Karthikeyan, K.; Murugapandian, G. S.; Hammouch, Z. On mild solutions of fractional impulsive differential systems of Sobolev type with fractional nonlocal conditions. (English) Zbl 07739761 Math. Sci., Springer 17, No. 3, 285-295 (2023). MSC: 26A33 34A08 34A12 34A37 34K40 35R11 35R12 PDF BibTeX XML Cite \textit{K. Karthikeyan} et al., Math. Sci., Springer 17, No. 3, 285--295 (2023; Zbl 07739761) Full Text: DOI
Alsaedi, Ahmed; Kirane, Mokhtar; Fino, Ahmad Z.; Ahmad, Bashir On nonexistence of solutions to some time space fractional evolution equations with transformed space argument. (English) Zbl 07735865 Bull. Math. Sci. 13, No. 2, Article ID 2250009, 36 p. (2023). MSC: 35R11 35A01 26A33 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Bull. Math. Sci. 13, No. 2, Article ID 2250009, 36 p. (2023; Zbl 07735865) Full Text: DOI arXiv
Mitake, Hiroyoshi; Sato, Shoichi On the rate of convergence in homogenization of time-fractional Hamilton-Jacobi equations. (English) Zbl 07735326 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 5, Paper No. 68, 27 p. (2023). MSC: 34K37 35B27 49L25 PDF BibTeX XML Cite \textit{H. Mitake} and \textit{S. Sato}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 5, Paper No. 68, 27 p. (2023; Zbl 07735326) Full Text: DOI arXiv
Ghosh, Bappa; Mohapatra, Jugal Analysis of finite difference schemes for Volterra integro-differential equations involving arbitrary order derivatives. (English) Zbl 07734309 J. Appl. Math. Comput. 69, No. 2, 1865-1886 (2023). MSC: 65R20 45D05 26A33 PDF BibTeX XML Cite \textit{B. Ghosh} and \textit{J. Mohapatra}, J. Appl. Math. Comput. 69, No. 2, 1865--1886 (2023; Zbl 07734309) Full Text: DOI
Khatoon, A.; Raheem, A.; Afreen, A. Approximate solutions for neutral stochastic fractional differential equations. (English) Zbl 07733082 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107414, 18 p. (2023). MSC: 34K37 46C15 60H15 47N20 35R11 PDF BibTeX XML Cite \textit{A. Khatoon} et al., Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107414, 18 p. (2023; Zbl 07733082) Full Text: DOI
Muthaiah, Subramanian; Murugesan, Manigandan; Ramasamy, Sivasamy; Thangaraj, Nandha Gopal On fractional integro-differential equation involving Caputo-Hadamard derivative with Hadamard fractional integral boundary conditions. (English) Zbl 07731421 Southeast Asian Bull. Math. 47, No. 3, 367-380 (2023). MSC: 26A33 34A08 34B15 PDF BibTeX XML Cite \textit{S. Muthaiah} et al., Southeast Asian Bull. Math. 47, No. 3, 367--380 (2023; Zbl 07731421) Full Text: Link
Kaddoura, I. H.; Al-Issa, Sh. M.; Rifai, N. J. Existence and Hyers-Ulam stability of the solutions to the implicit second-order differential equation. (English) Zbl 07731236 Poincare J. Anal. Appl. 10, No. 1, 175-192 (2023). MSC: 26A33 34K45 47G10 PDF BibTeX XML Cite \textit{I. H. Kaddoura} et al., Poincare J. Anal. Appl. 10, No. 1, 175--192 (2023; Zbl 07731236) Full Text: Link
Chauhan, Tanisha; Bansal, Diksha; Sircar, Sarthok Spatiotemporal linear stability of viscoelastic subdiffusive channel flows: a fractional calculus framework. (English) Zbl 07727714 J. Eng. Math. 141, Paper No. 8, 22 p. (2023). MSC: 76E05 76A10 76R50 76M99 26A33 PDF BibTeX XML Cite \textit{T. Chauhan} et al., J. Eng. Math. 141, Paper No. 8, 22 p. (2023; Zbl 07727714) Full Text: DOI arXiv
Bekkouche, Mohammed Moumen; Ahmed, Abdelaziz Azeb; Yazid, Fares; Djeradi, Fatima Siham Analytical and numerical study of a nonlinear Volterra integro-differential equation with the Caputo-Fabrizio fractional derivative. (English) Zbl 07727703 Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177-2193 (2023). MSC: 26A33 45D05 65L03 47G20 47Gxx PDF BibTeX XML Cite \textit{M. M. Bekkouche} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177--2193 (2023; Zbl 07727703) Full Text: DOI
