Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen A novel direct method based on the Lucas multiwavelet functions for variable-order fractional reaction-diffusion and subdiffusion equations. (English) Zbl 07332759 Numer. Linear Algebra Appl. 28, No. 2, e2346, 20 p. (2021). MSC: 65Mxx 35K57 PDF BibTeX XML Cite \textit{H. Dehestani} et al., Numer. Linear Algebra Appl. 28, No. 2, e2346, 20 p. (2021; Zbl 07332759) Full Text: DOI
Kashfi Sadabad, Mahnaz; Jodayree Akbarfam, Aliasghar An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm-Liouville problems. (English) Zbl 07331075 Math. Comput. Simul. 185, 547-569 (2021). MSC: 65 45 PDF BibTeX XML Cite \textit{M. Kashfi Sadabad} and \textit{A. Jodayree Akbarfam}, Math. Comput. Simul. 185, 547--569 (2021; Zbl 07331075) Full Text: DOI
Alquran, Marwan; Yousef, Feras; Alquran, Farah; Sulaiman, Tukur A.; Yusuf, Abdullahi Dual-wave solutions for the quadratic-cubic conformable-Caputo time-fractional Klein-Fock-Gordon equation. (English) Zbl 07331047 Math. Comput. Simul. 185, 62-76 (2021). MSC: 65 26 PDF BibTeX XML Cite \textit{M. Alquran} et al., Math. Comput. Simul. 185, 62--76 (2021; Zbl 07331047) Full Text: DOI
Kostin, Andrey B.; Piskarev, Sergey I. Inverse source problem for the abstract fractional differential equation. (English) Zbl 07330242 J. Inverse Ill-Posed Probl. 29, No. 2, 267-281 (2021). MSC: 35R30 35K15 35K90 35R09 45Q05 PDF BibTeX XML Cite \textit{A. B. Kostin} and \textit{S. I. Piskarev}, J. Inverse Ill-Posed Probl. 29, No. 2, 267--281 (2021; Zbl 07330242) Full Text: DOI
Fedorov, Vladimir E.; Nagumanova, Anna V.; Kostić, Marko A class of inverse problems for fractional order degenerate evolution equations. (English) Zbl 07330236 J. Inverse Ill-Posed Probl. 29, No. 2, 173-184 (2021). MSC: 35R11 35R30 34G10 35Q35 PDF BibTeX XML Cite \textit{V. E. Fedorov} et al., J. Inverse Ill-Posed Probl. 29, No. 2, 173--184 (2021; Zbl 07330236) Full Text: DOI
Bohaienko, Vsevolod; Gladky, Anatolij; Romashchenko, Mykhailo; Matiash, Tetiana Identification of fractional water transport model with \(\psi \)-Caputo derivatives using particle swarm optimization algorithm. (English) Zbl 07330191 Appl. Math. Comput. 390, Article ID 125665, 12 p. (2021). MSC: 35R11 90C59 PDF BibTeX XML Cite \textit{V. Bohaienko} et al., Appl. Math. Comput. 390, Article ID 125665, 12 p. (2021; Zbl 07330191) Full Text: DOI
Huseynov, Ismail T.; Ahmadova, Arzu; Fernandez, Arran; Mahmudov, Nazim I. Explicit analytical solutions of incommensurate fractional differential equation systems. (English) Zbl 07330163 Appl. Math. Comput. 390, Article ID 125590, 21 p. (2021). MSC: 34 35 PDF BibTeX XML Cite \textit{I. T. Huseynov} et al., Appl. Math. Comput. 390, Article ID 125590, 21 p. (2021; Zbl 07330163) Full Text: DOI
Suzuki, Masamitsu Local existence and nonexistence for fractional in time weakly coupled reaction-diffusion systems. (English) Zbl 07328519 SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021). MSC: 35R11 35K57 35K51 35A01 26A33 46E35 PDF BibTeX XML Cite \textit{M. Suzuki}, SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021; Zbl 07328519) Full Text: DOI
Carbotti, Alessandro; Comi, Giovanni E. A note on Riemann-Liouville fractional Sobolev spaces. (English) Zbl 07327270 Commun. Pure Appl. Anal. 20, No. 1, 17-54 (2021). MSC: 46E35 26A33 26A45 26B30 47B38 PDF BibTeX XML Cite \textit{A. Carbotti} and \textit{G. E. Comi}, Commun. Pure Appl. Anal. 20, No. 1, 17--54 (2021; Zbl 07327270) Full Text: DOI
Nain, Ankit Kumar; Vats, Ramesh Kumar; Kumar, Avadhesh Caputo-Hadamard fractional differential equation with impulsive boundary conditions. (English) Zbl 07326410 J. Math. Model. 9, No. 1, 93-106 (2021). MSC: 26A33 34B15 PDF BibTeX XML Cite \textit{A. K. Nain} et al., J. Math. Model. 9, No. 1, 93--106 (2021; Zbl 07326410) Full Text: DOI
Izadi, Mohammad; Afshar, Mehdi Solving the Basset equation via Chebyshev collocation and LDG methods. (English) Zbl 07326408 J. Math. Model. 9, No. 1, 61-79 (2021). MSC: 34A08 26A33 41A10 65M70 65L60 65L07 PDF BibTeX XML Cite \textit{M. Izadi} and \textit{M. Afshar}, J. Math. Model. 9, No. 1, 61--79 (2021; Zbl 07326408) Full Text: DOI
Bao, Ngoc Tran; Caraballo, Tomás; Tuan, Nguyen Huy; Zhou, Yong Existence and regularity results for terminal value problem for nonlinear fractional wave equations. (English) Zbl 07324157 Nonlinearity 34, No. 3, 1448-1502 (2021). MSC: 35R11 35L20 26A33 35B65 PDF BibTeX XML Cite \textit{N. T. Bao} et al., Nonlinearity 34, No. 3, 1448--1502 (2021; Zbl 07324157) Full Text: DOI
Ahmadova, Arzu; Huseynov, Ismail T.; Fernandez, Arran; Mahmudov, Nazim I. Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations. (English) Zbl 07323678 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105735, 23 p. (2021). MSC: 34A05 34A08 34A30 33E12 PDF BibTeX XML Cite \textit{A. Ahmadova} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105735, 23 p. (2021; Zbl 07323678) Full Text: DOI
