Zhang, Xindong; Feng, Yuelong; Luo, Ziyang; Liu, Juan A spatial sixth-order numerical scheme for solving fractional partial differential equation. (English) Zbl 07927817 Appl. Math. Lett. 159, Article ID 109265, 7 p. (2025). MSC: 65Mxx 35Rxx 34Axx × Cite Format Result Cite Review PDF Full Text: DOI
El Allaoui, Abdelati; Mbarki, Lamine; Allaoui, Youssef; Vanterler da C. Sousa, J. Solvability of Langevin fractional differential equation of higher-order with integral boundary conditions. (English) Zbl 07925051 J. Appl. Anal. Comput. 15, No. 1, 316-332 (2025). MSC: 34A08 34A12 × Cite Format Result Cite Review PDF Full Text: DOI
Abboubakar, Hamadjam; Racke, Reinhard Mathematical modeling of the coronavirus (Covid-19) transmission dynamics using classical and fractional derivatives. (English) Zbl 07923050 Discrete Contin. Dyn. Syst., Ser. B 30, No. 1, 289-329 (2025). MSC: 34D20 26A33 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Singh, Akanksha; Kanaujiya, Ankur; Mohapatra, Jugal Euler wavelets method for optimal control problems of fractional integro-differential equations. (English) Zbl 07901811 J. Comput. Appl. Math. 454, Article ID 116178, 16 p. (2025). MSC: 49J15 49N10 65T60 26A33 45J05 × Cite Format Result Cite Review PDF Full Text: DOI
Angelani, Luca; De Gregorio, Alessandro; Garra, Roberto; Iafrate, Francesco Anomalous random flights and time-fractional run-and-tumble equations. (English) Zbl 07937710 J. Stat. Phys. 191, No. 10, Paper No. 129, 25 p. (2024). MSC: 60Gxx 60Kxx 60Jxx × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kumar, Pushpendra A new fractional-order model for defining the dynamics of ending student strikes at a university. (English) Zbl 07932552 Bol. Soc. Mat. Mex., III. Ser. 30, No. 3, Paper No. 91, 18 p. (2024). MSC: 65-XX 91-XX × Cite Format Result Cite Review PDF Full Text: DOI
Zuo, Jiabin; Taqbibt, Abdellah; Chaib, Mohamed; ELomari, M’hamed; Vanterler da C. Sousa, J. An existence and uniqueness of mild solutions of fractional evolution problems. (English) Zbl 07931040 Comput. Appl. Math. 43, No. 8, Paper No. 424, 19 p. (2024). MSC: 34G20 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Soori, Zoleikha; Aminataei, Azim Numerical approach of Cattaneo equation with time Caputo-Fabrizio fractional derivative. (English) Zbl 07926992 Iran. J. Math. Sci. Inform. 19, No. 2, 127-153 (2024). MSC: 26A33 65L12 × Cite Format Result Cite Review PDF Full Text: DOI
Ahn, Hyunjin On the multi-cluster flocking of the fractional Cucker-Smale model. (English) Zbl 07926346 Math. Eng. (Springfield) 6, No. 4, 607-647 (2024). MSC: 92-XX 82-XX × Cite Format Result Cite Review PDF Full Text: DOI
Heydari, M. H.; Razzaghi, M. A highly accurate method for multi-term time fractional diffusion equation in two dimensions with \(\psi\)-Caputo fractional derivative. (English) Zbl 07925736 Results Appl. Math. 23, Article ID 100481, 13 p. (2024). MSC: 65Mxx 35Rxx 26Axx × Cite Format Result Cite Review PDF Full Text: DOI
Heydari, M. H.; Razzaghi, M. A discrete spectral method for time fractional fourth-order 2D diffusion-wave equation involving \(\psi\)-Caputo fractional derivative. (English) Zbl 07925723 Results Appl. Math. 23, Article ID 100466, 14 p. (2024). MSC: 65Mxx 26Axx 34Axx × Cite Format Result Cite Review PDF Full Text: DOI
Abdulqader, A. J. On fuzzy fractional Volterra-Fredholm model under the uncertainty \(\theta\)-operator of the AD technique: theorems and applications. (English) Zbl 07925502 Malays. J. Math. Sci. 18, No. 3, 631-646 (2024). MSC: 65R20 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Alsa’di, K.; Nik Long, N. M. A.; Eshkuvatov, Z. K. Theoretical and numerical studies of fractional Volterra-Fredholm integro-differential equations in Banach space. (English) Zbl 07925493 Malays. J. Math. Sci. 18, No. 3, 469-489 (2024). MSC: 65R20 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Seal, Aniruddha; Natesan, Srinivasan An efficient computational technique for semilinear time-fractional diffusion equation. (English) Zbl 07924848 Calcolo 61, No. 3, Paper No. 47, 22 p. (2024). MSC: 65-XX 35A22 35K58 35R11 65M06 65M15 × Cite Format Result Cite Review PDF Full Text: DOI