Sreedhar, Ch. V.; Dhaigude, D. B.; Vasundhara Devi, J. Generalized monotone method for Caputo fractional integro differential equations with nonlinear boundary condition. (English) Zbl 07727674 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 4, 287-299 (2023). MSC: 34K37 34K07 34K10 45J05 PDF BibTeX XML Cite \textit{Ch. V. Sreedhar} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 4, 287--299 (2023; Zbl 07727674) Full Text: Link Link
Dhawan, Kanika; Vats, Ramesh Kumar; Verma, Sachin Kumar; Kumar, Avadhesh Existence and stability analysis for non-linear boundary value Problem Involving Caputo fractional derivative. (English) Zbl 07727664 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 2, 107-121 (2023). MSC: 26A33 34B15 PDF BibTeX XML Cite \textit{K. Dhawan} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 2, 107--121 (2023; Zbl 07727664) Full Text: Link Link
Jafari, Hossein; Ganji, Roghayeh Moallem; Ganji, Davood Domiri; Hammouch, Zakia; Gasimov, Yusif S. A novel numerical method for solving fuzzy variable-order differential equations with Mittag-Leffler kernels. (English) Zbl 07726765 Fractals 31, No. 4, Article ID 2340063, 13 p. (2023). MSC: 65Lxx 34A07 34A08 26A33 PDF BibTeX XML Cite \textit{H. Jafari} et al., Fractals 31, No. 4, Article ID 2340063, 13 p. (2023; Zbl 07726765) Full Text: DOI
Chu, Yu-Ming; Rashid, Saima; Sultana, Sobia; Inc, Mustafa New numerical simulation for the fractal-fractional model of deathly Lassa hemorrhagic fever disease in pregnant women with optimal analysis. (English) Zbl 07726756 Fractals 31, No. 4, Article ID 2340054, 21 p. (2023). MSC: 34C60 34A08 26A33 92D30 33E12 34A45 65L99 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Fractals 31, No. 4, Article ID 2340054, 21 p. (2023; Zbl 07726756) Full Text: DOI
Kumar, Pushpendra; Erturk, Vedat Suat; Murillo-Arcila, Marina; Govindaraj, V. A new form of L1-predictor-corrector scheme to solve multiple delay-type fractional order systems with the example of a neural network model. (English) Zbl 07726747 Fractals 31, No. 4, Article ID 2340043, 13 p. (2023). MSC: 65Lxx 34K37 92Cxx PDF BibTeX XML Cite \textit{P. Kumar} et al., Fractals 31, No. 4, Article ID 2340043, 13 p. (2023; Zbl 07726747) Full Text: DOI
Kosunalp, Hatice Yalman; Gulsu, Mustafa Towards solving linear fractional differential equations with Hermite operational matrix. (English) Zbl 07724370 Adv. Stud.: Euro-Tbil. Math. J. 16, No. 2, 47-61 (2023). MSC: 26A33 44A45 PDF BibTeX XML Cite \textit{H. Y. Kosunalp} and \textit{M. Gulsu}, Adv. Stud.: Euro-Tbil. Math. J. 16, No. 2, 47--61 (2023; Zbl 07724370) Full Text: DOI Link
Nápoles, Juan E.; Bayraktar, Bahtiyar New extensions of Hermite-Hadamard inequality using \(k\) fractional Caputo derivatives. (English) Zbl 07724368 Adv. Stud.: Euro-Tbil. Math. J. 16, No. 2, 11-28 (2023). MSC: 26A51 26A51 26D10 26D15 PDF BibTeX XML Cite \textit{J. E. Nápoles} and \textit{B. Bayraktar}, Adv. Stud.: Euro-Tbil. Math. J. 16, No. 2, 11--28 (2023; Zbl 07724368) Full Text: DOI Link
Fan, Ruixiong; Yan, Nan; Yang, Chen; Zhai, Chengbo Qualitative behaviour of a Caputo fractional differential system. (English) Zbl 07724041 Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 143, 21 p. (2023). MSC: 26A33 34B18 34B15 PDF BibTeX XML Cite \textit{R. Fan} et al., Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 143, 21 p. (2023; Zbl 07724041) Full Text: DOI