Yin, Chuntao Chaos detection of the Chen system with Caputo-Hadamard fractional derivative. (English) Zbl 07321547 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021). MSC: 34A34 34A08 34C28 34D08 37D45 PDF BibTeX XML Cite \textit{C. Yin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021; Zbl 07321547) Full Text: DOI
Kaisserli, Z.; Bouagada, D. Solution of state-space singular continuous-time fractional linear systems using Sumudu transform. (English) Zbl 07319670 Lobachevskii J. Math. 42, No. 1, 110-117 (2021). MSC: 93C15 26A33 93C05 PDF BibTeX XML Cite \textit{Z. Kaisserli} and \textit{D. Bouagada}, Lobachevskii J. Math. 42, No. 1, 110--117 (2021; Zbl 07319670) Full Text: DOI
Kheybari, Samad Numerical algorithm to Caputo type time-space fractional partial differential equations with variable coefficients. (English) Zbl 07318245 Math. Comput. Simul. 182, 66-85 (2021). MSC: 65M 35R PDF BibTeX XML Cite \textit{S. Kheybari}, Math. Comput. Simul. 182, 66--85 (2021; Zbl 07318245) Full Text: DOI
Ran, Maohua; Zhou, Xiaoyi An implicit difference scheme for the time-fractional Cahn-Hilliard equations. (English) Zbl 07318185 Math. Comput. Simul. 180, 61-71 (2021). MSC: 35Q 65M 35R PDF BibTeX XML Cite \textit{M. Ran} and \textit{X. Zhou}, Math. Comput. Simul. 180, 61--71 (2021; Zbl 07318185) Full Text: DOI
Lee, Seyeon; Lee, Junseo; Kim, Hyunju; Jang, Bongsoo A fast and high-order numerical method for nonlinear fractional-order differential equations with non-singular kernel. (English) Zbl 07316836 Appl. Numer. Math. 163, 57-76 (2021). MSC: 65M22 65M12 65D05 35R11 PDF BibTeX XML Cite \textit{S. Lee} et al., Appl. Numer. Math. 163, 57--76 (2021; Zbl 07316836) Full Text: DOI
Ascione, Giacomo; Leonenko, Nikolai; Pirozzi, Enrica Fractional immigration-death processes. (English) Zbl 07315656 J. Math. Anal. Appl. 495, No. 2, Article ID 124768, 27 p. (2021). MSC: 60 62 PDF BibTeX XML Cite \textit{G. Ascione} et al., J. Math. Anal. Appl. 495, No. 2, Article ID 124768, 27 p. (2021; Zbl 07315656) Full Text: DOI
Brandibur, Oana; Kaslik, Eva Stability analysis of multi-term fractional-differential equations with three fractional derivatives. (English) Zbl 07315641 J. Math. Anal. Appl. 495, No. 2, Article ID 124751, 22 p. (2021). Reviewer: Ndolane Sene (Dakar) MSC: 34A08 34D20 PDF BibTeX XML Cite \textit{O. Brandibur} and \textit{E. Kaslik}, J. Math. Anal. Appl. 495, No. 2, Article ID 124751, 22 p. (2021; Zbl 07315641) Full Text: DOI
Heydari, M. H.; Avazzadeh, Z.; Atangana, A. Orthonormal shifted discrete Legendre polynomials for solving a coupled system of nonlinear variable-order time fractional reaction-advection-diffusion equations. (English) Zbl 07310826 Appl. Numer. Math. 161, 425-436 (2021). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Appl. Numer. Math. 161, 425--436 (2021; Zbl 07310826) Full Text: DOI
Khader, M. M.; Saad, Khaled M.; Hammouch, Zakia; Baleanu, Dumitru A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives. (English) Zbl 07310809 Appl. Numer. Math. 161, 137-146 (2021). MSC: 76M22 76M20 76B15 65M15 26A33 PDF BibTeX XML Cite \textit{M. M. Khader} et al., Appl. Numer. Math. 161, 137--146 (2021; Zbl 07310809) Full Text: DOI
Huang, Chaobao; Stynes, Martin; Chen, Hu An \(\alpha \)-robust finite element method for a multi-term time-fractional diffusion problem. (English) Zbl 07309602 J. Comput. Appl. Math. 389, Article ID 113334, 9 p. (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M15 35R11 PDF BibTeX XML Cite \textit{C. Huang} et al., J. Comput. Appl. Math. 389, Article ID 113334, 9 p. (2021; Zbl 07309602) Full Text: DOI
Zhou, Yong; He, Jia Wei Well-posedness and regularity for fractional damped wave equations. (English) Zbl 07308740 Monatsh. Math. 194, No. 2, 425-458 (2021). MSC: 35R11 35L20 26A33 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. W. He}, Monatsh. Math. 194, No. 2, 425--458 (2021; Zbl 07308740) Full Text: DOI
Ding, Hengfei The development of higher-order numerical differential formulas of Caputo derivative and their applications (I). (English) Zbl 07308037 Comput. Math. Appl. 84, 203-223 (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{H. Ding}, Comput. Math. Appl. 84, 203--223 (2021; Zbl 07308037) Full Text: DOI
Du, Rui; Wang, Yibo Lattice BGK model for time-fractional incompressible Navier-Stokes equations. (English) Zbl 07307178 Appl. Math. Lett. 114, Article ID 106911, 9 p. (2021). MSC: 65M75 76M28 76D05 76P05 35R11 35Q20 35Q35 PDF BibTeX XML Cite \textit{R. Du} and \textit{Y. Wang}, Appl. Math. Lett. 114, Article ID 106911, 9 p. (2021; Zbl 07307178) Full Text: DOI
