Ghosh, Surath An analytical approach for the fractional-order hepatitis B model using new operator. (English) Zbl 07713212 Int. J. Biomath. 17, No. 1, Article ID 2350008, 22 p. (2024). MSC: 92D30 34A08 PDF BibTeX XML Cite \textit{S. Ghosh}, Int. J. Biomath. 17, No. 1, Article ID 2350008, 22 p. (2024; Zbl 07713212) Full Text: DOI
Poovarasan, R.; Kumar, Pushpendra; Govindaraj, V.; Murillo-Arcila, Marina The existence, uniqueness, and stability results for a nonlinear coupled system using \(\psi\)-Caputo fractional derivatives. (English) Zbl 07741573 Bound. Value Probl. 2023, Paper No. 75, 18 p. (2023). MSC: 34Axx 34Bxx 47Nxx PDF BibTeX XML Cite \textit{R. Poovarasan} et al., Bound. Value Probl. 2023, Paper No. 75, 18 p. (2023; Zbl 07741573) Full Text: DOI
Allahviranloo, T.; Jafarian, A.; Saneifard, R.; Ghalami, N.; Measoomy Nia, S.; Kiani, F.; Fernandez-Gamiz, U.; Noeiaghdam, S. An application of artificial neural networks for solving fractional higher-order linear integro-differential equations. (English) Zbl 07741572 Bound. Value Probl. 2023, Paper No. 74, 14 p. (2023). MSC: 45Jxx 26Axx 65Lxx PDF BibTeX XML Cite \textit{T. Allahviranloo} et al., Bound. Value Probl. 2023, Paper No. 74, 14 p. (2023; Zbl 07741572) Full Text: DOI
Karthikeyan, K.; Murugapandian, G. S.; Hammouch, Z. On mild solutions of fractional impulsive differential systems of Sobolev type with fractional nonlocal conditions. (English) Zbl 07739761 Math. Sci., Springer 17, No. 3, 285-295 (2023). MSC: 26A33 34A08 34A12 34A37 34K40 35R11 35R12 PDF BibTeX XML Cite \textit{K. Karthikeyan} et al., Math. Sci., Springer 17, No. 3, 285--295 (2023; Zbl 07739761) Full Text: DOI
Izadi, Mohammad; Yüzbaşı, Şuayip; Adel, Waleed A new Chelyshkov matrix method to solve linear and nonlinear fractional delay differential equations with error analysis. (English) Zbl 07739760 Math. Sci., Springer 17, No. 3, 267-284 (2023). MSC: 65Lxx 34Kxx 34Axx PDF BibTeX XML Cite \textit{M. Izadi} et al., Math. Sci., Springer 17, No. 3, 267--284 (2023; Zbl 07739760) Full Text: DOI
Derakhshan, Mohammadhossein; Aminataei, Azim New approach for the chaotic dynamical systems involving Caputo-Prabhakar fractional derivative using Adams-Bashforth scheme. (English) Zbl 07739672 J. Difference Equ. Appl. 29, No. 6, 640-656 (2023). MSC: 65L05 65M06 35D05 65P20 65P40 PDF BibTeX XML Cite \textit{M. Derakhshan} and \textit{A. Aminataei}, J. Difference Equ. Appl. 29, No. 6, 640--656 (2023; Zbl 07739672) Full Text: DOI
Fedorov, V. E.; Boyko, K. V. Quasilinear equations with a sectorial set of operators at Gerasimov-Caputo derivatives. (English. Russian original) Zbl 07739088 Proc. Steklov Inst. Math. 321, Suppl. 1, S78-S89 (2023); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 29, No. 2, 248-259 (2023). MSC: 35-XX 34-XX PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{K. V. Boyko}, Proc. Steklov Inst. Math. 321, S78--S89 (2023; Zbl 07739088); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 29, No. 2, 248--259 (2023) Full Text: DOI
García Guirao, Juan Luis; Alsulami, Mansoor; Baskonus, Haci Mehmet; Ilhan, Esin; Veeresha, P. Analysis of nonlinear compartmental model using a reliable method. (English) Zbl 07736764 Math. Comput. Simul. 214, 133-151 (2023). MSC: 92-XX 91-XX PDF BibTeX XML Cite \textit{J. L. García Guirao} et al., Math. Comput. Simul. 214, 133--151 (2023; Zbl 07736764) Full Text: DOI
Taneja, Komal; Deswal, Komal; Kumar, Devendra A robust higher-order numerical technique with graded and harmonic meshes for the time-fractional diffusion-advection-reaction equation. (English) Zbl 07736749 Math. Comput. Simul. 213, 348-373 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{K. Taneja} et al., Math. Comput. Simul. 213, 348--373 (2023; Zbl 07736749) Full Text: DOI
Ngondiep, Eric A high-order numerical scheme for multidimensional convection-diffusion-reaction equation with time-fractional derivative. (English) Zbl 07736705 Numer. Algorithms 94, No. 2, 681-700 (2023). MSC: 65M12 65M06 PDF BibTeX XML Cite \textit{E. Ngondiep}, Numer. Algorithms 94, No. 2, 681--700 (2023; Zbl 07736705) Full Text: DOI
Alsaedi, Ahmed; Kirane, Mokhtar; Fino, Ahmad Z.; Ahmad, Bashir On nonexistence of solutions to some time space fractional evolution equations with transformed space argument. (English) Zbl 07735865 Bull. Math. Sci. 13, No. 2, Article ID 2250009, 36 p. (2023). MSC: 35R11 35A01 26A33 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Bull. Math. Sci. 13, No. 2, Article ID 2250009, 36 p. (2023; Zbl 07735865) Full Text: DOI arXiv
Gholami Bahador, F.; Mokhtary, P.; Lakestani, M. Mixed Poisson-Gaussian noise reduction using a time-space fractional differential equations. (English) Zbl 07735562 Inf. Sci. 647, Article ID 119417, 15 p. (2023). MSC: 94A08 68U10 35K57 PDF BibTeX XML Cite \textit{F. Gholami Bahador} et al., Inf. Sci. 647, Article ID 119417, 15 p. (2023; Zbl 07735562) Full Text: DOI