Sangi, M.; Saiedinezhad, S.; Ghaemi, M. B. A system of high-order fractional differential equations with integral boundary conditions. (English) Zbl 07723473 J. Nonlinear Math. Phys. 30, No. 2, 699-718 (2023). MSC: 34A08 26A33 47N20 47H08 47H10 PDF BibTeX XML Cite \textit{M. Sangi} et al., J. Nonlinear Math. Phys. 30, No. 2, 699--718 (2023; Zbl 07723473) Full Text: DOI
Helal, Mohamed Existence results for functional perturbed differential equations of fractional order with state-dependent delay in Banach spaces. (English) Zbl 07720913 Vladikavkaz. Mat. Zh. 25, No. 1, 112-130 (2023). MSC: 26A33 34K30 34K37 35R11 PDF BibTeX XML Cite \textit{M. Helal}, Vladikavkaz. Mat. Zh. 25, No. 1, 112--130 (2023; Zbl 07720913) Full Text: DOI MNR
Ghanmi, Boulbaba; Ghnimi, Saifeddine On the partial stability of nonlinear impulsive Caputo fractional systems. (English) Zbl 07719559 Appl. Math., Ser. B (Engl. Ed.) 38, No. 2, 166-179 (2023). MSC: 26A33 65L20 PDF BibTeX XML Cite \textit{B. Ghanmi} and \textit{S. Ghnimi}, Appl. Math., Ser. B (Engl. Ed.) 38, No. 2, 166--179 (2023; Zbl 07719559) Full Text: DOI
Has, Aykut; Yilmaz, Beyhan Effect of fractional analysis on some special curves. (English) Zbl 07717029 Turk. J. Math. 47, No. 5, 1423-1436 (2023). MSC: 26A33 53A04 PDF BibTeX XML Cite \textit{A. Has} and \textit{B. Yilmaz}, Turk. J. Math. 47, No. 5, 1423--1436 (2023; Zbl 07717029) Full Text: DOI
Adjabi, Yassine; Jarad, Fahd; Bouloudene, Mokhtar; Panda, Sumati Kumari Revisiting generalized Caputo derivatives in the context of two-point boundary value problems with the \(p\)-Laplacian operator at resonance. (English) Zbl 07716424 Bound. Value Probl. 2023, Paper No. 62, 23 p. (2023). MSC: 26A33 34A08 34B10 34B15 47H10 47H11 PDF BibTeX XML Cite \textit{Y. Adjabi} et al., Bound. Value Probl. 2023, Paper No. 62, 23 p. (2023; Zbl 07716424) Full Text: DOI
Choudhary, Renu; Kumar, Devendra Numerical solution of linear time-fractional Kuramoto-Sivashinsky equation via quintic \(B\)-splines. (English) Zbl 07716406 Int. J. Comput. Math. 100, No. 7, 1512-1531 (2023). MSC: 35R11 34K37 PDF BibTeX XML Cite \textit{R. Choudhary} and \textit{D. Kumar}, Int. J. Comput. Math. 100, No. 7, 1512--1531 (2023; Zbl 07716406) Full Text: DOI
Tang, Jianhua; Yin, Chuntao Dynamic response of Mathieu-Duffing oscillator with Caputo derivative. (English) Zbl 07715022 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1141-1161 (2023). MSC: 26A33 93C10 PDF BibTeX XML Cite \textit{J. Tang} and \textit{C. Yin}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1141--1161 (2023; Zbl 07715022) Full Text: DOI
Yüzbaşı, Şuayip; Yıldırım, Gamze Numerical solutions of the Bagley-Torvik equation by using generalized functions with fractional powers of Laguerre polynomials. (English) Zbl 07715013 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1003-1021 (2023). MSC: 34B05 34K37 65G99 65L60 65L80 PDF BibTeX XML Cite \textit{Ş. Yüzbaşı} and \textit{G. Yıldırım}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1003--1021 (2023; Zbl 07715013) Full Text: DOI
Chawla, Reetika; Deswal, Komal; Kumar, Devendra A new numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers’ equation. (English) Zbl 07715006 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 883-898 (2023). MSC: 26A33 35R11 65M06 65M12 65M15 65N06 65N15 PDF BibTeX XML Cite \textit{R. Chawla} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 883--898 (2023; Zbl 07715006) Full Text: DOI
Bohner, Martin; Domoshnitsky, Alexander; Padhi, Seshadev; Srivastava, Satyam Narayan Vallée-Poussin theorem for equations with Caputo fractional derivative. (English) Zbl 1516.34098 Math. Slovaca 73, No. 3, 713-728 (2023). MSC: 34K10 34K37 34K38 PDF BibTeX XML Cite \textit{M. Bohner} et al., Math. Slovaca 73, No. 3, 713--728 (2023; Zbl 1516.34098) Full Text: DOI