Luc, Nguyen Hoang; Jafari, Hossein; Kumam, Poom; Tuan, Nguyen Huy On an initial value problem for time fractional pseudo-parabolic equation with Caputo derivative. (English) Zbl 07924844 Math. Methods Appl. Sci. 47, No. 13, 11245-11267 (2024). MSC: 26A33 35B65 35B05 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Yihong; Cao, Jianxiong; Fu, Junliang Tailored finite point method for time fractional convection dominated diffusion problems with boundary layers. (English) Zbl 07924833 Math. Methods Appl. Sci. 47, No. 13, 11044-11061 (2024). MSC: 65M06 65M12 65M22 × Cite Format Result Cite Review PDF Full Text: DOI
Huseynov, Ismail T.; Mahmudov, Nazim I. Delayed analogue of three-parameter Mittag-Leffler functions and their applications to Caputo-type fractional time delay differential equations. (English) Zbl 07924832 Math. Methods Appl. Sci. 47, No. 13, 11019-11043 (2024). MSC: 34K37 26A33 34K06 × Cite Format Result Cite Review PDF Full Text: DOI
Matar, Mohammed M.; Lubbad, Asma A.; Alzabut, Jehad On \(p\)-Laplacian boundary value problems involving Caputo-Katugampula fractional derivatives. (English) Zbl 07924815 Math. Methods Appl. Sci. 47, No. 13, 10799-10816 (2024). MSC: 34A08 34B15 × Cite Format Result Cite Review PDF Full Text: DOI
Jleli, Mohamed Instantaneous blow-up for a fractional-in-time evolution equation arising in plasma theory. (English) Zbl 07924798 Math. Methods Appl. Sci. 47, No. 13, 10574-10581 (2024). MSC: 35B44 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Zhang, Lihong; Qin, Nan; Ahmad, Bashir Explicit iterative solution of a Caputo-Hadamard-type fractional turbulent flow model. (English) Zbl 07924796 Math. Methods Appl. Sci. 47, No. 13, 10548-10558 (2024). MSC: 34A08 34B10 34B15 × Cite Format Result Cite Review PDF Full Text: DOI
Yalçın, Serap; Çetin, Erbil; Topal, Fatma Serap Existence results for a nonlinear generalized Caputo fractional boundary value problem. (English) Zbl 07924388 J. Appl. Anal. Comput. 14, No. 6, 3639-3656 (2024). MSC: 34K10 34K37 × Cite Format Result Cite Review PDF Full Text: DOI
Mohamed, D. Sh.; Abdou, M. A.; Mahdy, A. M. S. Dynamical investigation and numerical modeling of a fractional mixed nonlinear partial integro-differential problem in time and space. (English) Zbl 07924380 J. Appl. Anal. Comput. 14, No. 6, 3458-3479 (2024). MSC: 65R20 45M10 35R09 × Cite Format Result Cite Review PDF Full Text: DOI
Obeidat, Nazek A.; Rawashdeh, Mahmoud S.; Al Erjani, Malak Q. A new efficient transform mechanism with convergence analysis of the space-fractional telegraph equations. (English) Zbl 07924358 J. Appl. Anal. Comput. 14, No. 5, 3007-3032 (2024). MSC: 35R11 35C10 35K20 × Cite Format Result Cite Review PDF Full Text: DOI
Zentar, Oualid; Ziane, Mohamed; Al Horani, Mohammed; Zitouni, Ismail Theoretical study of a class of \(\zeta \)-Caputo fractional differential equations in a Banach space. (English) Zbl 07924347 J. Appl. Anal. Comput. 14, No. 5, 2808-2821 (2024). MSC: 34A08 26A33 47H08 × Cite Format Result Cite Review PDF Full Text: DOI
Akiladevi, K. Shri; Balachandran, K.; Kim, Daewook On fractional time-varying delay integrodifferential equations with multi-point multi-term nonlocal boundary conditions. (English) Zbl 07924067 Nonlinear Funct. Anal. Appl. 29, No. 3, 803-823 (2024). MSC: 34A08 34B10 34B15 × Cite Format Result Cite Review PDF Full Text: Link
Masti, I.; Sayevand, K.; Jafari, H. On epidemiological transition model of the Ebola virus in fractional sense. (English) Zbl 07924018 J. Appl. Anal. Comput. 14, No. 3, 1625-1647 (2024). MSC: 03H05 26A33 14F10 39B42 × Cite Format Result Cite Review PDF Full Text: DOI