Carrer, J. A. M.; Solheid, B. S.; Trevelyan, J.; Seaid, M. A boundary element method formulation based on the Caputo derivative for the solution of the anomalous diffusion problem. (English) Zbl 07305266 Eng. Anal. Bound. Elem. 122, 132-144 (2021). MSC: 76 65 PDF BibTeX XML Cite \textit{J. A. M. Carrer} et al., Eng. Anal. Bound. Elem. 122, 132--144 (2021; Zbl 07305266) Full Text: DOI
Alsuyuti, M. M.; Doha, E. H.; Ezz-Eldien, S. S.; Youssef, I. K. Spectral Galerkin schemes for a class of multi-order fractional pantograph equations. (English) Zbl 07305056 J. Comput. Appl. Math. 384, Article ID 113157, 21 p. (2021). MSC: 65M70 65N30 65M12 65M15 35C10 42C10 35R11 PDF BibTeX XML Cite \textit{M. M. Alsuyuti} et al., J. Comput. Appl. Math. 384, Article ID 113157, 21 p. (2021; Zbl 07305056) Full Text: DOI
Hamoud, Ahmed A.; Mohammed, Nedal M.; Ghadle, Kirtiwant P. Solving fractional Volterra integro-differential equations by using alternative Legendre functions. (English) Zbl 07302968 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 1, 1-14 (2021). MSC: 45J05 26A33 35C11 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 1, 1--14 (2021; Zbl 07302968) Full Text: Link
Baghani, O.; Nabavi Sales, S. M. S. Existence, uniqueness, and relaxation results in initial value type problems for nonlinear fractional differential equations. (English) Zbl 07301478 Anal. Math. Phys. 11, No. 1, Paper No. 16, 19 p. (2021). MSC: 45D05 65R20 54H25 PDF BibTeX XML Cite \textit{O. Baghani} and \textit{S. M. S. Nabavi Sales}, Anal. Math. Phys. 11, No. 1, Paper No. 16, 19 p. (2021; Zbl 07301478) Full Text: DOI
Lu, Ziqiang; Zhu, Yuanguo; Xu, Qinqin Asymptotic stability of fractional neutral stochastic systems with variable delays. (English) Zbl 1455.93158 Eur. J. Control 57, 119-124 (2021). MSC: 93D20 93E15 93E03 93C15 26A33 93C43 PDF BibTeX XML Cite \textit{Z. Lu} et al., Eur. J. Control 57, 119--124 (2021; Zbl 1455.93158) Full Text: DOI
Kassymov, Aidyn; Torebek, Berikbol T. Lyapunov-type inequalities for a nonlinear fractional boundary value problem. (English) Zbl 07299285 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 15, 9 p. (2021). MSC: 35R11 35A23 26D10 PDF BibTeX XML Cite \textit{A. Kassymov} and \textit{B. T. Torebek}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 15, 9 p. (2021; Zbl 07299285) Full Text: DOI
Kassymov, Aidyn; Ruzhansky, Michael; Tokmagambetov, Niyaz; Torebek, Berikbol T. Sobolev, Hardy, Gagliardo-Nirenberg, and Caffarelli-Kohn-Nirenberg-type inequalities for some fractional derivatives. (English) Zbl 1455.26013 Banach J. Math. Anal. 15, No. 1, Paper No. 6, 23 p. (2021). Reviewer: George Stoica (Saint John) MSC: 26D10 45J05 PDF BibTeX XML Cite \textit{A. Kassymov} et al., Banach J. Math. Anal. 15, No. 1, Paper No. 6, 23 p. (2021; Zbl 1455.26013) Full Text: DOI
Kosunalp, Hatice Yalman; Gülsu, Mustafa Operational matrix by Hermite polynomials for solving nonlinear Riccati differential equations. (English) Zbl 07293306 Int. J. Math. Comput. Sci. 16, No. 2, 525-536 (2021). MSC: 65L05 34A08 PDF BibTeX XML Cite \textit{H. Y. Kosunalp} and \textit{M. Gülsu}, Int. J. Math. Comput. Sci. 16, No. 2, 525--536 (2021; Zbl 07293306) Full Text: Link
Ali, Rizwan; Asjad, Muhammad Imran; Akgül, Ali An analysis of a mathematical fractional model of hybrid viscous nanofluids and its application in heat and mass transfer. (English) Zbl 1453.35144 J. Comput. Appl. Math. 383, Article ID 113096, 17 p. (2021). Reviewer: Aleksey Syromyasov (Saransk) MSC: 35Q35 35R11 26A33 80A19 76T20 76A05 44A10 PDF BibTeX XML Cite \textit{R. Ali} et al., J. Comput. Appl. Math. 383, Article ID 113096, 17 p. (2021; Zbl 1453.35144) Full Text: DOI
Dehestani, H.; Ordokhani, Y.; Razzaghi, M. Combination of Lucas wavelets with Legendre-Gauss quadrature for fractional Fredholm-Volterra integro-differential equations. (English) Zbl 1452.65403 J. Comput. Appl. Math. 382, Article ID 113070, 17 p. (2021). MSC: 65R20 45J05 45G10 65D32 PDF BibTeX XML Cite \textit{H. Dehestani} et al., J. Comput. Appl. Math. 382, Article ID 113070, 17 p. (2021; Zbl 1452.65403) Full Text: DOI
Namba, T.; Rybka, P.; Voller, V. R. Some comments on using fractional derivative operators in modeling non-local diffusion processes. (English) Zbl 1446.35252 J. Comput. Appl. Math. 381, Article ID 113040, 16 p. (2021). MSC: 35R11 35K20 70H33 PDF BibTeX XML Cite \textit{T. Namba} et al., J. Comput. Appl. Math. 381, Article ID 113040, 16 p. (2021; Zbl 1446.35252) Full Text: DOI
Amin, Rohul; Shah, Kamal; Asif, Muhammad; Khan, Imran; Ullah, Faheem An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet. (English) Zbl 1451.65230 J. Comput. Appl. Math. 381, Article ID 113028, 16 p. (2021). MSC: 65R20 45J05 34A08 65L60 PDF BibTeX XML Cite \textit{R. Amin} et al., J. Comput. Appl. Math. 381, Article ID 113028, 16 p. (2021; Zbl 1451.65230) Full Text: DOI