Matchanova, A. A. Inverse problem for a third-order parabolic-hyperbolic equation involves fractional derivatives. (English) Zbl 07710956 Lobachevskii J. Math. 44, No. 3, 1197-1205 (2023). MSC: 35R30 35R11 35M10 PDF BibTeX XML Cite \textit{A. A. Matchanova}, Lobachevskii J. Math. 44, No. 3, 1197--1205 (2023; Zbl 07710956) Full Text: DOI
Zhu, Shouguo Optimal controls for fractional backward nonlocal evolution systems. (English) Zbl 07709796 Numer. Funct. Anal. Optim. 44, No. 8, 794-814 (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 49J15 49J27 34A08 26A33 34G10 35R11 47D06 PDF BibTeX XML Cite \textit{S. Zhu}, Numer. Funct. Anal. Optim. 44, No. 8, 794--814 (2023; Zbl 07709796) Full Text: DOI
Arora, Sumit; Mohan, Manil T.; Dabas, Jaydev Finite-approximate controllability of impulsive fractional functional evolution equations of order \(1<\alpha <2\). (English) Zbl 07708644 J. Optim. Theory Appl. 197, No. 3, 855-890 (2023). MSC: 34K35 34K30 34K37 34K45 93B05 PDF BibTeX XML Cite \textit{S. Arora} et al., J. Optim. Theory Appl. 197, No. 3, 855--890 (2023; Zbl 07708644) Full Text: DOI
Siryk, Sergii V.; Vasylyeva, Nataliya Initial-boundary value problems to semilinear multi-term fractional differential equations. (English) Zbl 07707987 Commun. Pure Appl. Anal. 22, No. 7, 2321-2364 (2023). MSC: 35R11 35B45 35B65 35R09 26A33 65M22 PDF BibTeX XML Cite \textit{S. V. Siryk} and \textit{N. Vasylyeva}, Commun. Pure Appl. Anal. 22, No. 7, 2321--2364 (2023; Zbl 07707987) Full Text: DOI arXiv
Soots, Hanna Britt; Lätt, Kaido; Pedas, Arvet Collocation based approximations for a class of fractional boundary value problems. (English) Zbl 1514.65204 Math. Model. Anal. 28, No. 2, 218-236 (2023). MSC: 65R20 34K37 45J05 PDF BibTeX XML Cite \textit{H. B. Soots} et al., Math. Model. Anal. 28, No. 2, 218--236 (2023; Zbl 1514.65204) Full Text: DOI
Ismaael, Fawzi Muttar An investigation on the existence and uniqueness analysis of the fractional nonlinear integro-differential equations. (English) Zbl 07706120 Nonlinear Funct. Anal. Appl. 28, No. 1, 237-249 (2023). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 26A33 45B05 45D05 47H10 47N20 PDF BibTeX XML Cite \textit{F. M. Ismaael}, Nonlinear Funct. Anal. Appl. 28, No. 1, 237--249 (2023; Zbl 07706120) Full Text: Link
Salim, Abdelkrim; Lazreg, Jamal Eddine; Benchohra, Mouffak Existence, uniqueness and Ulam-Hyers-Rassias stability of differential coupled systems with Riesz-Caputo fractional derivative. (English) Zbl 07705868 Tatra Mt. Math. Publ. 84, 111-138 (2023). MSC: 34A08 26A33 34B15 34D10 47N20 34A09 PDF BibTeX XML Cite \textit{A. Salim} et al., Tatra Mt. Math. Publ. 84, 111--138 (2023; Zbl 07705868) Full Text: DOI
Nayak, Sapan Kumar; Parida, P. K. The dynamical analysis of a low computational cost family of higher-order fractional iterative method. (English) Zbl 07705627 Int. J. Comput. Math. 100, No. 6, 1395-1417 (2023). MSC: 65H10 26A33 PDF BibTeX XML Cite \textit{S. K. Nayak} and \textit{P. K. Parida}, Int. J. Comput. Math. 100, No. 6, 1395--1417 (2023; Zbl 07705627) Full Text: DOI
Lamba, Navneet; Verma, Jyoti; Deshmukh, Kishor A brief note on space time fractional order thermoelastic response in a layer. (English) Zbl 07704596 Appl. Appl. Math. 18, No. 1, Paper No. 18, 9 p. (2023). MSC: 26A33 42A38 58J35 PDF BibTeX XML Cite \textit{N. Lamba} et al., Appl. Appl. Math. 18, No. 1, Paper No. 18, 9 p. (2023; Zbl 07704596) Full Text: Link
