Krantz, Steven G. A new theory of atomic \(\mathbf{H}^p\) spaces with applications to smoothness of functions. (English) Zbl 07820964 Expo. Math. 42, No. 2, Article ID 125532, 18 p. (2024). Reviewer: Jian Tan (Nanjing) MSC: 42B30 26B05 31B10 PDFBibTeX XMLCite \textit{S. G. Krantz}, Expo. Math. 42, No. 2, Article ID 125532, 18 p. (2024; Zbl 07820964) Full Text: DOI
Mizuta, Yoshihiro; Ohno, Takao; Shimomura, Tetsu Sobolev embeddings in grand Morrey spaces. (English) Zbl 1523.31010 Math. Nachr. 294, No. 12, 2367-2381 (2021). MSC: 31B15 46E35 PDFBibTeX XMLCite \textit{Y. Mizuta} et al., Math. Nachr. 294, No. 12, 2367--2381 (2021; Zbl 1523.31010) Full Text: DOI
Danĕček, Josef; Stará, Jana On the \(BMO\) and \(C^{1,\gamma}\)-regularity for a weak solution of fully nonlinear elliptic systems in dimension three and four. (English) Zbl 1474.35297 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 24, 19 p. (2021). MSC: 35J60 PDFBibTeX XMLCite \textit{J. Danĕček} and \textit{J. Stará}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 24, 19 p. (2021; Zbl 1474.35297) Full Text: DOI OA License
Mizuta, Yoshihiro; Nakai, Eiichi; Ohno, Takao; Shimomura, Tetsu Campanato-Morrey spaces for the double phase functionals. (English) Zbl 1452.31010 Rev. Mat. Complut. 33, No. 3, 817-834 (2020). MSC: 31B15 46E35 PDFBibTeX XMLCite \textit{Y. Mizuta} et al., Rev. Mat. Complut. 33, No. 3, 817--834 (2020; Zbl 1452.31010) Full Text: DOI
Mizuta, Yoshihiro; Nakai, Eiichi; Ohno, Takao; Shimomura, Tetsu Campanato-Morrey spaces for the double phase functionals with variable exponents. (English) Zbl 1441.31004 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111827, 18 p. (2020). Reviewer: Stephen J. Gardiner (Dublin) MSC: 31B15 46E35 PDFBibTeX XMLCite \textit{Y. Mizuta} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111827, 18 p. (2020; Zbl 1441.31004) Full Text: DOI
Kokilashvili, Vakhtang; Meskhi, Alexander; Rafeiro, Humberto; Samko, Stefan Integral operators in non-standard function spaces. Volume 1: Variable exponent Lebesgue and amalgam spaces. (English) Zbl 1385.47001 Operator Theory: Advances and Applications 248. Basel: Birkhäuser/Springer (ISBN 978-3-319-21014-8/hbk; 978-3-319-21015-5/ebook; 978-3-319-21153-4/set). xx, 567 p. (2016). Reviewer: Boris Rubin (Baton Rouge) MSC: 47-02 47G10 45P05 45E99 PDFBibTeX XMLCite \textit{V. Kokilashvili} et al., Integral operators in non-standard function spaces. Volume 1: Variable exponent Lebesgue and amalgam spaces. Basel: Birkhäuser/Springer (2016; Zbl 1385.47001) Full Text: DOI
Daněček, Josef; John, Oldřich; Stará, Jana On the Hölder continuity of gradient of solutions to a class of elliptic systems. (English) Zbl 1181.35083 Funct. Approximatio, Comment. Math. 40, Part 2, 155-164 (2009). MSC: 35J60 35J47 35D30 35B65 PDFBibTeX XMLCite \textit{J. Daněček} et al., Funct. Approximatio, Comment. Math. 40, Part 2, 155--164 (2009; Zbl 1181.35083) Full Text: DOI
Daněček, Josef; Viszus, Eugen \(C^{0,\gamma }\)-regularity for vector-valued minimizers of quasilinear functionals. (English) Zbl 1173.35423 NoDEA, Nonlinear Differ. Equ. Appl. 16, No. 2, 189-211 (2009). MSC: 35J20 35J60 49J40 35B65 PDFBibTeX XMLCite \textit{J. Daněček} and \textit{E. Viszus}, NoDEA, Nonlinear Differ. Equ. Appl. 16, No. 2, 189--211 (2009; Zbl 1173.35423) Full Text: DOI
Griepentrog, Jens A. Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces. (English) Zbl 1157.35023 Adv. Differ. Equ. 12, No. 9, 1031-1078 (2007). Reviewer: Vincenzo Vespri (Firenze) MSC: 35D10 35R05 35K20 35B30 PDFBibTeX XMLCite \textit{J. A. Griepentrog}, Adv. Differ. Equ. 12, No. 9, 1031--1078 (2007; Zbl 1157.35023)