Zeng, Biao; Wang, Shuhua Existence for nonlinear fractional evolutionary equations involving \(\psi \)-Caputo fractional derivative. (English) Zbl 07924008 J. Appl. Anal. Comput. 14, No. 3, 1414-1433 (2024). MSC: 35R11 35K86 35K90 47J22 65M12 76D05 × Cite Format Result Cite Review PDF Full Text: DOI
Onitsuka, Masakazu; El-Fassi, Iz-iddine Generalized Caputo-Fabrizio fractional differential equation. (English) Zbl 07923025 J. Appl. Anal. Comput. 14, No. 2, 964-975 (2024). MSC: 34A08 26A33 34A05 × Cite Format Result Cite Review PDF Full Text: DOI
Khader, Mohamed M.; Tedjani, Ali H. Numerical simulation for the fractional-order smoking model using a spectral collocation method based on the Gegenbauer wavelet polynomials. (English) Zbl 07923020 J. Appl. Anal. Comput. 14, No. 2, 847-863 (2024). MSC: 34A12 41A30 47H10 65N20 × Cite Format Result Cite Review PDF Full Text: DOI
Ji, Dehong; Ma, Yuan; Ge, Weigao A singular fractional differential equation with Riesz-Caputo derivative. (English) Zbl 07923010 J. Appl. Anal. Comput. 14, No. 2, 642-656 (2024). MSC: 34A08 × Cite Format Result Cite Review PDF Full Text: DOI
Dehestani, H.; Ordokhani, Y.; Razzaghi, M. Execution of a novel discretization approach for solving variable-order Caputo-Riesz time-space fractional Schrödinger equations. (English) Zbl 07922839 J. Appl. Anal. Comput. 14, No. 1, 235-262 (2024). MSC: 35R11 65M70 × Cite Format Result Cite Review PDF Full Text: DOI
Nagy, A. M.; Issa, K. An accurate numerical technique for solving fractional advection-diffusion equation with generalized Caputo derivative. (English) Zbl 07920850 Z. Angew. Math. Phys. 75, No. 5, Paper No. 164, 15 p. (2024). MSC: 34K37 65M06 65M12 65M70 × Cite Format Result Cite Review PDF Full Text: DOI
Bouallala, Mustapha Variational and error estimation for a frictionless contact problem in thermo-viscoelasticity with time fractional derivatives. (English) Zbl 07920278 Commun. Anal. Comput. 2, No. 1, 1-18 (2024). MSC: 26A33 74M15 74S05 × Cite Format Result Cite Review PDF Full Text: DOI
Rhaima, Mohamed; Boucenna, Djalal; Mchiri, Lassaad; Benjemaa, Mondher; Ben Makhlouf, Abdellatif Ulam-Hyers-Rassias Mittag-Leffler stability of \(\varpi\)-fractional partial differential equations. (English) Zbl 07917636 J. Inequal. Appl. 2024, Paper No. 109, 17 p. (2024). MSC: 35R11 26A33 35B35 × Cite Format Result Cite Review PDF Full Text: DOI
Yin, Chuntao; Zhao, Yufei; Li, Xianghong; Shen, Yongjun Analysis and synchronization of the Chen system with fractional derivative. (English) Zbl 07916713 Int. J. Bifurcation Chaos Appl. Sci. Eng. 34, No. 7, Article ID 2450088, 14 p. (2024). MSC: 34H05 34A08 34D06 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Gupta, Rupali; Kumar, Sushil Space-time pseudospectral method for the variable-order space-time fractional diffusion equation. (English) Zbl 07915220 Math. Sci., Springer 18, No. 3, 419-436 (2024). MSC: 65Mxx 35Rxx 26Axx × Cite Format Result Cite Review PDF Full Text: DOI
Chalambari, Kokab; Ebrahimi, Hamideh; Ayati, Zeinab Stability and convergence of a new hybrid method for fractional partial differential equations. (English) Zbl 07915216 Math. Sci., Springer 18, No. 3, 367-386 (2024). MSC: 65Mxx 35Rxx 65Dxx × Cite Format Result Cite Review PDF Full Text: DOI
Chawla, Reetika; Kumar, Devendra; Baleanu, Dumitru Numerical investigation of two fractional operators for time fractional delay differential equation. (English) Zbl 07914741 J. Math. Chem. 62, No. 8, 1912-1934 (2024). MSC: 65M12 35R11 65D07 65M70 × Cite Format Result Cite Review PDF Full Text: DOI
Kang, Jaehoon; Park, Daehan An \(L_q(L_p)\)-theory for space-time non-local equations generated by Lévy processes with low intensity of small jumps. (English) Zbl 07914042 Stoch. Partial Differ. Equ., Anal. Comput. 12, No. 3, 1439-1491 (2024). MSC: 35B65 35R09 35R11 26A33 47G20 × Cite Format Result Cite Review PDF Full Text: DOI