Gracia, José Luis; Stynes, Martin A finite difference method for an initial-boundary value problem with a Riemann-Liouville-Caputo spatial fractional derivative. (English) Zbl 1448.65101 J. Comput. Appl. Math. 381, Article ID 113020, 13 p. (2021). MSC: 65M06 35R11 26A33 PDF BibTeX XML Cite \textit{J. L. Gracia} and \textit{M. Stynes}, J. Comput. Appl. Math. 381, Article ID 113020, 13 p. (2021; Zbl 1448.65101) Full Text: DOI
Yao, Nan; Liu, Xiping; Jia, Mei Solvability for Riemann-Stieltjes integral boundary value problems of bagley-torvik equations at resonance. (English) Zbl 07331969 J. Appl. Anal. Comput. 10, No. 5, 1937-1953 (2020). MSC: 34A08 34B10 26A33 PDF BibTeX XML Cite \textit{N. Yao} et al., J. Appl. Anal. Comput. 10, No. 5, 1937--1953 (2020; Zbl 07331969) Full Text: DOI
Ahmad, Bashir; Alsaedi, Ahmed; Ntouyas, Sotiris K. Fractional order nonlinear mixed coupled systems with coupled integro-differential boundary conditions. (English) Zbl 07331961 J. Appl. Anal. Comput. 10, No. 3, 892-903 (2020). MSC: 26A33 34B15 PDF BibTeX XML Cite \textit{B. Ahmad} et al., J. Appl. Anal. Comput. 10, No. 3, 892--903 (2020; Zbl 07331961) Full Text: DOI
Alimov, Shavkat; Ashurov, Ravshan Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation. (English) Zbl 07330138 J. Inverse Ill-Posed Probl. 28, No. 5, 651-658 (2020). MSC: 35R11 35R30 35K20 74S25 PDF BibTeX XML Cite \textit{S. Alimov} and \textit{R. Ashurov}, J. Inverse Ill-Posed Probl. 28, No. 5, 651--658 (2020; Zbl 07330138) Full Text: DOI
Wang, Yanyong; Yan, Yubin; Yang, Yan Two high-order time discretization schemes for subdiffusion problems with nonsmooth data. (English) Zbl 07329861 Fract. Calc. Appl. Anal. 23, No. 5, 1349-1380 (2020). MSC: 65M06 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Wang} et al., Fract. Calc. Appl. Anal. 23, No. 5, 1349--1380 (2020; Zbl 07329861) Full Text: DOI
Tuan, Vu Kim Fractional integro-differential equations in Wiener spaces. (English) Zbl 07329859 Fract. Calc. Appl. Anal. 23, No. 5, 1300-1328 (2020). MSC: 44A10 26A33 45K05 35D35 35R30 PDF BibTeX XML Cite \textit{V. K. Tuan}, Fract. Calc. Appl. Anal. 23, No. 5, 1300--1328 (2020; Zbl 07329859) Full Text: DOI
Wu, Longyuan; Zhai, Shuying A new high order ADI numerical difference formula for time-fractional convection-diffusion equation. (English) Zbl 07328859 Appl. Math. Comput. 387, Article ID 124564, 10 p. (2020). MSC: 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{L. Wu} and \textit{S. Zhai}, Appl. Math. Comput. 387, Article ID 124564, 10 p. (2020; Zbl 07328859) Full Text: DOI
Floridia, Giuseppe; Li, Zhiyuan; Yamamoto, Masahiro Well-posedness for the backward problems in time for general time-fractional diffusion equation. (English) Zbl 07326806 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 31, No. 3, 593-610 (2020). MSC: 35R11 35K20 PDF BibTeX XML Cite \textit{G. Floridia} et al., Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 31, No. 3, 593--610 (2020; Zbl 07326806) Full Text: DOI
Tate, Shivaji Ramchandra; Dinde, Hambirrao Tatyasaheb Ulam stabilities for nonlinear fractional integro-differential equations with constant coefficient via Pachpatte’s inequality. (English) Zbl 07326393 J. Math. Model. 8, No. 3, 257-278 (2020). MSC: 26A33 45J05 34K10 45M10 PDF BibTeX XML Cite \textit{S. R. Tate} and \textit{H. T. Dinde}, J. Math. Model. 8, No. 3, 257--278 (2020; Zbl 07326393) Full Text: DOI
Khalouta, Ali; Kadem, Abdelouahab New analytical method for solving nonlinear time-fractional reaction-diffusion-convection problems. (English) Zbl 07325564 Rev. Colomb. Mat. 54, No. 1, 1-11 (2020). MSC: 35R11 26A33 74G10 34K28 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, Rev. Colomb. Mat. 54, No. 1, 1--11 (2020; Zbl 07325564) Full Text: DOI
Balcı, Ercan; Kartal, Senol; Öztürk, İlhan Fractional order turbidostat model with the discrete delay of digestion. (English) Zbl 07322720 Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 96, 12 p. (2020). MSC: 34K60 34K37 92D25 34K21 34K20 34K18 34K13 PDF BibTeX XML Cite \textit{E. Balcı} et al., Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 96, 12 p. (2020; Zbl 07322720) Full Text: DOI
Beshtokov, Murat Khamidbievich Nonlocal boundary value problems in differential and difference interpretations for the generalized loaded moisture transfer equation. (Russian. English summary) Zbl 07318969 Differ. Uravn. Protsessy Upr. 2020, No. 4, 1-27 (2020). MSC: 35R11 35B45 PDF BibTeX XML Cite \textit{M. K. Beshtokov}, Differ. Uravn. Protsessy Upr. 2020, No. 4, 1--27 (2020; Zbl 07318969) Full Text: Link
Khan, Hasib; Tunc, Cemil; Khan, Aziz Stability results and existence theorems for nonlinear delay-fractional differential equations with \(\varphi_p^*\)-operator. (English) Zbl 07315111 J. Appl. Anal. Comput. 10, No. 2, 584-597 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34K37 34K10 34K27 47N20 PDF BibTeX XML Cite \textit{H. Khan} et al., J. Appl. Anal. Comput. 10, No. 2, 584--597 (2020; Zbl 07315111) Full Text: DOI