Huy Tuan, Nguyen Global existence and convergence results for a class of nonlinear time fractional diffusion equation. (English) Zbl 07735418 Nonlinearity 36, No. 10, 5144-5189 (2023). MSC: 35R11 35K15 35K58 PDF BibTeX XML Cite \textit{N. Huy Tuan}, Nonlinearity 36, No. 10, 5144--5189 (2023; Zbl 07735418) Full Text: DOI
Dehda, Bachir; Azeb Ahmed, Abdelaziz; Yazid, Fares; Djeradi, Fatima Siham Numerical solution of a class of Caputo-Fabrizio derivative problem using Haar wavelet collocation method. (English) Zbl 07734352 J. Appl. Math. Comput. 69, No. 3, 2761-2774 (2023). MSC: 65T60 34A08 PDF BibTeX XML Cite \textit{B. Dehda} et al., J. Appl. Math. Comput. 69, No. 3, 2761--2774 (2023; Zbl 07734352) Full Text: DOI
Hajishafieiha, Jalal; Abbasbandy, Saeid Numerical solution of two-dimensional inverse time-fractional diffusion problem with non-local boundary condition using \(a\)-polynomials. (English) Zbl 07734313 J. Appl. Math. Comput. 69, No. 2, 1945-1965 (2023). MSC: 65M32 35A24 35C11 PDF BibTeX XML Cite \textit{J. Hajishafieiha} and \textit{S. Abbasbandy}, J. Appl. Math. Comput. 69, No. 2, 1945--1965 (2023; Zbl 07734313) Full Text: DOI
Ghosh, Bappa; Mohapatra, Jugal Analysis of finite difference schemes for Volterra integro-differential equations involving arbitrary order derivatives. (English) Zbl 07734309 J. Appl. Math. Comput. 69, No. 2, 1865-1886 (2023). MSC: 65R20 45D05 26A33 PDF BibTeX XML Cite \textit{B. Ghosh} and \textit{J. Mohapatra}, J. Appl. Math. Comput. 69, No. 2, 1865--1886 (2023; Zbl 07734309) Full Text: DOI
Khatoon, A.; Raheem, A.; Afreen, A. Approximate solutions for neutral stochastic fractional differential equations. (English) Zbl 07733082 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107414, 18 p. (2023). MSC: 34K37 46C15 60H15 47N20 35R11 PDF BibTeX XML Cite \textit{A. Khatoon} et al., Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107414, 18 p. (2023; Zbl 07733082) Full Text: DOI
Muthaiah, Subramanian; Murugesan, Manigandan; Ramasamy, Sivasamy; Thangaraj, Nandha Gopal On fractional integro-differential equation involving Caputo-Hadamard derivative with Hadamard fractional integral boundary conditions. (English) Zbl 07731421 Southeast Asian Bull. Math. 47, No. 3, 367-380 (2023). MSC: 26A33 34A08 34B15 PDF BibTeX XML Cite \textit{S. Muthaiah} et al., Southeast Asian Bull. Math. 47, No. 3, 367--380 (2023; Zbl 07731421) Full Text: Link
Kaddoura, I. H.; Al-Issa, Sh. M.; Rifai, N. J. Existence and Hyers-Ulam stability of the solutions to the implicit second-order differential equation. (English) Zbl 07731236 Poincare J. Anal. Appl. 10, No. 1, 175-192 (2023). MSC: 26A33 34K45 47G10 PDF BibTeX XML Cite \textit{I. H. Kaddoura} et al., Poincare J. Anal. Appl. 10, No. 1, 175--192 (2023; Zbl 07731236) Full Text: Link
Bekkouche, Mohammed Moumen; Ahmed, Abdelaziz Azeb; Yazid, Fares; Djeradi, Fatima Siham Analytical and numerical study of a nonlinear Volterra integro-differential equation with the Caputo-Fabrizio fractional derivative. (English) Zbl 07727703 Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177-2193 (2023). MSC: 26A33 45D05 65L03 47G20 47Gxx PDF BibTeX XML Cite \textit{M. M. Bekkouche} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177--2193 (2023; Zbl 07727703) Full Text: DOI
Aldawish, Ibtisam; Samet, Bessem On the critical behavior for time-fractional reaction diffusion problems. (English) Zbl 07727695 Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2030-2046 (2023). MSC: 35R11 35A01 35B33 35K57 35R45 PDF BibTeX XML Cite \textit{I. Aldawish} and \textit{B. Samet}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2030--2046 (2023; Zbl 07727695) Full Text: DOI
Dhawan, Kanika; Vats, Ramesh Kumar; Verma, Sachin Kumar; Kumar, Avadhesh Existence and stability analysis for non-linear boundary value Problem Involving Caputo fractional derivative. (English) Zbl 07727664 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 2, 107-121 (2023). MSC: 26A33 34B15 PDF BibTeX XML Cite \textit{K. Dhawan} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 2, 107--121 (2023; Zbl 07727664) Full Text: Link Link
Hamadou, Bamogo; Moussa, Yaya; Bassono, Francis; Paré, Youssouf Exact solution of some fractional systems of partial differential equations via the SBA method. (English) Zbl 07727271 Int. J. Numer. Methods Appl. 23, No. 1, 131-156 (2023). MSC: 44Axx 40C10 35D40 35E05 PDF BibTeX XML Cite \textit{B. Hamadou} et al., Int. J. Numer. Methods Appl. 23, No. 1, 131--156 (2023; Zbl 07727271) Full Text: DOI
Shi, Lei; Rashid, Saima; Sultana, Sobia; Khalid, Aasma; Agarwal, Praveen; Osman, Mohamed S. Semi-analytical view of time-fractional PDEs with proportional delays pertaining to index and Mittag-Leffler memory interacting with hybrid transforms. (English) Zbl 07726773 Fractals 31, No. 4, Article ID 2340071, 22 p. (2023). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{L. Shi} et al., Fractals 31, No. 4, Article ID 2340071, 22 p. (2023; Zbl 07726773) Full Text: DOI
