
The author considers the subgroup of orthogonal transformations
\[ K_l=\left\{ \gamma \in O(n):\gamma=\left[ \begin{matrix} \alpha & 0 \\ 0 & \beta \end{matrix} \right],\;\alpha\in O(n-l),\;\beta\in O(l) \right\}. \]
A star body \(A\) is \(K_l\)-symmetric if \(\gamma A= A\) for all \(\gamma \in K_l\). Clearly, in this case, \(A=-A\).
Let \(x=(x',x'')\in \mathbb R^n\), with \(x'\in \mathbb R^{n-l}\), \(x''\in \mathbb R^l\). The \((q,l)\)-ball \(B_{q,l}^n=\{x: | x'| ^q+ | x'' | ^q \leq 1\}\), with \(q>0\), is an example of a \(K_l\)-symmetric star body.
The basic idea of this new approach is observing that the relative position of two subspaces is determined by a finite number of canonical angles \(\omega_1,\dots,\omega_m\). Let \(G_{n,i}\) be the Grassmann manifold of the \(i\)-dimensional linear subspaces of \(\mathbb R^n\), \(\text{vol}_i(.)\) denote the \(i\)-dimensional volume function, and \(G_{n,i}^l=\{ \xi \in G_{n,i}: \omega_1=\cdots=\omega_m \}\).
The main result is the following:
Let \(1\leq l \leq n/2\), \(i+l\leq n\), and let \(A\) be a \(K_l\)-symmetric star body in \(\mathbb R^n\). 6mm
a)
If \(1\leq i\leq l\), then the implication
\[ \text{vol}_i(A\cap \xi) \leq\text{vol}_i(B\cap \xi), \xi \in G_{n,i}^l \Rightarrow \text{vol}_n(A) \leq\text{vol}_n(B) \]
is true for every origin symmetric star body \(B\).
b)
If \(i=l+1\) or \(i=l+2\), then the above implication holds for every origin symmetric star body \(B\) provided that \(A\) is convex.
The author also proves the following negative result:
If \(i>l+2\), and \(B=B_{4,l}^n\), then there is an infinitely smooth \(K_l\)-symmetric convex body \(A\), such that \(\text{vol}_i(A\cap \xi)\leq\text{vol}_i(B\cap \xi)\) for all \(\xi \in G_{n,i}\), but \(\text{vol}_n(A)>\text{vol}_n(B)\).
The arguments involved in the proofs use spherical Radon transforms, properties of intersection bodies and the generalized cosine transforms.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
52A30 Variants of convex sets (star-shaped, (\(m, n\))-convex, etc.)
52A39 Mixed volumes and related topics in convex geometry
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] K. Ball, Some remarks on the geometry of convex sets, in Geometric aspects of Functional Analysis 1986–1987 (J. Lindenstrauss and V. Milman. Eds), Lecture Notes in Mathematics 1317, Springer-Verlag, Berlin, 1988, pp. 224–231.
[2] F. Barthe, M. Fradelizi and B. Maurey, A short solution to the Busemann-Petty problem, Positivity 3 (1999), 95–100. · Zbl 0924.44001 · doi:10.1023/A:1009777119957
[3] J. Bourgain and G. Zhang, On a generalization of the Busemann-Petty problem, Convex geometric analysis (Berkeley, CA, 1996), Mathematical Sciences Research Institute Publications 34, Cambridge Univ. Press, Cambridge, 1999, pp. 65–76. · Zbl 0929.52003
[4] H. Busemann and C. M. Petty, Problems on convex bodies, Mathematica Scandinavica 4 (1956), 88–94. · Zbl 0070.39301
[5] S. Campi and P. Gronchi, The Lp-Busemann-Petty centroid inequality, Advances in Mathematics 167 (2002), 128–141. · Zbl 1002.52005 · doi:10.1006/aima.2001.2036
[6] F. Chatelin, Eigenvalues of Matrices, John Wiley & Sons Inc., New York, 1993. · Zbl 0783.65031
[7] R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Annals of Mathematics. Second Series. 140 (1994), 435–447. · Zbl 0826.52010 · doi:10.2307/2118606
[8] R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Transactions of the American Mathematical Society 342 (1994), 435–445. · Zbl 0801.52005 · doi:10.2307/2154703
[9] R. J. Gardner, Geometric Tomography, second edn., Cambridge University Press, New York, 2006.