Naik, Manisha Krishna; Baishya, Chandrali; Veeresha, P. A chaos control strategy for the fractional 3D Lotka-Volterra like attractor. (English) Zbl 07704395 Math. Comput. Simul. 211, 1-22 (2023). MSC: 34A34 26A33 34H10 PDF BibTeX XML Cite \textit{M. K. Naik} et al., Math. Comput. Simul. 211, 1--22 (2023; Zbl 07704395) Full Text: DOI
Li, Chenkuan Uniqueness of a nonlinear integro-differential equation with nonlocal boundary condition and variable coefficients. (English) Zbl 1514.34050 Bound. Value Probl. 2023, Paper No. 26, 10 p. (2023). MSC: 34B15 34A12 26A33 PDF BibTeX XML Cite \textit{C. Li}, Bound. Value Probl. 2023, Paper No. 26, 10 p. (2023; Zbl 1514.34050) Full Text: DOI
Kadankova, Tetyana; Leonenko, Nikolai; Scalas, Enrico Fractional non-homogeneous Poisson and Pólya-Aeppli processes of order \(k\) and beyond. (English) Zbl 07702530 Commun. Stat., Theory Methods 52, No. 8, 2682-2701 (2023). MSC: 60G55 26A33 60G05 60G51 PDF BibTeX XML Cite \textit{T. Kadankova} et al., Commun. Stat., Theory Methods 52, No. 8, 2682--2701 (2023; Zbl 07702530) Full Text: DOI arXiv
Derbazi, Choukri; Baitiche, Zidane; Zada, Akbar Existence and uniqueness of positive solutions for fractional relaxation equation in terms of \(\psi\)-Caputo fractional derivative. (English) Zbl 07702458 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 633-643 (2023). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{C. Derbazi} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 633--643 (2023; Zbl 07702458) Full Text: DOI
Abbas, Mohamed I. Sturm-Liouville boundary value problems for fractional differential equations with \(p\)-Laplacian operator via Riesz-Caputo fractional derivatives. (English) Zbl 07701532 Miskolc Math. Notes 24, No. 1, 15-29 (2023). MSC: 26A33 34A08 34B24 PDF BibTeX XML Cite \textit{M. I. Abbas}, Miskolc Math. Notes 24, No. 1, 15--29 (2023; Zbl 07701532) Full Text: DOI
El-Sayed, Adel Abd Elaziz Pell-Lucas polynomials for numerical treatment of the nonlinear fractional-order Duffing equation. (English) Zbl 07700918 Demonstr. Math. 56, Article ID 20220220, 17 p. (2023). MSC: 26A33 11B39 65L05 97N40 34A08 34C15 41A25 PDF BibTeX XML Cite \textit{A. A. E. El-Sayed}, Demonstr. Math. 56, Article ID 20220220, 17 p. (2023; Zbl 07700918) Full Text: DOI
Amin, Rohul; Hafsa; Hadi, Fazli; Altanji, Mohamed; Nisar, Kottakkaran Sooppy; Sumelka, Wojciech Solution of variable-order nonlinear fractional differential equations using Haar wavelet collocation technique. (English) Zbl 07700470 Fractals 31, No. 2, Article ID 2340022, 9 p. (2023). MSC: 65Lxx 34Axx 35Rxx PDF BibTeX XML Cite \textit{R. Amin} et al., Fractals 31, No. 2, Article ID 2340022, 9 p. (2023; Zbl 07700470) Full Text: DOI
Jan, Himayat Ullah; Ullah, Hakeem; Fiza, Mehreen; Khan, Ilyas; Mohamed, Abdullah; Mousa, Abd Allah A. Modification of optimal homotopy asymptotic method for multi-dimensional time-fractional model of Navier-Stokes equation. (English) Zbl 07700469 Fractals 31, No. 2, Article ID 2340021, 19 p. (2023). MSC: 35Q30 76D05 35B40 35A20 44A10 26A33 35R11 PDF BibTeX XML Cite \textit{H. U. Jan} et al., Fractals 31, No. 2, Article ID 2340021, 19 p. (2023; Zbl 07700469) Full Text: DOI
Bilgil, Halis; Yousef, Ali; Erciyes, Ayhan; Erdinç, Ümmügülsüm; Öztürk, Zafer A fractional-order mathematical model based on vaccinated and infected compartments of SARS-CoV-2 with a real case study during the last stages of the epidemiological event. (English) Zbl 07700222 J. Comput. Appl. Math. 425, Article ID 115015, 21 p. (2023). MSC: 26A33 37N25 35B40 92D30 PDF BibTeX XML Cite \textit{H. Bilgil} et al., J. Comput. Appl. Math. 425, Article ID 115015, 21 p. (2023; Zbl 07700222) Full Text: DOI