Mansouri, A.; Rezapour, Sh. Investigating a solution of a multi-singular pointwise defined fractional integro-differential equation with Caputo derivative boundary condition. (English) Zbl 1454.45004 J. Math. Ext. 14, No. 2, 15-47 (2020). MSC: 45J05 34A08 34B16 PDF BibTeX XML Cite \textit{A. Mansouri} and \textit{Sh. Rezapour}, J. Math. Ext. 14, No. 2, 15--47 (2020; Zbl 1454.45004) Full Text: Link
Khalouta, Ali; Kadem, Abdelouahab A new iterative natural transform method for solving nonlinear Caputo time-fractional partial differential equations. (English) Zbl 07314246 Jordan J. Math. Stat. 13, No. 3, 459-476 (2020). MSC: 35R11 26A33 83C15 74G10 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, Jordan J. Math. Stat. 13, No. 3, 459--476 (2020; Zbl 07314246) Full Text: Link
Al-Refai, Mohammed Fundamental results on systems of fractional differential equations involving Caputo-Fabrizio fractional derivative. (English) Zbl 07314242 Jordan J. Math. Stat. 13, No. 3, 389-399 (2020). MSC: 34 35 PDF BibTeX XML Cite \textit{M. Al-Refai}, Jordan J. Math. Stat. 13, No. 3, 389--399 (2020; Zbl 07314242) Full Text: Link
Derbazi, Choukri; Hammouche, Hadda Existence and uniqueness results for a class of nonlinear fractional differential equations with nonlocal boundary conditions. (English) Zbl 07314239 Jordan J. Math. Stat. 13, No. 3, 341-361 (2020). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{C. Derbazi} and \textit{H. Hammouche}, Jordan J. Math. Stat. 13, No. 3, 341--361 (2020; Zbl 07314239) Full Text: Link
Vatsala, Aghalaya S.; Sambandham, Bhuvaneswari Sequential Caputo versus nonsequential Caputo fractional initial and boundary value problems. (English) Zbl 1454.34022 Int. J. Difference Equ. 15, No. 2, 531-546 (2020). MSC: 34A08 34A12 34B99 PDF BibTeX XML Cite \textit{A. S. Vatsala} and \textit{B. Sambandham}, Int. J. Difference Equ. 15, No. 2, 531--546 (2020; Zbl 1454.34022) Full Text: Link
Salim, Krim; Abbas, Saïd; Benchohra, Mouffak; Darwish, Mohamed Abdella Boundary value problem for implicit Caputo-Fabrizio fractional differential equations. (English) Zbl 1454.34020 Int. J. Difference Equ. 15, No. 2, 493-510 (2020). MSC: 34A08 34G20 PDF BibTeX XML Cite \textit{K. Salim} et al., Int. J. Difference Equ. 15, No. 2, 493--510 (2020; Zbl 1454.34020) Full Text: Link
Guerraiche, Nassim; Hamani, Samira On initial value problems for Caputo-Hadamard fractional differential inclusions with nonlocal multi-point conditions in Banach spaces. (English) Zbl 1454.34016 Int. J. Difference Equ. 15, No. 2, 403-418 (2020). MSC: 34A08 PDF BibTeX XML Cite \textit{N. Guerraiche} and \textit{S. Hamani}, Int. J. Difference Equ. 15, No. 2, 403--418 (2020; Zbl 1454.34016) Full Text: Link
Ahmad, Bashir; Alsaedi, Ahmed; Ntouyas, Sotiris K.; Alruwaily, Ymnah On a fractional integro-differential system involving Riemann-Liouville and Caputo derivatives with coupled multi-point boundary conditions. (English) Zbl 1454.34010 Int. J. Difference Equ. 15, No. 2, 209-241 (2020). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Int. J. Difference Equ. 15, No. 2, 209--241 (2020; Zbl 1454.34010) Full Text: Link
Boumaaza, Mokhtar; Benchohra, Mouffak Caputo type modification of Erdélyi-Kober fractional differential inclusions with retarded and advanced arguments. (English) Zbl 1454.34013 Adv. Dyn. Syst. Appl. 15, No. 2, 63-78 (2020). MSC: 34A08 34K05 PDF BibTeX XML Cite \textit{M. Boumaaza} and \textit{M. Benchohra}, Adv. Dyn. Syst. Appl. 15, No. 2, 63--78 (2020; Zbl 1454.34013) Full Text: Link
He, Guitian; Liu, Heng; Tang, Guoji; Cao, Jinde Resonance behavior for a generalized Mittag-Leffler fractional Langevin equation with hydrodynamic interactions. (English) Zbl 1454.34086 Int. J. Mod. Phys. B 34, No. 32, Article ID 2050310, 23 p. (2020). MSC: 34F05 34F15 34A08 76A10 PDF BibTeX XML Cite \textit{G. He} et al., Int. J. Mod. Phys. B 34, No. 32, Article ID 2050310, 23 p. (2020; Zbl 1454.34086) Full Text: DOI
Petrosyan, Garik Garikovich Antiperiodic boundary value problem for a semilinear differential equation of fractional order. (English) Zbl 07311845 Izv. Irkutsk. Gos. Univ., Ser. Mat. 34, 51-66 (2020). Reviewer: Sergiu Aizicovici (Verona) MSC: 34A08 34G20 34C25 47H08 47H10 PDF BibTeX XML Cite \textit{G. G. Petrosyan}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 34, 51--66 (2020; Zbl 07311845) Full Text: DOI Link
Lapin, A. V.; Levinskaya, K. O. Numerical solution of a quasilinear parabolic equation with a fractional time derivative. (English) Zbl 07309066 Lobachevskii J. Math. 41, No. 12, 2673-2686 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65M12 35K59 35R11 PDF BibTeX XML Cite \textit{A. V. Lapin} and \textit{K. O. Levinskaya}, Lobachevskii J. Math. 41, No. 12, 2673--2686 (2020; Zbl 07309066) Full Text: DOI