[10] R. J. Gardner, A. Koldobsky and T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Annals of Mathematics. Second Series. 149 (1999), 691–703. · Zbl 0937.52003 · doi:10.2307/120978
[11] I. M. Gel’fand, M. I. Graev and R. Rosu, The problem of integral geometry and intertwining operators for a pair of real Grassmannian manifolds, Journal of Operator Theory 12 (1984), 359–383.
[12] A. Giannopoulos, A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies, Mathematika 37 (1990), 239–244. · Zbl 0696.52004 · doi:10.1112/S002557930001295X
[13] P. Goodey, E. Lutwak and W. Weil, Functional analytic characterizations of classes of convex bodies, Mathematische Zeitschrift 222 (1996), 363–381. · Zbl 0874.52001
[14] E. L. Grinberg and G. Zhang, Convolutions, transforms, and convex bodies, Proceedings of the London Mathematical Society. Third Series. 78 (1999), 77–115. · Zbl 0974.52001 · doi:10.1112/S0024611599001653
[15] H. Hadwiger, Radialpotenzintegrale zentralsymmetrischer Rotations-körper und Ungleichheitsaussagen Busemannscher Art, (German) Mathematica Scandinavica 23 (1968), 193–200. · Zbl 0182.55602
[16] S. Helgason, The Radon transform, Second edn., Birkhäuser, Boston, 1999. · Zbl 0932.43011
[17] A. T. James, Normal multivariate analysis and the orthogonal group, Annals of Mathematical Statistics 25 (1954), 40–75. · Zbl 0055.13203 · doi:10.1214/aoms/1177728846
[18] A. Koldobsky, A generalization of the Busemann-Petty problem on sections of convex bodies, Israel Journal of Mathematics 110 (1999), 75–91. · Zbl 0938.52009 · doi:10.1007/BF02808176
[19] A. Koldobsky, A functional analytic approach to intersection bodies, Geometric and Functional Analysis 10 (2000), 1507–1526. · Zbl 0974.52002 · doi:10.1007/PL00001659
[20] A. Koldobsky, The Busemann-Petty problem via spherical harmonics, Advances in Mathematics 177 (2003), 105–114. · Zbl 1034.52005 · doi:10.1016/S0001-8708(02)00078-6
[21] A. Koldobsky, Fourier Analysis in Convex Geometry, Mathematical Surveys and Monographs, 116, American Mathematical Society, 2005. · Zbl 1082.52002
[22] A. Koldobsky, H. König and M. Zymonopoulou, The complex Busemann-Petty problem on sections of convex bodies, Advances in Mathematics 218 (2008), 352–367. · Zbl 1141.52007
[23] A. Koldobsky and V. Yaskin, The Interface between Convex Geometry and Harmonic Analysis, CBMS Regional Conference Series, 108, American Mathematical Society, Providence, RI, 2008. · Zbl 1139.52010
[24] A. Koldobsky, V. Yaskin and M. Yaskina, Modified Busemann-Petty problem on sections of convex bodies, Israel Journal of Mathematics 154 (2006), 191–207. · Zbl 1139.52009 · doi:10.1007/BF02773605
[25] D. G. Larman and C. A. Rogers, The existence of a centrally symmetric convex body with central cross-sections that are unexpectedly small, Mathematika 22 (1975), 164–175. · Zbl 0325.52007 · doi:10.1112/S0025579300006033
[26] E. Lutwak, Intersection bodies and dual mixed volumes, Advances in Mathematics 71 (1988), 232–261. · Zbl 0657.52002 · doi:10.1016/0001-8708(88)90077-1