Lachouri, Adel; Samei, Mohammad Esmael; Ardjouni, Abdelouaheb Existence and stability analysis for a class of fractional pantograph \(q\)-difference equations with nonlocal boundary conditions. (English) Zbl 1516.39005 Bound. Value Probl. 2023, Paper No. 2, 20 p. (2023). MSC: 39A30 26A33 39A13 05A30 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Bound. Value Probl. 2023, Paper No. 2, 20 p. (2023; Zbl 1516.39005) Full Text: DOI
Talib, Imran; Bohner, Martin Numerical study of generalized modified Caputo fractional differential equations. (English) Zbl 07699185 Int. J. Comput. Math. 100, No. 1, 153-176 (2023). MSC: 65L05 26A33 35R11 PDF BibTeX XML Cite \textit{I. Talib} and \textit{M. Bohner}, Int. J. Comput. Math. 100, No. 1, 153--176 (2023; Zbl 07699185) Full Text: DOI
Meng, Yuan; Du, Xinran; Pang, Huihui Iterative positive solutions to a coupled Riemann-Liouville fractional \(q\)-difference system with the Caputo fractional \(q\)-derivative boundary conditions. (English) Zbl 07697678 J. Funct. Spaces 2023, Article ID 5264831, 16 p. (2023). MSC: 39A13 26A33 PDF BibTeX XML Cite \textit{Y. Meng} et al., J. Funct. Spaces 2023, Article ID 5264831, 16 p. (2023; Zbl 07697678) Full Text: DOI
Saha Ray, S. Two competent novel techniques based on two-dimensional wavelets for nonlinear variable-order Riesz space-fractional Schrödinger equations. (English) Zbl 07697400 J. Comput. Appl. Math. 424, Article ID 114971, 30 p. (2023). MSC: 26A33 65N35 65M70 PDF BibTeX XML Cite \textit{S. Saha Ray}, J. Comput. Appl. Math. 424, Article ID 114971, 30 p. (2023; Zbl 07697400) Full Text: DOI
El-Sayed, A. A.; Agarwal, P. Spectral treatment for the fractional-order wave equation using shifted Chebyshev orthogonal polynomials. (English) Zbl 07697396 J. Comput. Appl. Math. 424, Article ID 114933, 11 p. (2023). MSC: 26A33 65D25 65M06 65Z05 PDF BibTeX XML Cite \textit{A. A. El-Sayed} and \textit{P. Agarwal}, J. Comput. Appl. Math. 424, Article ID 114933, 11 p. (2023; Zbl 07697396) Full Text: DOI
D’abbicco, Marcello; Girardi, Giovanni Decay estimates for a perturbed two-terms space-time fractional diffusive problem. (English) Zbl 07696681 Evol. Equ. Control Theory 12, No. 4, 1056-1082 (2023). MSC: 35R11 26A33 35A01 35B33 35K15 35K58 PDF BibTeX XML Cite \textit{M. D'abbicco} and \textit{G. Girardi}, Evol. Equ. Control Theory 12, No. 4, 1056--1082 (2023; Zbl 07696681) Full Text: DOI
Taghipour, M.; Aminikhah, H. Application of Pell collocation method for solving the general form of time-fractional Burgers equations. (English) Zbl 1512.65233 Math. Sci., Springer 17, No. 2, 183-201 (2023). MSC: 65M70 65R10 34K37 45J05 PDF BibTeX XML Cite \textit{M. Taghipour} and \textit{H. Aminikhah}, Math. Sci., Springer 17, No. 2, 183--201 (2023; Zbl 1512.65233) Full Text: DOI
Taherkhani, Sh.; Khalilsaraye, I. Najafi; Ghayebi, B. Numerical solution of the diffusion problem of distributed order based on the sinc-collocation method. (English) Zbl 1512.65234 Math. Sci., Springer 17, No. 2, 133-144 (2023). MSC: 65M70 34K37 65L60 PDF BibTeX XML Cite \textit{Sh. Taherkhani} et al., Math. Sci., Springer 17, No. 2, 133--144 (2023; Zbl 1512.65234) Full Text: DOI
Elsonbaty, Amr; Elsadany, A. A. On discrete fractional-order Lotka-Volterra model based on the Caputo difference discrete operator. (English) Zbl 1516.39009 Math. Sci., Springer 17, No. 1, 67-79 (2023). MSC: 39A70 39A13 39A33 26A33 PDF BibTeX XML Cite \textit{A. Elsonbaty} and \textit{A. A. Elsadany}, Math. Sci., Springer 17, No. 1, 67--79 (2023; Zbl 1516.39009) Full Text: DOI