Yao, Shao-Wen; Arqub, Omar Abu; Tayebi, Soumia; Osman, M. S.; Mahmoud, W.; Inc, Mustafa; Alsulami, Hamed A novel collective algorithm using cubic uniform spline and finite difference approaches to solving fractional diffusion singular wave model through damping-reaction forces. (English) Zbl 07726771 Fractals 31, No. 4, Article ID 2340069, 13 p. (2023). MSC: 65Lxx 65Mxx 35Rxx PDF BibTeX XML Cite \textit{S.-W. Yao} et al., Fractals 31, No. 4, Article ID 2340069, 13 p. (2023; Zbl 07726771) Full Text: DOI
Nieto, Juan J.; Alghanmi, Madeaha; Ahmad, Bashir; Alsaedi, Ahmed; Alharbi, Boshra On fractional integrals and derivatives of a function with respect to another function. (English) Zbl 07726768 Fractals 31, No. 4, Article ID 2340066, 15 p. (2023). MSC: 26Axx 34A08 PDF BibTeX XML Cite \textit{J. J. Nieto} et al., Fractals 31, No. 4, Article ID 2340066, 15 p. (2023; Zbl 07726768) Full Text: DOI
Jafari, Hossein; Ganji, Roghayeh Moallem; Ganji, Davood Domiri; Hammouch, Zakia; Gasimov, Yusif S. A novel numerical method for solving fuzzy variable-order differential equations with Mittag-Leffler kernels. (English) Zbl 07726765 Fractals 31, No. 4, Article ID 2340063, 13 p. (2023). MSC: 65Lxx 34A07 34A08 26A33 PDF BibTeX XML Cite \textit{H. Jafari} et al., Fractals 31, No. 4, Article ID 2340063, 13 p. (2023; Zbl 07726765) Full Text: DOI
Phuong, Nguyen Duc; Hoan, Luu Vu Cam; Baleanu, Dumitru; Nguyen, Anh Tuan Terminal value problem for stochastic fractional equation within an operator with exponential kernel. (English) Zbl 07726764 Fractals 31, No. 4, Article ID 2340062, 16 p. (2023). MSC: 35R11 35R60 PDF BibTeX XML Cite \textit{N. D. Phuong} et al., Fractals 31, No. 4, Article ID 2340062, 16 p. (2023; Zbl 07726764) Full Text: DOI
Han, Xiang-Lin; Guo, Tao; Nikan, Omid; Avazzadeh, Zakieh Robust implicit difference approach for the time-fractional Kuramoto-Sivashinsky equation with the non-smooth solution. (English) Zbl 07726763 Fractals 31, No. 4, Article ID 2340061, 12 p. (2023). MSC: 65Mxx 35Rxx 26Axx PDF BibTeX XML Cite \textit{X.-L. Han} et al., Fractals 31, No. 4, Article ID 2340061, 12 p. (2023; Zbl 07726763) Full Text: DOI
Balachandar, S. Raja; Venkatesh, S. G.; Balasubramanian, K.; Uma, D. Two-dimensional fractional Euler polynomials method for fractional diffusion-wave equations. (English) Zbl 07726760 Fractals 31, No. 4, Article ID 2340058, 15 p. (2023). MSC: 26Axx 65Mxx 35Rxx PDF BibTeX XML Cite \textit{S. R. Balachandar} et al., Fractals 31, No. 4, Article ID 2340058, 15 p. (2023; Zbl 07726760) Full Text: DOI
Chu, Yu-Ming; Rashid, Saima; Sultana, Sobia; Inc, Mustafa New numerical simulation for the fractal-fractional model of deathly Lassa hemorrhagic fever disease in pregnant women with optimal analysis. (English) Zbl 07726756 Fractals 31, No. 4, Article ID 2340054, 21 p. (2023). MSC: 34C60 34A08 26A33 92D30 33E12 34A45 65L99 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Fractals 31, No. 4, Article ID 2340054, 21 p. (2023; Zbl 07726756) Full Text: DOI
Kumar, Pushpendra; Erturk, Vedat Suat; Murillo-Arcila, Marina; Govindaraj, V. A new form of L1-predictor-corrector scheme to solve multiple delay-type fractional order systems with the example of a neural network model. (English) Zbl 07726747 Fractals 31, No. 4, Article ID 2340043, 13 p. (2023). MSC: 65Lxx 34K37 92Cxx PDF BibTeX XML Cite \textit{P. Kumar} et al., Fractals 31, No. 4, Article ID 2340043, 13 p. (2023; Zbl 07726747) Full Text: DOI
El Mfadel, Ali; Melliani, Said; Elomari, M’hamed Existence of anti-periodic solutions for \(\Psi\)-Caputo-type fractional \(p\)-Laplacian problems via Leray-Schauder degree theory. (English) Zbl 07726145 Analysis, München 43, No. 3, 193-200 (2023). MSC: 34A08 34B15 37C60 47H11 PDF BibTeX XML Cite \textit{A. El Mfadel} et al., Analysis, München 43, No. 3, 193--200 (2023; Zbl 07726145) Full Text: DOI
Fedorov, Vladimir Evgen’evich; Plekhanova, Marina Vasil’evna; Ivanova, Natal’ya Dmitrievna; Shuklina, Anna Faridovna; Filin, Nikolaĭ Vladimirovich Nonlinear inverse problems for some equations with fractional derivatives. (Russian. English summary) Zbl 07724945 Chelyabinskiĭ Fiz.-Mat. Zh. 8, No. 2, 190-202 (2023). MSC: 35R30 35R11 PDF BibTeX XML Cite \textit{V. E. Fedorov} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 8, No. 2, 190--202 (2023; Zbl 07724945) Full Text: DOI MNR
Ouagueni, Nora; Arioua, Yacine; Benhamidouche, Noureddine Existence results of self-similar solutions of the space-fractional diffusion equation involving the generalized Riesz-Caputo fractional derivative. (English) Zbl 07723642 Ann. Univ. Paedagog. Crac., Stud. Math. 385(22), 49-74 (2023). MSC: 35R11 35C06 58C30 PDF BibTeX XML Cite \textit{N. Ouagueni} et al., Ann. Univ. Paedagog. Crac., Stud. Math. 385(22), 49--74 (2023; Zbl 07723642) Full Text: DOI
Sangi, M.; Saiedinezhad, S.; Ghaemi, M. B. A system of high-order fractional differential equations with integral boundary conditions. (English) Zbl 07723473 J. Nonlinear Math. Phys. 30, No. 2, 699-718 (2023). MSC: 34A08 26A33 47N20 47H08 47H10 PDF BibTeX XML Cite \textit{M. Sangi} et al., J. Nonlinear Math. Phys. 30, No. 2, 699--718 (2023; Zbl 07723473) Full Text: DOI