Vishwakarma, P.; Kataria, K. K. On integrals of birth-death processes at random time. (English) Zbl 07913933 Stat. Probab. Lett. 214, Article ID 110204, 9 p. (2024). MSC: 60J80 60J27 × Cite Format Result Cite Review PDF Full Text: DOI
Charkaoui, Abderrahim; Ben-Loghfyry, Anouar A novel multi-frame image super-resolution model based on regularized nonlinear diffusion with Caputo time fractional derivative. (English) Zbl 07912567 Commun. Nonlinear Sci. Numer. Simul. 139, Article ID 108280, 33 p. (2024). MSC: 65L05 65L60 26A33 65K10 68U10 × Cite Format Result Cite Review PDF Full Text: DOI
Oufkir, Khadija; Mfadel, Ali El; Melliani, Said; Elomari, M’hamed; Sadiki, Hamid Existence and uniqueness results for a coupled system of nonlinear \(\Psi\)-fractional differential equations with fractional integral boundary conditions. (English) Zbl 07911225 Miskolc Math. Notes 25, No. 1, 411-423 (2024). MSC: 34A08 26A33 34K37 × Cite Format Result Cite Review PDF Full Text: DOI
Chakuvinga, Tawanda Gallan; Topal, Fatma Serap Positive solutions for integral boundary value problems of nonlinear fractional differential equations. (English) Zbl 07911208 Miskolc Math. Notes 25, No. 1, 173-188 (2024). MSC: 30E25 34A08 34B18 34G20 34K06 34K37 × Cite Format Result Cite Review PDF Full Text: DOI
Srivastava, Satyam Narayan; Pati, Smita; Graef, John R.; Domoshnitsky, Alexander; Padhi, Seshadev Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions. (English) Zbl 07910619 Cubo 26, No. 2, 259-277 (2024). MSC: 34A08 26D10 34B15 × Cite Format Result Cite Review PDF Full Text: Link
Ramezani, M.; Mokhtari, R.; Yan, Y. Correction of a high-order numerical method for approximating time-fractional wave equation. (English) Zbl 07909819 J. Sci. Comput. 100, No. 3, Paper No. 71, 20 p. (2024). MSC: 65M06 65N06 65M12 65M15 44A10 26A33 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Roshan, Tasmia; Ghosh, Surath; Kumar, Sunil Dynamical behaviour of a fractional-order SEIB model. (English) Zbl 07909651 Int. J. Theor. Phys. 63, No. 8, Paper No. 188, 26 p. (2024). MSC: 34C60 34A08 92D30 34C05 34D20 34D05 × Cite Format Result Cite Review PDF Full Text: DOI
Jha, Navnit; Yadav, Akash; Pandey, Ritesh; Misra, A. K. Analyzing crop production: unraveling the impact of pests and pesticides through a fractional model. (English) Zbl 1544.92223 Nonlinear Anal., Model. Control 29, No. 5, 858-877 (2024). MSC: 92D45 34A34 34A08 34D20 × Cite Format Result Cite Review PDF Full Text: DOI
Kabore, Germain; Abbo, Bakari; So, Ousséni; Some, Blaise Solving strongly nonlinear fractional Fredholm integral-differential equations in Caputo’s sense using the SBA method. (English) Zbl 07907360 Aust. J. Math. Anal. Appl. 21, No. 1, Paper No. 17, 11 p. (2024). MSC: 26A33 65R10 65L03 35S11 × Cite Format Result Cite Review PDF Full Text: Link
Sikorska-Nowak, Aneta Existence of pseudosolutions for dynamic fractional differential equations. (English) Zbl 1544.34015 Electron. J. Differ. Equ. 2024, Paper No. 36, 9 p. (2024). MSC: 34A08 34G20 × Cite Format Result Cite Review PDF Full Text: DOI
Surkov, P. G. Package guidance problem for a fractional-order system. (English. Russian original) Zbl 1544.93271 Proc. Steklov Inst. Math. 325, Suppl. 1, S212-S230 (2024); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 30, No. 2, 222-242 (2024). MSC: 93C05 93C15 34A08 × Cite Format Result Cite Review PDF Full Text: DOI
Fedorov, V. E.; Godova, A. D. Integro-differential equations of Gerasimov type with sectorial operators. (English. Russian original) Zbl 07906022 Proc. Steklov Inst. Math. 325, Suppl. 1, S99-S113 (2024); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 30, No. 2, 243-258 (2024). MSC: 35R11 35R09 47G20 × Cite Format Result Cite Review PDF Full Text: DOI