Muhafzan; Nazra, Admi; Yulianti, Lyra; Zulakmal; Revina, Refi On LQ optimization problem subject to fractional order irregular singular systems. (English) Zbl 07308294 Arch. Control Sci. 30, No. 4, 745-756 (2020). MSC: 90C20 90C32 PDF BibTeX XML Cite \textit{Muhafzan} et al., Arch. Control Sci. 30, No. 4, 745--756 (2020; Zbl 07308294) Full Text: DOI
Anastassiou, George A. Abstract fractional Landau inequalities. (English) Zbl 07307819 Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 51, 309-326 (2020). MSC: 26A33 26D10 26D15 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 51, 309--326 (2020; Zbl 07307819) Full Text: Link
Yu, Ya Jun; Zhao, Li Jing Fractional thermoelasticity revisited with new definitions of fractional derivative. (English) Zbl 07305792 Eur. J. Mech., A, Solids 84, Article ID 104043, 12 p. (2020). MSC: 74 PDF BibTeX XML Cite \textit{Y. J. Yu} and \textit{L. J. Zhao}, Eur. J. Mech., A, Solids 84, Article ID 104043, 12 p. (2020; Zbl 07305792) Full Text: DOI
Fedorov, V. E.; Kostić, M. Identification problem for strongly degenerate evolution equations with the Gerasimov-Caputo derivative. (English. Russian original) Zbl 07304921 Differ. Equ. 56, No. 12, 1613-1627 (2020); translation from Differ. Uravn. 57, No. 1, 100-113 (2020). MSC: 35R30 35R11 PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{M. Kostić}, Differ. Equ. 56, No. 12, 1613--1627 (2020; Zbl 07304921); translation from Differ. Uravn. 57, No. 1, 100--113 (2020) Full Text: DOI
Kheiryan, Alireza; Rezapour, Shahram On Hyers-Ulam stability of two singular fractional integro-differential equations. (English) Zbl 07303977 J. Adv. Math. Stud. 13, No. 3, 339-349 (2020). MSC: 45 PDF BibTeX XML Cite \textit{A. Kheiryan} and \textit{S. Rezapour}, J. Adv. Math. Stud. 13, No. 3, 339--349 (2020; Zbl 07303977) Full Text: Link
Kumar, Hemant; RAi, Surya Kant Multiple fractional diffusions via multivariable \(H\)-function. (English) Zbl 07303936 Jñānābha 50, No. 1, 253-264 (2020). MSC: 26A33 33C20 33C60 33E12 33E20 33E30 44A15 60G18 60J60 PDF BibTeX XML Cite \textit{H. Kumar} and \textit{S. K. RAi}, Jñānābha 50, No. 1, 253--264 (2020; Zbl 07303936) Full Text: Link
Bairwa, R. K.; Kumar, Ajay; Singh, Karan Analytical solutions for time-fractional Cauchy reaction-diffusion equations using iterative Laplace transform method. (English) Zbl 07303932 Jñānābha 50, No. 1, 207-217 (2020). MSC: 35A20 35A22 34A08 33E12 PDF BibTeX XML Cite \textit{R. K. Bairwa} et al., Jñānābha 50, No. 1, 207--217 (2020; Zbl 07303932) Full Text: Link
Helal, Mohamed Differential inclusions of fractional order on unbounded domains with state-dependent delay. (English) Zbl 07303739 Nonlinear Stud. 27, No. 1, 69-85 (2020). MSC: 35R11 35R70 47J22 35L15 PDF BibTeX XML Cite \textit{M. Helal}, Nonlinear Stud. 27, No. 1, 69--85 (2020; Zbl 07303739) Full Text: Link
Izadi, Mohammad An accurate approximation method for solving fractional order boundary value problems. (English) Zbl 07302452 Acta Univ. M. Belii, Ser. Math. 28, 23-38 (2020). MSC: 34A08 34B05 34A45 65L60 PDF BibTeX XML Cite \textit{M. Izadi}, Acta Univ. M. Belii, Ser. Math. 28, 23--38 (2020; Zbl 07302452) Full Text: Link
Shabna, M. S.; Ranjini, M. C. A \(k\)-dimensional systems of fractional neutral functional differential equations involving \(\psi \)-Caputo fractional derivative. (English) Zbl 07302450 Acta Univ. M. Belii, Ser. Math. 28, 85-97 (2020). MSC: 34K37 34K40 47N20 PDF BibTeX XML Cite \textit{M. S. Shabna} and \textit{M. C. Ranjini}, Acta Univ. M. Belii, Ser. Math. 28, 85--97 (2020; Zbl 07302450) Full Text: Link
Sadabad, Mahnaz Kashfi; Akbarfam, Aliasghar Jodayree; Shiri, Babak A numerical study of eigenvalues and eigenfunctions of fractional Sturm-Liouville problems via Laplace transform. (English) Zbl 07301233 Indian J. Pure Appl. Math. 51, No. 3, 857-868 (2020). MSC: 34L16 34A08 34B24 44A10 PDF BibTeX XML Cite \textit{M. K. Sadabad} et al., Indian J. Pure Appl. Math. 51, No. 3, 857--868 (2020; Zbl 07301233) Full Text: DOI
Yazdani, Allahbakhsh; Kiasari, Morteza Mohammadnezhad A Chebyshev pseudo spectral method for solving fractional differential equations. (English) Zbl 1452.65377 Proyecciones 39, No. 3, 711-720 (2020). MSC: 65N35 65M70 34A08 65D25 PDF BibTeX XML Cite \textit{A. Yazdani} and \textit{M. M. Kiasari}, Proyecciones 39, No. 3, 711--720 (2020; Zbl 1452.65377) Full Text: DOI
Kaouache, Smail; Abdelouahab, Mohammed Salah; Bououden, Rabah Reduced generalized combination synchronization between two \(n\)-dimensional integer-order hyperchaotic systems and one \(m\)-dimensional fractional-order chaotic system. (English) Zbl 07299949 Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 19, 8 p. (2020). MSC: 34A34 37B25 37B55 93C55 37C25 PDF BibTeX XML Cite \textit{S. Kaouache} et al., Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 19, 8 p. (2020; Zbl 07299949) Full Text: Link