Helal, Mohamed Existence results for functional perturbed differential equations of fractional order with state-dependent delay in Banach spaces. (English) Zbl 07720913 Vladikavkaz. Mat. Zh. 25, No. 1, 112-130 (2023). MSC: 26A33 34K30 34K37 35R11 PDF BibTeX XML Cite \textit{M. Helal}, Vladikavkaz. Mat. Zh. 25, No. 1, 112--130 (2023; Zbl 07720913) Full Text: DOI MNR
Ghanmi, Boulbaba; Ghnimi, Saifeddine On the partial stability of nonlinear impulsive Caputo fractional systems. (English) Zbl 07719559 Appl. Math., Ser. B (Engl. Ed.) 38, No. 2, 166-179 (2023). MSC: 26A33 65L20 PDF BibTeX XML Cite \textit{B. Ghanmi} and \textit{S. Ghnimi}, Appl. Math., Ser. B (Engl. Ed.) 38, No. 2, 166--179 (2023; Zbl 07719559) Full Text: DOI
Khajanchi, Subhas; Sardar, Mrinmoy; Nieto, Juan J. Application of non-singular kernel in a tumor model with strong Allee effect. (English) Zbl 07719317 Differ. Equ. Dyn. Syst. 31, No. 3, 687-692 (2023). MSC: 34C60 34A08 92C37 34D05 PDF BibTeX XML Cite \textit{S. Khajanchi} et al., Differ. Equ. Dyn. Syst. 31, No. 3, 687--692 (2023; Zbl 07719317) Full Text: DOI
Has, Aykut; Yilmaz, Beyhan Effect of fractional analysis on some special curves. (English) Zbl 07717029 Turk. J. Math. 47, No. 5, 1423-1436 (2023). MSC: 26A33 53A04 PDF BibTeX XML Cite \textit{A. Has} and \textit{B. Yilmaz}, Turk. J. Math. 47, No. 5, 1423--1436 (2023; Zbl 07717029) Full Text: DOI
Adjabi, Yassine; Jarad, Fahd; Bouloudene, Mokhtar; Panda, Sumati Kumari Revisiting generalized Caputo derivatives in the context of two-point boundary value problems with the \(p\)-Laplacian operator at resonance. (English) Zbl 07716424 Bound. Value Probl. 2023, Paper No. 62, 23 p. (2023). MSC: 26A33 34A08 34B10 34B15 47H10 47H11 PDF BibTeX XML Cite \textit{Y. Adjabi} et al., Bound. Value Probl. 2023, Paper No. 62, 23 p. (2023; Zbl 07716424) Full Text: DOI
Singh, Anant Pratap; Maurya, Rahul Kumar; Singh, Vineet Kumar Analysis of a robust implicit scheme for space-time fractional stochastic nonlinear diffusion wave model. (English) Zbl 07716411 Int. J. Comput. Math. 100, No. 7, 1625-1645 (2023). MSC: 65C30 65D15 65D30 65G50 65J15 PDF BibTeX XML Cite \textit{A. P. Singh} et al., Int. J. Comput. Math. 100, No. 7, 1625--1645 (2023; Zbl 07716411) Full Text: DOI
Choudhary, Renu; Kumar, Devendra Numerical solution of linear time-fractional Kuramoto-Sivashinsky equation via quintic \(B\)-splines. (English) Zbl 07716406 Int. J. Comput. Math. 100, No. 7, 1512-1531 (2023). MSC: 35R11 34K37 PDF BibTeX XML Cite \textit{R. Choudhary} and \textit{D. Kumar}, Int. J. Comput. Math. 100, No. 7, 1512--1531 (2023; Zbl 07716406) Full Text: DOI
Toprakseven, Şuayip A Lyapunov-type inequality for a class of higher-order fractional boundary value problems. (English) Zbl 07716093 J. Math. Inequal. 17, No. 2, 435-445 (2023). MSC: 34A08 34B05 34B10 26D15 PDF BibTeX XML Cite \textit{Ş. Toprakseven}, J. Math. Inequal. 17, No. 2, 435--445 (2023; Zbl 07716093) Full Text: DOI
Yusubov, Shakir Sh.; Mahmudov, Elimhan N. Necessary and sufficient optimality conditions for fractional Fornasini-Marchesini model. (English) Zbl 07715843 J. Ind. Manag. Optim. 19, No. 10, 7221-7244 (2023). MSC: 26B20 35R11 PDF BibTeX XML Cite \textit{S. Sh. Yusubov} and \textit{E. N. Mahmudov}, J. Ind. Manag. Optim. 19, No. 10, 7221--7244 (2023; Zbl 07715843) Full Text: DOI
Singh, Anshima; Kumar, Sunil; Vigo-Aguiar, Jesus A fully discrete scheme based on cubic splines and its analysis for time-fractional reaction-diffusion equations exhibiting weak initial singularity. (English) Zbl 07715679 J. Comput. Appl. Math. 434, Article ID 115338, 19 p. (2023). MSC: 65Mxx 35Rxx 34Axx PDF BibTeX XML Cite \textit{A. Singh} et al., J. Comput. Appl. Math. 434, Article ID 115338, 19 p. (2023; Zbl 07715679) Full Text: DOI
Tang, Jianhua; Yin, Chuntao Dynamic response of Mathieu-Duffing oscillator with Caputo derivative. (English) Zbl 07715022 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1141-1161 (2023). MSC: 26A33 93C10 PDF BibTeX XML Cite \textit{J. Tang} and \textit{C. Yin}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1141--1161 (2023; Zbl 07715022) Full Text: DOI
Yüzbaşı, Şuayip; Yıldırım, Gamze Numerical solutions of the Bagley-Torvik equation by using generalized functions with fractional powers of Laguerre polynomials. (English) Zbl 07715013 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1003-1021 (2023). MSC: 34B05 34K37 65G99 65L60 65L80 PDF BibTeX XML Cite \textit{Ş. Yüzbaşı} and \textit{G. Yıldırım}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1003--1021 (2023; Zbl 07715013) Full Text: DOI
Chawla, Reetika; Deswal, Komal; Kumar, Devendra A new numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers’ equation. (English) Zbl 07715006 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 883-898 (2023). MSC: 26A33 35R11 65M06 65M12 65M15 65N06 65N15 PDF BibTeX XML Cite \textit{R. Chawla} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 883--898 (2023; Zbl 07715006) Full Text: DOI