Panwar, Savita; Rai, Prakriti; Pandey, Rupakshi Mishra A new generalized beta function associated with statistical distribution and fractional kinetic equation. (English) Zbl 07905405 Bol. Soc. Parana. Mat. (3) 42, Paper No. 126, 15 p. (2024). MSC: 26A33 33B15 33C05 33C15 33C90 33E12 60E10 62E15 × Cite Format Result Cite Review PDF Full Text: DOI
Elomari, M.; Bourhim, F. E.; Kassidi, A.; El Mfadel, A. Boundary value problems for nonlinear fractional differential equations with \(\Psi \)-Caputo fractional. (English) Zbl 07905395 Bol. Soc. Parana. Mat. (3) 42, Paper No. 116, 8 p. (2024). MSC: 34A08 26A33 34K37 × Cite Format Result Cite Review PDF Full Text: DOI
Taqbibt, A.; El Bezdaoui, L.; El omari, M.; Chadli, L. S. Generalized solutions of the Cauchy problem involving \(\Phi \)-Caputo fractional derivatives. (English) Zbl 07905391 Bol. Soc. Parana. Mat. (3) 42, Paper No. 112, 12 p. (2024). MSC: 35B40 35L70 × Cite Format Result Cite Review PDF Full Text: DOI
Ata, Enes; Kıymaz, İ. Onur Modified special functions: properties, integral transforms and applications to fractional differential equations. (English) Zbl 07905368 Bol. Soc. Parana. Mat. (3) 42, Paper No. 89, 22 p. (2024). MSC: 26A33 33B15 33C05 33C15 34A08 44A10 44A15 44A20 × Cite Format Result Cite Review PDF Full Text: DOI
Gogoi, Bikash; Saha, Utpal Kumar; Hazarika, Bipan Impulsive fractional dynamic equation with non-local initial condition on time scales. (English) Zbl 07905326 Bol. Soc. Parana. Mat. (3) 42, Paper No. 47, 13 p. (2024). MSC: 26A33 26E70 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Malghi, Hayat; Hilal, Khalid; El Mfadel, Ali; Qaffou, Abdelaziz Nonlocal boundary value problems for functional hybrid differential equations involving generalized \(\omega\)-Caputo fractional operator. (English) Zbl 07905309 Bol. Soc. Parana. Mat. (3) 42, Paper No. 30, 19 p. (2024). MSC: 34A08 34K37 × Cite Format Result Cite Review PDF Full Text: DOI
Haddouchi, Faouzi Existence and Ulam-Hyers stability results for a class of fractional integro-differential equations involving nonlocal fractional integro-differential boundary conditions. (English) Zbl 07905298 Bol. Soc. Parana. Mat. (3) 42, Paper No. 19, 19 p. (2024). MSC: 34A08 26A33 34B15 × Cite Format Result Cite Review PDF Full Text: DOI
Menchih, M.; Hilal, K.; Elomari, M.; Kjouni, A. Fractional order iterative boundary value problem. (English) Zbl 07905281 Bol. Soc. Parana. Mat. (3) 42, Paper No. 2, 11 p. (2024). MSC: 26A33 34A08 × Cite Format Result Cite Review PDF Full Text: DOI
Phut, Lai Van Finite-time stability analysis of fractional fuzzy differential equations with time-varying delay involving the generalized Caputo fractional derivative. (English) Zbl 07905072 Afr. Mat. 35, No. 3, Paper No. 60, 23 p. (2024). MSC: 37C75 93D40 26A33 34A08 × Cite Format Result Cite Review PDF Full Text: DOI
Rahou, Wafaa; Salim, Abdelkrim; Lazreg, Jamal Eddine; Benchohra, Mouffak Implicit fractional differential equations with advanced arguments and the convex combined Caputo derivative. (English) Zbl 07903778 Rocky Mt. J. Math. 54, No. 3, 869-883 (2024). MSC: 34K37 26A33 34K32 34K27 47H10 × Cite Format Result Cite Review PDF Full Text: DOI Link
Dien, Nguyen Minh Solvability of nonlinear fractional Lane-Emden-type delay equations with time-singular coefficients. (English) Zbl 07903777 Rocky Mt. J. Math. 54, No. 3, 855-868 (2024). MSC: 34K37 34K27 × Cite Format Result Cite Review PDF Full Text: DOI Link
Torres, Luis Caicedo; Gal, Ciprian G. Control of fractional in-time Schrodinger equations via comprehensive Caputo derivative strategies. (English) Zbl 07903740 Evol. Equ. Control Theory 13, No. 5, 1311-1331 (2024). MSC: 35R11 35Q41 × Cite Format Result Cite Review PDF Full Text: DOI
Sahu, Sweta Narayan; Sen, Sumit; Hossain, Sourav; Ghoshal, Koeli Unsteady suspended sediment distribution in an ice-covered channel through fractional advection-diffusion equation. (English) Zbl 07902670 J. Eng. Math. 147, Paper No. 7, 32 p. (2024). MSC: 76T20 76R99 76M99 76M20 86A05 86A40 × Cite Format Result Cite Review PDF Full Text: DOI