Li, Changpin; Li, Zhiqiang; Wang, Zhen Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. (English) Zbl 07299266 J. Sci. Comput. 85, No. 2, Paper No. 41, 26 p. (2020). MSC: 65M60 26A33 35B65 65M12 PDF BibTeX XML Cite \textit{C. Li} et al., J. Sci. Comput. 85, No. 2, Paper No. 41, 26 p. (2020; Zbl 07299266) Full Text: DOI
Lototsky, S. V.; Rozovsky, B. L. Classical and generalized solutions of fractional stochastic differential equations. (English) Zbl 07298957 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 761-786 (2020). Reviewer: Martin Ondreját (Praha) MSC: 60H15 60H10 60H40 34A08 PDF BibTeX XML Cite \textit{S. V. Lototsky} and \textit{B. L. Rozovsky}, Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 761--786 (2020; Zbl 07298957) Full Text: DOI
Qin, Xinqiang; Peng, Dayao; Hu, Gang Implicit radial point interpolation method for nonlinear space fractional advection-diffusion equations. (English) Zbl 07297924 Rocky Mt. J. Math. 50, No. 6, 2199-2212 (2020). MSC: 65M22 65M70 65D32 35R11 PDF BibTeX XML Cite \textit{X. Qin} et al., Rocky Mt. J. Math. 50, No. 6, 2199--2212 (2020; Zbl 07297924) Full Text: DOI Euclid
Guerraiche, Nassim; Hamani, Samira; Henderson, Johnny Boundary value problems for fractional differential inclusions with nonlocal multipoint boundary conditions. (English) Zbl 07297913 Rocky Mt. J. Math. 50, No. 6, 2059-2072 (2020). MSC: 34A08 34B10 34A60 PDF BibTeX XML Cite \textit{N. Guerraiche} et al., Rocky Mt. J. Math. 50, No. 6, 2059--2072 (2020; Zbl 07297913) Full Text: DOI Euclid
Devi, Anju; Jakhar, Manjeet A novel approach for solving fractional Bagley-Torvik equations. (English) Zbl 07296904 South East Asian J. Math. Math. Sci. 16, No. 1, 177-188 (2020). MSC: 26A33 34A08 44A15 PDF BibTeX XML Cite \textit{A. Devi} and \textit{M. Jakhar}, South East Asian J. Math. Math. Sci. 16, No. 1, 177--188 (2020; Zbl 07296904) Full Text: Link
Terchi, Messaouda.; Hassouna, Houda The blow-up solutions to nonlinear fractional differential Caputo-system. (English) Zbl 07293375 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 1, 52-63 (2020). MSC: 34A08 34A34 34C11 34A12 PDF BibTeX XML Cite \textit{Messaouda. Terchi} and \textit{H. Hassouna}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 1, 52--63 (2020; Zbl 07293375) Full Text: DOI MNR
Ahmad, Imtiaz; Siraj-ul-Islam; Mehnaz; Zaman, Sakhi Local meshless differential quadrature collocation method for time-fractional PDEs. (English) Zbl 1451.65166 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2641-2654 (2020). MSC: 65M99 35K55 35K57 35R11 PDF BibTeX XML Cite \textit{I. Ahmad} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2641--2654 (2020; Zbl 1451.65166) Full Text: DOI
Etemad, Sina; Rezapour, Shahram; Samei, Mohammad Esmael On a fractional Caputo-Hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property. (English) Zbl 07292701 Math. Methods Appl. Sci. 43, No. 17, 9719-9734 (2020). MSC: 34A08 34A60 34B15 47N20 PDF BibTeX XML Cite \textit{S. Etemad} et al., Math. Methods Appl. Sci. 43, No. 17, 9719--9734 (2020; Zbl 07292701) Full Text: DOI
Erfani, S.; Javadi, S.; Babolian, E. An efficient collocation method with convergence rates based on Müntz spaces for solving nonlinear fractional two-point boundary value problems. (English) Zbl 07291005 Comput. Appl. Math. 39, No. 4, Paper No. 260, 23 p. (2020). MSC: 65L10 41A25 49M05 49M25 65K05 PDF BibTeX XML Cite \textit{S. Erfani} et al., Comput. Appl. Math. 39, No. 4, Paper No. 260, 23 p. (2020; Zbl 07291005) Full Text: DOI
Majeed, Abdul; Kamran, Mohsin; Rafique, Muhammad An approximation to the solution of time fractional modified Burgers’ equation using extended cubic B-spline method. (English) Zbl 07291002 Comput. Appl. Math. 39, No. 4, Paper No. 257, 21 p. (2020). MSC: 65D07 65M06 65N22 PDF BibTeX XML Cite \textit{A. Majeed} et al., Comput. Appl. Math. 39, No. 4, Paper No. 257, 21 p. (2020; Zbl 07291002) Full Text: DOI
Ghomanjani, F. A new approach for solving linear fractional integro-differential equations and multi variable order fractional differential equations. (English) Zbl 1455.65104 Proyecciones 39, No. 1, 199-218 (2020). MSC: 65L03 26A33 49K15 65R20 65K10 PDF BibTeX XML Cite \textit{F. Ghomanjani}, Proyecciones 39, No. 1, 199--218 (2020; Zbl 1455.65104) Full Text: DOI
Moroz, L. I.; Maslovskaya, A. G. Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme. (Russian. English summary) Zbl 07288921 Mat. Model. 32, No. 10, 62-76 (2020). MSC: 60-08 60K50 65C20 PDF BibTeX XML Cite \textit{L. I. Moroz} and \textit{A. G. Maslovskaya}, Mat. Model. 32, No. 10, 62--76 (2020; Zbl 07288921) Full Text: DOI MNR
Kassim, Mohammed Dahan; Tatar, Nasser Eddine Convergence of solutions of fractional differential equations to power-type functions. (English) Zbl 07288628 Electron. J. Differ. Equ. 2020, Paper No. 111, 14 p. (2020). MSC: 34A08 34D05 34C11 PDF BibTeX XML Cite \textit{M. D. Kassim} and \textit{N. E. Tatar}, Electron. J. Differ. Equ. 2020, Paper No. 111, 14 p. (2020; Zbl 07288628) Full Text: Link