Bohner, Martin; Domoshnitsky, Alexander; Padhi, Seshadev; Srivastava, Satyam Narayan Vallée-Poussin theorem for equations with Caputo fractional derivative. (English) Zbl 1516.34098 Math. Slovaca 73, No. 3, 713-728 (2023). MSC: 34K10 34K37 34K38 PDF BibTeX XML Cite \textit{M. Bohner} et al., Math. Slovaca 73, No. 3, 713--728 (2023; Zbl 1516.34098) Full Text: DOI
Chen, Liping; Xue, Min; Lopes, António; Wu, Ranchao; Chen, YangQuan Asymptotic behavior of fractional-order nonlinear systems with two different derivatives. (English) Zbl 07713303 J. Eng. Math. 140, Paper No. 9, 9 p. (2023). MSC: 34A08 34D20 44A10 33E12 PDF BibTeX XML Cite \textit{L. Chen} et al., J. Eng. Math. 140, Paper No. 9, 9 p. (2023; Zbl 07713303) Full Text: DOI
Kokurin, M. M. Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a Caputo fractional derivative in a Banach space. (English. Russian original) Zbl 07712811 J. Math. Sci., New York 272, No. 6, 826-852 (2023); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 175, 79-104 (2020). MSC: 47N40 65J08 35R11 PDF BibTeX XML Cite \textit{M. M. Kokurin}, J. Math. Sci., New York 272, No. 6, 826--852 (2023; Zbl 07712811); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 175, 79--104 (2020) Full Text: DOI
Zhu, Shouguo Optimal controls for fractional backward nonlocal evolution systems. (English) Zbl 07709796 Numer. Funct. Anal. Optim. 44, No. 8, 794-814 (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 49J15 49J27 34A08 26A33 34G10 35R11 47D06 PDF BibTeX XML Cite \textit{S. Zhu}, Numer. Funct. Anal. Optim. 44, No. 8, 794--814 (2023; Zbl 07709796) Full Text: DOI
Yang, Zheng; Zeng, Fanhai A linearly stabilized convolution quadrature method for the time-fractional Allen-Cahn equation. (English) Zbl 07708917 Appl. Math. Lett. 144, Article ID 108698, 8 p. (2023). MSC: 65Mxx 35Rxx 65Nxx PDF BibTeX XML Cite \textit{Z. Yang} and \textit{F. Zeng}, Appl. Math. Lett. 144, Article ID 108698, 8 p. (2023; Zbl 07708917) Full Text: DOI
Arora, Sumit; Mohan, Manil T.; Dabas, Jaydev Finite-approximate controllability of impulsive fractional functional evolution equations of order \(1<\alpha <2\). (English) Zbl 07708644 J. Optim. Theory Appl. 197, No. 3, 855-890 (2023). MSC: 34K35 34K30 34K37 34K45 93B05 PDF BibTeX XML Cite \textit{S. Arora} et al., J. Optim. Theory Appl. 197, No. 3, 855--890 (2023; Zbl 07708644) Full Text: DOI
Rezapour, Shahram; Ahmadkhanlu, Asghar; Khoshvaghti, Leila A study on numerical algorithms for differential equation in two cases \(q\)-calculus and \((p, q)\)-calculus. (English) Zbl 07707339 J. Math. Ext. 17, No. 1, Paper No. 5, 38 p. (2023). MSC: 34A08 34A12 PDF BibTeX XML Cite \textit{S. Rezapour} et al., J. Math. Ext. 17, No. 1, Paper No. 5, 38 p. (2023; Zbl 07707339) Full Text: DOI
Soots, Hanna Britt; Lätt, Kaido; Pedas, Arvet Collocation based approximations for a class of fractional boundary value problems. (English) Zbl 1514.65204 Math. Model. Anal. 28, No. 2, 218-236 (2023). MSC: 65R20 34K37 45J05 PDF BibTeX XML Cite \textit{H. B. Soots} et al., Math. Model. Anal. 28, No. 2, 218--236 (2023; Zbl 1514.65204) Full Text: DOI
Ismaael, Fawzi Muttar An investigation on the existence and uniqueness analysis of the fractional nonlinear integro-differential equations. (English) Zbl 07706120 Nonlinear Funct. Anal. Appl. 28, No. 1, 237-249 (2023). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 26A33 45B05 45D05 47H10 47N20 PDF BibTeX XML Cite \textit{F. M. Ismaael}, Nonlinear Funct. Anal. Appl. 28, No. 1, 237--249 (2023; Zbl 07706120) Full Text: Link
Salim, Abdelkrim; Lazreg, Jamal Eddine; Benchohra, Mouffak Existence, uniqueness and Ulam-Hyers-Rassias stability of differential coupled systems with Riesz-Caputo fractional derivative. (English) Zbl 07705868 Tatra Mt. Math. Publ. 84, 111-138 (2023). MSC: 34A08 26A33 34B15 34D10 47N20 34A09 PDF BibTeX XML Cite \textit{A. Salim} et al., Tatra Mt. Math. Publ. 84, 111--138 (2023; Zbl 07705868) Full Text: DOI
Nayak, Sapan Kumar; Parida, P. K. The dynamical analysis of a low computational cost family of higher-order fractional iterative method. (English) Zbl 07705627 Int. J. Comput. Math. 100, No. 6, 1395-1417 (2023). MSC: 65H10 26A33 PDF BibTeX XML Cite \textit{S. K. Nayak} and \textit{P. K. Parida}, Int. J. Comput. Math. 100, No. 6, 1395--1417 (2023; Zbl 07705627) Full Text: DOI
Lamba, Navneet; Verma, Jyoti; Deshmukh, Kishor A brief note on space time fractional order thermoelastic response in a layer. (English) Zbl 07704596 Appl. Appl. Math. 18, No. 1, Paper No. 18, 9 p. (2023). MSC: 26A33 42A38 58J35 PDF BibTeX XML Cite \textit{N. Lamba} et al., Appl. Appl. Math. 18, No. 1, Paper No. 18, 9 p. (2023; Zbl 07704596) Full Text: Link
Odibat, Zaid; Baleanu, Dumitru A new fractional derivative operator with generalized cardinal sine kernel: numerical simulation. (English) Zbl 07704432 Math. Comput. Simul. 212, 224-233 (2023). MSC: 26-XX 65-XX PDF BibTeX XML Cite \textit{Z. Odibat} and \textit{D. Baleanu}, Math. Comput. Simul. 212, 224--233 (2023; Zbl 07704432) Full Text: DOI