Tomar, Aditi; Tripathi, Lok Pati; Pani, Amiya K. Optimal error estimates of a non-uniform IMEX-L1 finite element method for time fractional PDEs and PIDEs. (English) Zbl 1543.65162 Appl. Numer. Math. 205, 137-168 (2024). MSC: 65M60 65M12 65M15 35B65 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Khosravian-Arab, Hassan; Dehghan, Mehdi The sine and cosine diffusive representations for the Caputo fractional derivative. (English) Zbl 07901886 Appl. Numer. Math. 204, 265-290 (2024). MSC: 26A33 65D30 65D25 65D32 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kumar, Saurabh; Gupta, Vikas; Zeidan, Dia An efficient collocation technique based on operational matrix of fractional-order Lagrange polynomials for solving the space-time fractional-order partial differential equations. (English) Zbl 07901885 Appl. Numer. Math. 204, 249-264 (2024). MSC: 65M70 65H10 65M12 26A33 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Aydinlik, Soner A novel approach for fractional model of water pollution management. (English) Zbl 07901718 J. Ind. Manag. Optim. 20, No. 12, 3617-3627 (2024). MSC: 34A08 65L05 65L20 92D40 × Cite Format Result Cite Review PDF Full Text: DOI
Zhao, Jingjun; Wang, Xingchi; Xu, Yang Stability analysis of linear fractional neutral delay differential equations. (English) Zbl 07901432 Calcolo 61, No. 3, Paper No. 40, 30 p. (2024). Reviewer: Snezhana Hristova (Plovdiv) MSC: 34K37 34K20 34K06 34K40 × Cite Format Result Cite Review PDF Full Text: DOI
Lmou, Hamid; Hilal, Khalid; Kajouni, Ahmed On a new class of \(\Phi\)-Caputo-type fractional differential Langevin equations involving the \(p\)-Laplacian operator. (English) Zbl 07901394 Bol. Soc. Mat. Mex., III. Ser. 30, No. 2, Paper No. 61, 17 p. (2024). MSC: 34A08 26A33 34B10 34B08 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Tang, Pusen; Chen, Lin; Gao, Dongdong Ulam-Hyers stability of Caputo-Hadamard fractional stochastic differential equations with time-delays and impulses. (English) Zbl 07900949 Z. Angew. Math. Phys. 75, No. 4, Paper No. 133, 15 p. (2024). MSC: 34K50 34K37 34K45 34K27 47H09 × Cite Format Result Cite Review PDF Full Text: DOI
Premakumari, R. N.; Baishya, Chandrali; Samei, Mohammad Esmael; Naik, Manisha Krishna A novel optimal control strategy for nutrient-phytoplankton-zooplankton model with viral infection in plankton. (English) Zbl 07900571 Commun. Nonlinear Sci. Numer. Simul. 137, Article ID 108157, 22 p. (2024). MSC: 92D40 92D30 34A08 49K15 49J15 × Cite Format Result Cite Review PDF Full Text: DOI
Ali, Amina; Senu, Norazak; Wahi, Nadihah; Almakayeel, Naif; Ahmadian, Ali An adaptive algorithm for numerically solving fractional partial differential equations using Hermite wavelet artificial neural networks. (English) Zbl 07900545 Commun. Nonlinear Sci. Numer. Simul. 137, Article ID 108121, 13 p. (2024). MSC: 65Mxx 65Lxx 35Rxx × Cite Format Result Cite Review PDF Full Text: DOI
Chohri, Mohamed; Bouriah, Soufyane; Benchohra, Mouffak; Gülyaz, Selma Existence of periodic solutions for nonlinear implicit differential equations of fractional order in the sense of Caputo’s exponential fractional derivative. (English) Zbl 1543.34002 J. Nonlinear Convex Anal. 25, No. 7, 1583-1597 (2024). MSC: 34A08 34B10 34B40 × Cite Format Result Cite Review PDF Full Text: Link
Quintana-Murillo, Joaquín; Yuste, Santos Bravo An adaptive difference method for variable-order diffusion equations. (English) Zbl 1543.65135 Mediterr. J. Math. 21, No. 5, Paper No. 145, 19 p. (2024). MSC: 65M06 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Feng, Xiaoli; Yao, Qiang; Zhang, Yun Inverse a time-dependent potential problem of a generalized time-fractional super-diffusion equation with a nonlinear source from a nonlocal integral observation. (English) Zbl 07899916 Commun. Nonlinear Sci. Numer. Simul. 138, Article ID 108197, 22 p. (2024). MSC: 35R30 35R11 65M32 × Cite Format Result Cite Review PDF Full Text: DOI