Irgashev, B. Yu. A nonlocal problem for a mixed equation of high even order with a fractional Caputo derivative. (English) Zbl 07695145 J. Elliptic Parabol. Equ. 9, No. 1, 389-399 (2023). MSC: 35R11 35M12 26A33 34L05 33E12 PDF BibTeX XML Cite \textit{B. Yu. Irgashev}, J. Elliptic Parabol. Equ. 9, No. 1, 389--399 (2023; Zbl 07695145) Full Text: DOI
Mary, S. Joe Christin; Tamilselvan, Ayyadurai Second order spline method for fractional Bagley-Torvik equation with variable coefficients and Robin boundary conditions. (English) Zbl 07695072 J. Math. Model. 11, No. 1, 117-132 (2023). MSC: 34A08 41A15 26A33 65L20 PDF BibTeX XML Cite \textit{S. J. C. Mary} and \textit{A. Tamilselvan}, J. Math. Model. 11, No. 1, 117--132 (2023; Zbl 07695072) Full Text: DOI
Benkhettou, Nadia; Salim, Abdelkrim; Lazreg, Jamal Eddine; Abbas, Saïd; Benchohra, Mouffak Lakshmikantham monotone iterative principle for hybrid Atangana-Baleanu-Caputo fractional differential equations. (English) Zbl 07692942 An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 79-91 (2023). MSC: 26A33 34A08 34A12 PDF BibTeX XML Cite \textit{N. Benkhettou} et al., An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 79--91 (2023; Zbl 07692942) Full Text: DOI
El Mfadel, A.; Melliani, S.; Elomari, M. Existence and uniqueness results of boundary value problems for nonlinear fractional differential equations involving \(\Psi\)-Caputo-type fractional derivatives. (English) Zbl 07692726 Acta Math. Univ. Comen., New Ser. 92, No. 1, 23-33 (2023). Reviewer: Lingju Kong (Chattanooga) MSC: 34A08 34B15 26A33 47H10 PDF BibTeX XML Cite \textit{A. El Mfadel} et al., Acta Math. Univ. Comen., New Ser. 92, No. 1, 23--33 (2023; Zbl 07692726) Full Text: Link
Shahbazi, Ziba; Javidi, Mohammad Fractional exponential fitting backward differential formulas for solving differential equations of fractional order. (English) Zbl 07691704 Comput. Appl. Math. 42, No. 4, Paper No. 179, 19 p. (2023). MSC: 26A33 34A08 PDF BibTeX XML Cite \textit{Z. Shahbazi} and \textit{M. Javidi}, Comput. Appl. Math. 42, No. 4, Paper No. 179, 19 p. (2023; Zbl 07691704) Full Text: DOI
Kassymov, Aidyn; Ruzhansky, Michael; Torebek, Berikbol T. Rayleigh-Faber-Krahn, Lyapunov and Hartmann-Wintner inequalities for fractional elliptic problems. (English) Zbl 1511.26022 Mediterr. J. Math. 20, No. 3, Paper No. 119, 14 p. (2023). MSC: 26D10 45J05 PDF BibTeX XML Cite \textit{A. Kassymov} et al., Mediterr. J. Math. 20, No. 3, Paper No. 119, 14 p. (2023; Zbl 1511.26022) Full Text: DOI arXiv
Izadi, Mohammad; Yüzbaşı, Şuayip; Cattani, Carlo Approximating solutions to fractional-order Bagley-Torvik equation via generalized Bessel polynomial on large domains. (English) Zbl 1516.65055 Ric. Mat. 72, No. 1, 235-261 (2023). Reviewer: Abdallah Bradji (Annaba) MSC: 65L10 26A33 65L60 42C05 65L05 PDF BibTeX XML Cite \textit{M. Izadi} et al., Ric. Mat. 72, No. 1, 235--261 (2023; Zbl 1516.65055) Full Text: DOI
Okeke, Godwin Amechi; Francis, Daniel; Nse, Celestin Akwumbuom A generalized contraction mapping applied in solving modified implicit \(\phi\)-Hilfer pantograph fractional differential equations. (English) Zbl 07687029 J. Anal. 31, No. 2, 1143-1173 (2023). MSC: 54H25 54E40 34B10 34K37 PDF BibTeX XML Cite \textit{G. A. Okeke} et al., J. Anal. 31, No. 2, 1143--1173 (2023; Zbl 07687029) Full Text: DOI
Anastassiou, George A. \(q\)-deformed hyperbolic tangent based Banach space valued ordinary and fractional neural network approximations. (English) Zbl 07686513 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 2, Paper No. 83, 22 p. (2023). MSC: 26A33 41A17 41A25 41A30 46B25 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 2, Paper No. 83, 22 p. (2023; Zbl 07686513) Full Text: DOI