Li, Yuyu; Wang, Tongke; Gao, Guang-hua The asymptotic solutions of two-term linear fractional differential equations via Laplace transform. (English) Zbl 07704413 Math. Comput. Simul. 211, 394-412 (2023). MSC: 35-XX 34-XX PDF BibTeX XML Cite \textit{Y. Li} et al., Math. Comput. Simul. 211, 394--412 (2023; Zbl 07704413) Full Text: DOI
Naik, Manisha Krishna; Baishya, Chandrali; Veeresha, P. A chaos control strategy for the fractional 3D Lotka-Volterra like attractor. (English) Zbl 07704395 Math. Comput. Simul. 211, 1-22 (2023). MSC: 34A34 26A33 34H10 PDF BibTeX XML Cite \textit{M. K. Naik} et al., Math. Comput. Simul. 211, 1--22 (2023; Zbl 07704395) Full Text: DOI
Kokila, J.; Vellappandi, M.; Meghana, D.; Govindaraj, V. Optimal control study on Michaelis-Menten kinetics – a fractional version. (English) Zbl 07703876 Math. Comput. Simul. 210, 571-592 (2023). MSC: 92-XX 93-XX PDF BibTeX XML Cite \textit{J. Kokila} et al., Math. Comput. Simul. 210, 571--592 (2023; Zbl 07703876) Full Text: DOI
Rhaima, Mohamed Ulam-Hyers stability for an impulsive Caputo-Hadamard fractional neutral stochastic differential equations with infinite delay. (English) Zbl 07703864 Math. Comput. Simul. 210, 281-295 (2023). MSC: 34-XX 60-XX PDF BibTeX XML Cite \textit{M. Rhaima}, Math. Comput. Simul. 210, 281--295 (2023; Zbl 07703864) Full Text: DOI
Villafuerte, L. Solution processes for second-order linear fractional differential equations with random inhomogeneous parts. (English) Zbl 07703852 Math. Comput. Simul. 210, 17-48 (2023). MSC: 60-XX 34-XX PDF BibTeX XML Cite \textit{L. Villafuerte}, Math. Comput. Simul. 210, 17--48 (2023; Zbl 07703852) Full Text: DOI
Liu, Li-Bin; Xu, Lei; Zhang, Yong Error analysis of a finite difference scheme on a modified graded mesh for a time-fractional diffusion equation. (English) Zbl 07703831 Math. Comput. Simul. 209, 87-101 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{L.-B. Liu} et al., Math. Comput. Simul. 209, 87--101 (2023; Zbl 07703831) Full Text: DOI
Kebede, Shiferaw Geremew; Guezane-Lakoud, Assia Analysis of mathematical model involving nonlinear systems of Caputo-Fabrizio fractional differential equation. (English) Zbl 1514.34020 Bound. Value Probl. 2023, Paper No. 44, 17 p. (2023). MSC: 34A08 PDF BibTeX XML Cite \textit{S. G. Kebede} and \textit{A. Guezane-Lakoud}, Bound. Value Probl. 2023, Paper No. 44, 17 p. (2023; Zbl 1514.34020) Full Text: DOI
Kadankova, Tetyana; Leonenko, Nikolai; Scalas, Enrico Fractional non-homogeneous Poisson and Pólya-Aeppli processes of order \(k\) and beyond. (English) Zbl 07702530 Commun. Stat., Theory Methods 52, No. 8, 2682-2701 (2023). MSC: 60G55 26A33 60G05 60G51 PDF BibTeX XML Cite \textit{T. Kadankova} et al., Commun. Stat., Theory Methods 52, No. 8, 2682--2701 (2023; Zbl 07702530) Full Text: DOI arXiv
Derbazi, Choukri; Baitiche, Zidane; Zada, Akbar Existence and uniqueness of positive solutions for fractional relaxation equation in terms of \(\psi\)-Caputo fractional derivative. (English) Zbl 07702458 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 633-643 (2023). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{C. Derbazi} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 633--643 (2023; Zbl 07702458) Full Text: DOI
Doha, Eid H.; Abdelkawy, Mohamed A.; Amin, Ahmed Z. M.; Lopes, António M. Numerical solutions for variable-order fractional Gross-Pitaevskii equation with two spectral collocation approaches. (English) Zbl 07702447 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 421-435 (2023). MSC: 65D32 65N35 35R11 PDF BibTeX XML Cite \textit{E. H. Doha} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 421--435 (2023; Zbl 07702447) Full Text: DOI
Abbas, Mohamed I. Sturm-Liouville boundary value problems for fractional differential equations with \(p\)-Laplacian operator via Riesz-Caputo fractional derivatives. (English) Zbl 07701532 Miskolc Math. Notes 24, No. 1, 15-29 (2023). MSC: 26A33 34A08 34B24 PDF BibTeX XML Cite \textit{M. I. Abbas}, Miskolc Math. Notes 24, No. 1, 15--29 (2023; Zbl 07701532) Full Text: DOI
Sajjad, Assad; Farman, Muhammad; Hasan, Ali; Nisar, Kottakkaran Sooppy Transmission dynamics of fractional order yellow virus in red chili plants with the Caputo-Fabrizio operator. (English) Zbl 07701032 Math. Comput. Simul. 207, 347-368 (2023). MSC: 92-XX 35-XX PDF BibTeX XML Cite \textit{A. Sajjad} et al., Math. Comput. Simul. 207, 347--368 (2023; Zbl 07701032) Full Text: DOI
Li, Wenbo; Salgado, Abner J. Time fractional gradient flows: theory and numerics. (English) Zbl 1514.34110 Math. Models Methods Appl. Sci. 33, No. 2, 377-453 (2023). MSC: 34G25 34A08 35R11 65J08 65M06 65M15 65M50 PDF BibTeX XML Cite \textit{W. Li} and \textit{A. J. Salgado}, Math. Models Methods Appl. Sci. 33, No. 2, 377--453 (2023; Zbl 1514.34110) Full Text: DOI arXiv
Godínez, F. A.; Fernández-Anaya, G.; Quezada-García, S.; Quezada-Téllez, L. A.; Polo-Labarrios, M. A. Stability/instability maps of the neutron point kinetic model with conformable and Caputo derivatives. (English) Zbl 07700496 Fractals 31, No. 3, Article ID 2350030, 17 p. (2023). MSC: 26Axx 34Axx 82Dxx PDF BibTeX XML Cite \textit{F. A. Godínez} et al., Fractals 31, No. 3, Article ID 2350030, 17 p. (2023; Zbl 07700496) Full Text: DOI