Daněček, Josef; John, Oldřich; Stará, Jana Interior \(C^{1, \gamma}\)-regularity for weak solutions of nonlinear second order parabolic systems. (English) Zbl 1237.35086 Commun. Partial Differ. Equations 31, No. 7, 1085-1098 (2006). MSC: 35K55 35B65 35D30 PDFBibTeX XMLCite \textit{J. Daněček} et al., Commun. Partial Differ. Equations 31, No. 7, 1085--1098 (2006; Zbl 1237.35086) Full Text: DOI
Daněček, Josef; Nikodým, Marek An example of a nonlinear second order elliptic system in three dimension. (English) Zbl 1105.35035 Commentat. Math. Univ. Carol. 45, No. 3, 431-442 (2004). MSC: 35J60 35J45 35D10 35B65 PDFBibTeX XMLCite \textit{J. Daněček} and \textit{M. Nikodým}, Commentat. Math. Univ. Carol. 45, No. 3, 431--442 (2004; Zbl 1105.35035) Full Text: EuDML EMIS
Daněček, Josef; John, Oldřich; Stará, Jana Interior \(C^{1,\gamma}\)-regularity for weak solutions of nonlinear second order elliptic systems. (English) Zbl 1174.35358 Math. Nachr. 276, 47-56 (2004). MSC: 35J55 35B65 35D10 PDFBibTeX XMLCite \textit{J. Daněček} et al., Math. Nachr. 276, 47--56 (2004; Zbl 1174.35358) Full Text: DOI
Daněček, Josef The interior BMO-regularity for a weak solution of nonlinear second order elliptic systems. (English) Zbl 1055.35042 NoDEA, Nonlinear Differ. Equ. Appl. 9, No. 4, 385-396 (2002). Reviewer: Giuseppe Di Fazio (Catania) MSC: 35J55 35D05 35D10 35J60 49N60 PDFBibTeX XMLCite \textit{J. Daněček}, NoDEA, Nonlinear Differ. Equ. Appl. 9, No. 4, 385--396 (2002; Zbl 1055.35042) Full Text: DOI
Daněček, Josef; Viszus, Eugen Regularity of minima of variational integrals. (English) Zbl 0961.49022 Math. Slovaca 49, No. 3, 345-356 (1999). Reviewer: Michal Fečkan (Bratislava) MSC: 49N60 35J60 PDFBibTeX XMLCite \textit{J. Daněček} and \textit{E. Viszus}, Math. Slovaca 49, No. 3, 345--356 (1999; Zbl 0961.49022) Full Text: EuDML
Lu, Guozhen Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type. (English) Zbl 0916.46026 Approximation Theory Appl. 14, No. 1, 69-80 (1998). MSC: 46E35 35J25 PDFBibTeX XMLCite \textit{G. Lu}, Approximation Theory Appl. 14, No. 1, 69--80 (1998; Zbl 0916.46026)
Daněček, J. On \(\mathcal L^{2,n}_{loc}\)-regularity for the gradient of a weak solution to nonlinear elliptic systems. (English) Zbl 0881.35035 Commentat. Math. Univ. Carol. 37, No. 3, 523-536 (1996). Reviewer: P.Drábek (Plzeň) MSC: 35J60 35B65 PDFBibTeX XMLCite \textit{J. Daněček}, Commentat. Math. Univ. Carol. 37, No. 3, 523--536 (1996; Zbl 0881.35035) Full Text: EuDML
Lu, Guozhen Embedding theorems on Campanato-Morrey spaces for vector fields and applications. (English. Abridged French version) Zbl 0842.46019 C. R. Acad. Sci., Paris, Sér. I 320, No. 4, 429-434 (1995). MSC: 46E35 47F05 PDFBibTeX XMLCite \textit{G. Lu}, C. R. Acad. Sci., Paris, Sér. I 320, No. 4, 429--434 (1995; Zbl 0842.46019)
Fan, Dashan; Xu, Zengfu Characterization of Lipschitz spaces on compact Lie groups. (English) Zbl 0836.43005 J. Aust. Math. Soc., Ser. A 58, No. 2, 200-209 (1995). Reviewer: S.G.Krantz (St.Louis) MSC: 43A15 22E30 41A25 41A30 22A10 PDFBibTeX XMLCite \textit{D. Fan} and \textit{Z. Xu}, J. Aust. Math. Soc., Ser. A 58, No. 2, 200--209 (1995; Zbl 0836.43005)
Krantz, Steven G. Lipschitz spaces, smoothness of functions, and approximation theory. (English) Zbl 0518.46018 Expo. Math. 1, 193-260 (1983). MSC: 46E15 39A05 41A30 41A17 PDFBibTeX XMLCite \textit{S. G. Krantz}, Expo. Math. 1, 193--260 (1983; Zbl 0518.46018)