Huang, Chaobao; Stynes, Martin Optimal \(H^1\) spatial convergence of a fully discrete finite element method for the time-fractional Allen-Cahn equation. (English) Zbl 1454.65118 Adv. Comput. Math. 46, No. 4, Paper No. 63, 20 p. (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M20 65N30 65M12 35R11 PDF BibTeX XML Cite \textit{C. Huang} and \textit{M. Stynes}, Adv. Comput. Math. 46, No. 4, Paper No. 63, 20 p. (2020; Zbl 1454.65118) Full Text: DOI
Laadjal, Zaid; Ahmad, Bashir; Adjeroud, Nacer Existence and uniqueness of solutions for multi-term fractional Langevin equation with boundary conditions. (English) Zbl 07285390 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 5, 339-350 (2020). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{Z. Laadjal} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 5, 339--350 (2020; Zbl 07285390) Full Text: Link
Huang, Chaobao; Liu, Xiaohui; Meng, Xiangyun; Stynes, Martin Error analysis of a finite difference method on graded meshes for a multiterm time-fractional initial-boundary value problem. (English) Zbl 1451.65146 Comput. Methods Appl. Math. 20, No. 4, 815-825 (2020). MSC: 65M60 65M12 35R11 PDF BibTeX XML Cite \textit{C. Huang} et al., Comput. Methods Appl. Math. 20, No. 4, 815--825 (2020; Zbl 1451.65146) Full Text: DOI
Gomoyunov, M. I. To the theory of differential inclusions with Caputo fractional derivatives. (English. Russian original) Zbl 07284435 Differ. Equ. 56, No. 11, 1387-1401 (2020); translation from Differ. Uravn. 56, No. 11, 1427-1440 (2020). Reviewer: Aurelian Cernea (Bucharest) MSC: 34A08 34A60 34A12 PDF BibTeX XML Cite \textit{M. I. Gomoyunov}, Differ. Equ. 56, No. 11, 1387--1401 (2020; Zbl 07284435); translation from Differ. Uravn. 56, No. 11, 1427--1440 (2020) Full Text: DOI
Petrosyan, Garik Garikovich On antiperiodic boundary value problem for semilinear fractional differential inclusion with deviating argument in Banach space. (Russian. English summary) Zbl 07281916 Ufim. Mat. Zh. 12, No. 3, 71-82 (2020); translation in Ufa Math. J. 12, No. 3, 69-80 (2020). MSC: 34K37 34K09 47H08 47H10 34K10 PDF BibTeX XML Cite \textit{G. G. Petrosyan}, Ufim. Mat. Zh. 12, No. 3, 71--82 (2020; Zbl 07281916); translation in Ufa Math. J. 12, No. 3, 69--80 (2020) Full Text: DOI MNR
Ezz-Eldien, S. S.; Doha, E. H.; Wang, Y.; Cai, W. A numerical treatment of the two-dimensional multi-term time-fractional mixed sub-diffusion and diffusion-wave equation. (English) Zbl 07281819 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105445, 15 p. (2020). Reviewer: Hendrik Ranocha (Münster) MSC: 65M70 65M12 35R11 33C45 PDF BibTeX XML Cite \textit{S. S. Ezz-Eldien} et al., Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105445, 15 p. (2020; Zbl 07281819) Full Text: DOI
Ahmadian, Ali; Rezapour, Shahram; Salahshour, Soheil; Samei, Mohammad Esmael Solutions of sum-type singular fractional \(q\) integro-differential equation with \(m\)-point boundary value problem using quantum calculus. (English) Zbl 1452.45005 Math. Methods Appl. Sci. 43, No. 15, 8980-9004 (2020). MSC: 45J05 39A13 34B10 34K37 PDF BibTeX XML Cite \textit{A. Ahmadian} et al., Math. Methods Appl. Sci. 43, No. 15, 8980--9004 (2020; Zbl 1452.45005) Full Text: DOI
Kumar, Sachin; Aguilar, José Francisco Gómez; Pandey, Prashant Numerical solutions for the reaction-diffusion, diffusion-wave, and Cattaneo equations using a new operational matrix for the Caputo-Fabrizio derivative. (English) Zbl 07279006 Math. Methods Appl. Sci. 43, No. 15, 8595-8607 (2020). Reviewer: Dana Černá (Liberec) MSC: 65M70 35K57 35R11 26A33 35Q79 PDF BibTeX XML Cite \textit{S. Kumar} et al., Math. Methods Appl. Sci. 43, No. 15, 8595--8607 (2020; Zbl 07279006) Full Text: DOI
Jafari, H.; Ncube, M. N.; Makhubela, L. Natural Daftardar-Jafari method for solving fractional partial differential equations. (English) Zbl 1452.65295 NonDynSystTheorNonlinear Dyn. Syst. Theory 20, No. 3, 299-306 (2020). MSC: 65M99 35R11 26A33 PDF BibTeX XML Cite \textit{H. Jafari} et al., Nonlinear Dyn. Syst. Theory 20, No. 3, 299--306 (2020; Zbl 1452.65295) Full Text: Link
Darweesh, A. Sinc-Galerkin method for solving higher order fractional boundary value problems. (English) Zbl 1453.65191 Nonlinear Dyn. Syst. Theory 20, No. 3, 267-281 (2020). MSC: 65L60 34A08 65L10 PDF BibTeX XML Cite \textit{A. Darweesh}, Nonlinear Dyn. Syst. Theory 20, No. 3, 267--281 (2020; Zbl 1453.65191) Full Text: Link
Ajeel, Mahmood Shareef; Gachpazan, Morteza; Soheili, Ali Reza Solving a system of nonlinear fractional partial differential equations using the sinc-Muntz collocation method. (English) Zbl 1452.65265 NonDynSystTheorNonlinear Dyn. Syst. Theory 20, No. 2, 119-131 (2020). MSC: 65M70 65H10 42C10 35R11 26A33 PDF BibTeX XML Cite \textit{M. S. Ajeel} et al., Nonlinear Dyn. Syst. Theory 20, No. 2, 119--131 (2020; Zbl 1452.65265) Full Text: Link