Zhang, Ri; Shah, Nehad Ali; El-Zahar, Essam R.; Akgül, Ali; Chung, Jae Dong Numerical analysis of fractional-order Emden-Fowler equations using modified variational iteration method. (English) Zbl 07700476 Fractals 31, No. 2, Article ID 2340028, 15 p. (2023). MSC: 35R11 35A22 35A35 PDF BibTeX XML Cite \textit{R. Zhang} et al., Fractals 31, No. 2, Article ID 2340028, 15 p. (2023; Zbl 07700476) Full Text: DOI
Jan, Himayat Ullah; Ullah, Hakeem; Fiza, Mehreen; Khan, Ilyas; Mohamed, Abdullah; Mousa, Abd Allah A. Modification of optimal homotopy asymptotic method for multi-dimensional time-fractional model of Navier-Stokes equation. (English) Zbl 07700469 Fractals 31, No. 2, Article ID 2340021, 19 p. (2023). MSC: 35Q30 76D05 35B40 35A20 44A10 26A33 35R11 PDF BibTeX XML Cite \textit{H. U. Jan} et al., Fractals 31, No. 2, Article ID 2340021, 19 p. (2023; Zbl 07700469) Full Text: DOI
Soleymani, Fazlollah; Zhu, Shengfeng Error and stability estimates of a time-fractional option pricing model under fully spatial-temporal graded meshes. (English) Zbl 07700264 J. Comput. Appl. Math. 425, Article ID 115075, 17 p. (2023). MSC: 65-XX 35R11 91B74 65M22 PDF BibTeX XML Cite \textit{F. Soleymani} and \textit{S. Zhu}, J. Comput. Appl. Math. 425, Article ID 115075, 17 p. (2023; Zbl 07700264) Full Text: DOI
Bilgil, Halis; Yousef, Ali; Erciyes, Ayhan; Erdinç, Ümmügülsüm; Öztürk, Zafer A fractional-order mathematical model based on vaccinated and infected compartments of SARS-CoV-2 with a real case study during the last stages of the epidemiological event. (English) Zbl 07700222 J. Comput. Appl. Math. 425, Article ID 115015, 21 p. (2023). MSC: 26A33 37N25 35B40 92D30 PDF BibTeX XML Cite \textit{H. Bilgil} et al., J. Comput. Appl. Math. 425, Article ID 115015, 21 p. (2023; Zbl 07700222) Full Text: DOI
Liu, Yujing; Yan, Chenguang; Jiang, Weihua Existence of the positive solutions for boundary value problems of mixed differential equations involving the Caputo and Riemann-Liouville fractional derivatives. (English) Zbl 07699531 Bound. Value Probl. 2023, Paper No. 9, 15 p. (2023). Reviewer: Xiping Liu (Shanghai) MSC: 34A08 34B18 PDF BibTeX XML Cite \textit{Y. Liu} et al., Bound. Value Probl. 2023, Paper No. 9, 15 p. (2023; Zbl 07699531) Full Text: DOI
Talib, Imran; Bohner, Martin Numerical study of generalized modified Caputo fractional differential equations. (English) Zbl 07699185 Int. J. Comput. Math. 100, No. 1, 153-176 (2023). MSC: 65L05 26A33 35R11 PDF BibTeX XML Cite \textit{I. Talib} and \textit{M. Bohner}, Int. J. Comput. Math. 100, No. 1, 153--176 (2023; Zbl 07699185) Full Text: DOI
Alam, Mohammad Prawesh; Khan, Arshad; Baleanu, Dumitru A high-order unconditionally stable numerical method for a class of multi-term time-fractional diffusion equation arising in the solute transport models. (English) Zbl 07699183 Int. J. Comput. Math. 100, No. 1, 105-132 (2023). MSC: 65M99 65N35 65N55 65L10 65L60 34B16 PDF BibTeX XML Cite \textit{M. P. Alam} et al., Int. J. Comput. Math. 100, No. 1, 105--132 (2023; Zbl 07699183) Full Text: DOI
Irandoust-Pakchin, Safar; Abdi-Mazraeh, Somayeh Fractional second linear multistep methods: the explicit forms for solving fractional differential equations and stability analysis. (English) Zbl 07699179 Int. J. Comput. Math. 100, No. 1, 20-46 (2023). MSC: 34Axx PDF BibTeX XML Cite \textit{S. Irandoust-Pakchin} and \textit{S. Abdi-Mazraeh}, Int. J. Comput. Math. 100, No. 1, 20--46 (2023; Zbl 07699179) Full Text: DOI
Liu, Jiankang; Wei, Wei; Wang, Jinbin; Xu, Wei Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations. (English) Zbl 07699070 Appl. Math. Lett. 140, Article ID 108586, 6 p. (2023). MSC: 34A08 34F05 34E10 34C29 60H10 60J65 PDF BibTeX XML Cite \textit{J. Liu} et al., Appl. Math. Lett. 140, Article ID 108586, 6 p. (2023; Zbl 07699070) Full Text: DOI
Londoño, Mauricio A.; Giraldo, Ramón; Rodríguez-Cortés, Francisco J. An RBF-FD method for the time-fractional advection-dispersion equation with nonlinear source term. (English) Zbl 07698671 Eng. Anal. Bound. Elem. 151, 565-574 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{M. A. Londoño} et al., Eng. Anal. Bound. Elem. 151, 565--574 (2023; Zbl 07698671) Full Text: DOI
Arora, Sugandha; Mathur, Trilok; Tiwari, Kamlesh A fractional-order model to study the dynamics of the spread of crime. (English) Zbl 07698152 J. Comput. Appl. Math. 426, Article ID 115102, 23 p. (2023). MSC: 34C60 91D10 34C05 34D20 34D23 34D05 34A08 PDF BibTeX XML Cite \textit{S. Arora} et al., J. Comput. Appl. Math. 426, Article ID 115102, 23 p. (2023; Zbl 07698152) Full Text: DOI
Surkov, Platon Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. (English) Zbl 1512.93049 Math. Control Relat. Fields 13, No. 3, 895-917 (2023). MSC: 93B53 34A08 49N45 93-08 93C41 PDF BibTeX XML Cite \textit{P. Surkov}, Math. Control Relat. Fields 13, No. 3, 895--917 (2023; Zbl 1512.93049) Full Text: DOI