Guan, Tingting; Wang, Guotao; Araci, Serkan Some applications and maximum principles for multi-term time-space fractional parabolic Monge-Ampère equation. (English) Zbl 07899342 Demonstr. Math. 57, Article ID 20240031, 7 p. (2024). MSC: 35B50 35K96 35R11 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Shi, Shan; Jiang, Xiaoyun; Zhang, Hui A fast method and convergence analysis for the MHD flow model of generalized second-grade fluid. (English) Zbl 07899280 Comput. Math. Appl. 171, 175-187 (2024). MSC: 76-XX 65-XX × Cite Format Result Cite Review PDF Full Text: DOI
Bohaienko, Vsevolod Numerical restorability of parameter values of space-time fractional soil consolidation model. (English) Zbl 07899247 Comput. Appl. Math. 43, No. 6, Paper No. 357, 18 p. (2024). MSC: 65M06 65M32 65Y05 60K50 × Cite Format Result Cite Review PDF Full Text: DOI
Thomas, Reetha; Bakkyaraj, T. Lie symmetry analysis of time fractional nonlinear partial differential equations in Hilfer sense. (English) Zbl 07899243 Comput. Appl. Math. 43, No. 6, Paper No. 353, 26 p. (2024). MSC: 26A33 35R11 33E12 34A08 76M60 × Cite Format Result Cite Review PDF Full Text: DOI
Kerbal, S.; Tatar, N. Stability of a fractional heat equation with memory. (English) Zbl 07898638 Carpathian Math. Publ. 16, No. 1, 328-345 (2024). MSC: 35R11 35B35 35K20 × Cite Format Result Cite Review PDF Full Text: DOI
Muhammad, Ghulam; Akram, Muhammad; Hussain, Nawab; Allahviranloo, Tofigh Fuzzy Langevin fractional delay differential equations under granular derivative. (English) Zbl 07897651 Inf. Sci. 681, Article ID 121250, 24 p. (2024). MSC: 34K36 34K37 44A10 × Cite Format Result Cite Review PDF Full Text: DOI
Saeed, Nagwa A.; Pachpatte, Deepak B. A modified fuzzy Adomian decomposition method for solving time-fuzzy fractional partial differential equations with initial and boundary conditions. (English) Zbl 07897008 Bound. Value Probl. 2024, Paper No. 82, 19 p. (2024). MSC: 35R13 35R11 65M55 × Cite Format Result Cite Review PDF Full Text: DOI
Serrai, Hacen; Tellab, Brahim; Etemad, Sina; Avcı, İbrahim; Rezapour, Shahram \(\varPsi\)-Bielecki-type norm inequalities for a generalized Sturm-Liouville-Langevin differential equation involving \(\varPsi\)-Caputo fractional derivative. (English) Zbl 07897007 Bound. Value Probl. 2024, Paper No. 81, 45 p. (2024). MSC: 34A08 34B08 26D10 34D10 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Jleli, Mohamed; Samet, Bessem Nonexistence results for a time-fractional biharmonic diffusion equation. (English) Zbl 07896992 Bound. Value Probl. 2024, Paper No. 66, 17 p. (2024). MSC: 35R11 35A01 35K35 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Yisa, Babatunde Morufu; Tiamiyu, Abdul-wahab Tunde Shehu transform Adomian decomposition method for the solution of systems of integer and fractional order differential equations. (English) Zbl 07896727 J. Fract. Calc. Appl. 15, No. 2, Paper No. 13, 18 p. (2024). MSC: 34A08 34A25 34A34 35A22 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Premakumari, R. N.; Baishya, Chandrali; Rezapour, Shahram; Naik, Manisha Krishna; Yaseem, Zaher Mundher; Etemad, Sina Qualitative properties and optimal control strategy on a novel fractional three-species food chain model. (English) Zbl 07896488 Qual. Theory Dyn. Syst. 23, No. 5, Paper No. 252, 32 p. (2024). MSC: 34C60 34A08 92D25 34C05 34D20 34C11 49J15 × Cite Format Result Cite Review PDF Full Text: DOI