[27] E. Milman, Generalized intersection bodies, Journal of Functional Analysis 240(2), (2006), 530–567. · Zbl 1109.52006 · doi:10.1016/j.jfa.2006.04.004
[28] E. Milman, A comment on the low-dimensional Busemann-Petty problem, in GAFA Seminar Notes, 2004–5, pp. 245–253. · Zbl 1142.52005
[29] R. J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley & Sons Inc., New York, 1982. · Zbl 0556.62028
[30] G. Ólafsson and B. Rubin, Invariant functions on Grassmannians, in Radon Transforms, Geometry and Wavelets, Contemporary Mathematics 464, American Mathematical Society, Providence, RI, 2008, pp. 201–211. · Zbl 1256.43003
[31] V. I. Oliker, Hypersurfaces in \(\mathbb{R}\) n+1 with prescribed Gaussian curvature and related equations of Monge-Ampére type, Communications in Partial Differential Equations 9 (1984), 807–838. · Zbl 0559.58031 · doi:10.1080/03605308408820348
[32] M. Papadimitrakis, On the Busemann-Petty problem about convex centrally symmetric bodies in \(\mathbb{R}\)n, Mathematika 39 (1992), 258–266. · Zbl 0770.52004 · doi:10.1112/S0025579300014996
[33] B. Rubin, Inversion of fractional integrals related to the spherical Radon transform, Journal of Functional Analysis 157 (1998), 470–487. · Zbl 0910.42006 · doi:10.1006/jfan.1998.3268
[34] B. Rubin, Inversion formulas for the spherical Radon transform and the generalized cosine transform, Advances in Applied Mathematics 29 (2002), 471–497. · Zbl 1041.44001 · doi:10.1016/S0196-8858(02)00028-3
[35] B. Rubin, Notes on Radon transforms in integral geometry, Fractional Calculus and Applied Analysis 6 (2003), 25–72. · Zbl 1034.44002
[36] B. Rubin, Intersection bodies and generalized cosine transforms, Advances in Mathematics 218 (2008), 696–727. · Zbl 1148.44002 · doi:10.1016/j.aim.2008.01.011
[37] B. Rubin and G. Zhang, Generalizations of the Busemann-Petty problem for sections of convex bodies, Journal of Functional Analysis 213 (2004), 473–501. · Zbl 1056.52004 · doi:10.1016/j.jfa.2003.10.008
[38] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge 1993. · Zbl 0798.52001
[39] F. E. Schuster, Valuations and Busemann-Petty type problems, Advances in Mathematics 219 (2008), 344–368. · Zbl 1146.52003 · doi:10.1016/j.aim.2008.05.001
[40] N. Ja. Vilenkin and A. V. Klimyk, Representations of Lie Groups and Special Functions, Vol. 2, Kluwer Academic publishers, Dordrecht, 1993. · Zbl 0809.22001
[41] V. Yaskin, A solution to the lower dimensional Busemann-Petty problem in the hyperbolic space, The Journal of Geometric Analysis 16 (2006), 735–745. · Zbl 1104.52004
[42] G. Zhang, Sections of convex bodies, American Journal of Mathematics 118 (1996), 319–340. · Zbl 0854.52004 · doi:10.1353/ajm.1996.0021
[43] G. Zhang, A positive solution to the Busemann-Petty problem in \(\mathbb{R}\)4, Annals of Mathematics 149 (1999), 535–543. · Zbl 0937.52004 · doi:10.2307/120974
[44] A. Zvavitch, The Busemann-Petty problem for arbitrary measures, Mathematische Annalen 331 (2005), 867–887. · Zbl 1070.52004 · doi:10.1007/s00208-004-0611-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.