Leugering, Günter; Mophou, Gisèle; Moutamal, Maryse; Warma, Mahamadi Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph. (English) Zbl 07697844 Math. Control Relat. Fields 13, No. 2, 771-807 (2023). MSC: 35R11 35K51 35R02 49J45 49J20 PDF BibTeX XML Cite \textit{G. Leugering} et al., Math. Control Relat. Fields 13, No. 2, 771--807 (2023; Zbl 07697844) Full Text: DOI arXiv
Meng, Yuan; Du, Xinran; Pang, Huihui Iterative positive solutions to a coupled Riemann-Liouville fractional \(q\)-difference system with the Caputo fractional \(q\)-derivative boundary conditions. (English) Zbl 07697678 J. Funct. Spaces 2023, Article ID 5264831, 16 p. (2023). MSC: 39A13 26A33 PDF BibTeX XML Cite \textit{Y. Meng} et al., J. Funct. Spaces 2023, Article ID 5264831, 16 p. (2023; Zbl 07697678) Full Text: DOI
Saha Ray, S. Two competent novel techniques based on two-dimensional wavelets for nonlinear variable-order Riesz space-fractional Schrödinger equations. (English) Zbl 07697400 J. Comput. Appl. Math. 424, Article ID 114971, 30 p. (2023). MSC: 26A33 65N35 65M70 PDF BibTeX XML Cite \textit{S. Saha Ray}, J. Comput. Appl. Math. 424, Article ID 114971, 30 p. (2023; Zbl 07697400) Full Text: DOI
El-Sayed, A. A.; Agarwal, P. Spectral treatment for the fractional-order wave equation using shifted Chebyshev orthogonal polynomials. (English) Zbl 07697396 J. Comput. Appl. Math. 424, Article ID 114933, 11 p. (2023). MSC: 26A33 65D25 65M06 65Z05 PDF BibTeX XML Cite \textit{A. A. El-Sayed} and \textit{P. Agarwal}, J. Comput. Appl. Math. 424, Article ID 114933, 11 p. (2023; Zbl 07697396) Full Text: DOI
D’abbicco, Marcello; Girardi, Giovanni Decay estimates for a perturbed two-terms space-time fractional diffusive problem. (English) Zbl 1517.35238 Evol. Equ. Control Theory 12, No. 4, 1056-1082 (2023). MSC: 35R11 26A33 35A01 35B33 35K15 35K58 PDF BibTeX XML Cite \textit{M. D'abbicco} and \textit{G. Girardi}, Evol. Equ. Control Theory 12, No. 4, 1056--1082 (2023; Zbl 1517.35238) Full Text: DOI
Taghipour, M.; Aminikhah, H. Application of Pell collocation method for solving the general form of time-fractional Burgers equations. (English) Zbl 1512.65233 Math. Sci., Springer 17, No. 2, 183-201 (2023). MSC: 65M70 65R10 34K37 45J05 PDF BibTeX XML Cite \textit{M. Taghipour} and \textit{H. Aminikhah}, Math. Sci., Springer 17, No. 2, 183--201 (2023; Zbl 1512.65233) Full Text: DOI
Taherkhani, Sh.; Khalilsaraye, I. Najafi; Ghayebi, B. Numerical solution of the diffusion problem of distributed order based on the sinc-collocation method. (English) Zbl 1512.65234 Math. Sci., Springer 17, No. 2, 133-144 (2023). MSC: 65M70 34K37 65L60 PDF BibTeX XML Cite \textit{Sh. Taherkhani} et al., Math. Sci., Springer 17, No. 2, 133--144 (2023; Zbl 1512.65234) Full Text: DOI
Irgashev, B. Yu. A nonlocal problem for a mixed equation of high even order with a fractional Caputo derivative. (English) Zbl 1517.35243 J. Elliptic Parabol. Equ. 9, No. 1, 389-399 (2023). MSC: 35R11 35M12 26A33 34L05 33E12 PDF BibTeX XML Cite \textit{B. Yu. Irgashev}, J. Elliptic Parabol. Equ. 9, No. 1, 389--399 (2023; Zbl 1517.35243) Full Text: DOI
Mary, S. Joe Christin; Tamilselvan, Ayyadurai Second order spline method for fractional Bagley-Torvik equation with variable coefficients and Robin boundary conditions. (English) Zbl 07695072 J. Math. Model. 11, No. 1, 117-132 (2023). MSC: 34A08 41A15 26A33 65L20 PDF BibTeX XML Cite \textit{S. J. C. Mary} and \textit{A. Tamilselvan}, J. Math. Model. 11, No. 1, 117--132 (2023; Zbl 07695072) Full Text: DOI
Sagar, B.; Saha Ray, S. A localized meshfree technique for solving fractional Benjamin-Ono equation describing long internal waves in deep stratified fluids. (English) Zbl 07693652 Commun. Nonlinear Sci. Numer. Simul. 123, Article ID 107287, 17 p. (2023). MSC: 65-XX 35G31 35R11 65D12 PDF BibTeX XML Cite \textit{B. Sagar} and \textit{S. Saha Ray}, Commun. Nonlinear Sci. Numer. Simul. 123, Article ID 107287, 17 p. (2023; Zbl 07693652) Full Text: DOI
Benkhettou, Nadia; Salim, Abdelkrim; Lazreg, Jamal Eddine; Abbas, Saïd; Benchohra, Mouffak Lakshmikantham monotone iterative principle for hybrid Atangana-Baleanu-Caputo fractional differential equations. (English) Zbl 07692942 An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 79-91 (2023). MSC: 26A33 34A08 34A12 PDF BibTeX XML Cite \textit{N. Benkhettou} et al., An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 79--91 (2023; Zbl 07692942) Full Text: DOI
El Mfadel, A.; Melliani, S.; Elomari, M. Existence and uniqueness results of boundary value problems for nonlinear fractional differential equations involving \(\Psi\)-Caputo-type fractional derivatives. (English) Zbl 07692726 Acta Math. Univ. Comen., New Ser. 92, No. 1, 23-33 (2023). Reviewer: Lingju Kong (Chattanooga) MSC: 34A08 34B15 26A33 47H10 PDF BibTeX XML Cite \textit{A. El Mfadel} et al., Acta Math. Univ. Comen., New Ser. 92, No. 1, 23--33 (2023; Zbl 07692726) Full Text: Link