Durdiev, D. K.; Akylbayev, M.; Maxumova, Zh.; Iskakova, A. A 2D convolution kernel determination problem for the time-fractional diffusion equation. (English) Zbl 07896197 Lobachevskii J. Math. 45, No. 3, 1044-1058 (2024). MSC: 35R30 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Rahmonov, Askar; Akramova, Dilshoda; Elmuradova, Hilola; Togaev, Feruz Determination of a coefficient and kernel in a two-dimensional fractional integrodifferential equation. (English) Zbl 07896177 Lobachevskii J. Math. 45, No. 2, 800-818 (2024). MSC: 35R30 35R09 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Moroz, L. I.; Maslovskaya, A. G. A fractional-differential approach to numerical simulation of electron-induced charging of ferroelectrics. (Russian. English summary) Zbl 07895619 Sib. Zh. Ind. Mat. 27, No. 1, 55-71 (2024); translation in J. Appl. Ind. Math. 18, No. 1, 137-149 (2024). MSC: 78-XX 74-XX × Cite Format Result Cite Review PDF Full Text: DOI MNR
Poovarasan, R.; Samei, Mohammad Esmael; Govindaraj, V. Study of three-point impulsive boundary value problems governed by \(\Psi\)-Caputo fractional derivative. (English) Zbl 07895399 J. Appl. Math. Comput. 70, No. 4, 3947-3983 (2024). MSC: 34B10 34A08 34B37 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Khirsariya, Sagar R.; Yeolekar, Mahesh A.; Yeolekar, Bijal M.; Chauhan, Jignesh P. Fractional-order rat bite fever model: a mathematical investigation into the transmission dynamics. (English) Zbl 1542.92162 J. Appl. Math. Comput. 70, No. 4, 3851-3878 (2024). MSC: 92D30 34A08 34D20 × Cite Format Result Cite Review PDF Full Text: DOI
Singh, Akanksha; Kanaujiya, Ankur; Mohapatra, Jugal Chelyshkov wavelet method for solving multidimensional variable order fractional optimal control problem. (English) Zbl 07895367 J. Appl. Math. Comput. 70, No. 4, 3135-3160 (2024). MSC: 49J15 49N10 65T60 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Maji, Mitali; Khajanchi, Subhas A fractional-order yeast prion mathematical model and its solution. (English) Zbl 1542.92060 J. Appl. Math. Comput. 70, No. 4, 2767-2784 (2024). MSC: 92C50 92C20 34A08 34D20 92-10 × Cite Format Result Cite Review PDF Full Text: DOI
Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen An accurate numerical scheme for three-dimensional variable-order time-fractional partial differential equations in two types of space domains. (English) Zbl 1542.65125 Math. Model. Anal. 29, No. 3, 406-425 (2024). MSC: 65M70 65M15 × Cite Format Result Cite Review PDF Full Text: DOI
Benkhettou, Nadia; Salim, Abdelkrim; Lazreg, Jamal Eddine; Benchohra, Mouffak A study on some new conformable fractional differential equations with retardation and anticipation. (English) Zbl 07895255 Mem. Differ. Equ. Math. Phys. 92, 41-58 (2024). MSC: 34K37 26A33 34K32 34K45 47H10 × Cite Format Result Cite Review PDF Full Text: Link
Wang, Zhen; Sun, Luhan A numerical approximation for the Caputo-Hadamard derivative and its application in time-fractional variable-coefficient diffusion equation. (English) Zbl 1542.65095 Discrete Contin. Dyn. Syst., Ser. S 17, No. 8, 2679-2705 (2024). MSC: 65M06 35R11 65M12 65M60 × Cite Format Result Cite Review PDF Full Text: DOI
Chefnaj, Najat; Hilal, Khalid; Kajouni, Ahmed The existence, uniqueness and Ulam-Hyers stability results of a hybrid coupled system with \(\Psi\)-Caputo fractional derivatives. (English) Zbl 07893858 J. Appl. Math. Comput. 70, No. 3, 2209-2224 (2024). MSC: 34A08 34A38 34B15 34D10 47H09 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Elidemir, İlkay Onbaşı; Özarslan, Mehmet Ali; Buranay, Suzan Cival On the analysis of fractional calculus operators with bivariate Mittag Leffler function in the kernel. (English) Zbl 07893819 J. Appl. Math. Comput. 70, No. 2, 1295-1323 (2024). MSC: 33E12 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Awadalla, Muath; Buvaneswari, K.; Karthikeyan, P.; Hannabou, Mohamed; Karthikeyan, K.; AlAdsani, Feryal; Alahmadi, Jihan Analysis on a nonlinear fractional differential equations in a bounded domain \([1,\mathcal{T}]\). (English) Zbl 07893818 J. Appl. Math. Comput. 70, No. 2, 1275-1293 (2024). MSC: 34A08 34B15 34D10 47H10 × Cite Format Result Cite Review PDF Full Text: DOI