Srivastava, H. M.; Abbas, Mohamed I.; Boutiara, Abdellatif; Hazarika, Bipan Fractional \(p\)-Laplacian differential equations with multi-point boundary conditions in Banach spaces. (English) Zbl 07686509 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 2, Paper No. 68, 16 p. (2023). MSC: 26A33 46E15 47H10 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 2, Paper No. 68, 16 p. (2023; Zbl 07686509) Full Text: DOI
Foukrach, Djamal; Bouriah, Soufyane; Abbas, Saïd; Benchohra, Mouffak Periodic solutions of nonlinear fractional pantograph integro-differential equations with \(\Psi\)-Caputo derivative. (English) Zbl 07685984 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 69, No. 1, 1-22 (2023). MSC: 45J05 45M15 34A08 26A33 47H11 PDF BibTeX XML Cite \textit{D. Foukrach} et al., Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 69, No. 1, 1--22 (2023; Zbl 07685984) Full Text: DOI
Mamchuev, Murat O.; Chukhovskii, Felix N. Towards to solution of the fractional Takagi-Taupin equations. The Green function method. (English) Zbl 1511.35338 Fract. Calc. Appl. Anal. 26, No. 2, 851-863 (2023). MSC: 35Q60 35R11 26A33 78A45 PDF BibTeX XML Cite \textit{M. O. Mamchuev} and \textit{F. N. Chukhovskii}, Fract. Calc. Appl. Anal. 26, No. 2, 851--863 (2023; Zbl 1511.35338) Full Text: DOI arXiv
Phung Dinh Tran; Duc Thanh Dinh; Tuan Kim Vu; Garayev, M.; Guediri, H. Time-fractional integro-differential equations in power growth function spaces. (English) Zbl 1511.45009 Fract. Calc. Appl. Anal. 26, No. 2, 751-780 (2023). MSC: 45K05 26A33 44A10 PDF BibTeX XML Cite \textit{Phung Dinh Tran} et al., Fract. Calc. Appl. Anal. 26, No. 2, 751--780 (2023; Zbl 1511.45009) Full Text: DOI
Moulay Hachemi, Rahma Yasmina; Øksendal, Bernt The fractional stochastic heat equation driven by time-space white noise. (English) Zbl 1511.35371 Fract. Calc. Appl. Anal. 26, No. 2, 513-532 (2023). MSC: 35R11 35R60 35K05 60H15 60H40 26A33 PDF BibTeX XML Cite \textit{R. Y. Moulay Hachemi} and \textit{B. Øksendal}, Fract. Calc. Appl. Anal. 26, No. 2, 513--532 (2023; Zbl 1511.35371) Full Text: DOI
Ahmad, Bashir; Alnahdi, Manal; Ntouyas, Sotiris K.; Alsaedi, Ahmed On a mixed nonlinear fractional boundary value problem with a new class of closed integral boundary conditions. (English) Zbl 07682978 Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 96, 17 p. (2023). MSC: 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 96, 17 p. (2023; Zbl 07682978) Full Text: DOI
Dhawan, Kanika; Vats, Ramesh Kumar; Vijayakumar, V. Analysis of neutral fractional differential equation via the method of upper and lower solution. (English) Zbl 07682975 Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 93, 15 p. (2023). MSC: 34K37 34K40 34K09 PDF BibTeX XML Cite \textit{K. Dhawan} et al., Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 93, 15 p. (2023; Zbl 07682975) Full Text: DOI
Faghih, Amin; Rebelo, Magda A spectral approach to non-linear weakly singular fractional integro-differential equations. (English) Zbl 1509.45002 Fract. Calc. Appl. Anal. 26, No. 1, 370-398 (2023). MSC: 45E10 45J05 34K37 33C45 26A33 PDF BibTeX XML Cite \textit{A. Faghih} and \textit{M. Rebelo}, Fract. Calc. Appl. Anal. 26, No. 1, 370--398 (2023; Zbl 1509.45002) Full Text: DOI arXiv
Lenka, Bichitra Kumar; Bora, Swaroop Nandan Lyapunov stability theorems for \(\psi \)-Caputo derivative systems. (English) Zbl 1509.34009 Fract. Calc. Appl. Anal. 26, No. 1, 220-236 (2023). MSC: 34A08 26A33 34D20 34D23 34K20 34K37 PDF BibTeX XML Cite \textit{B. K. Lenka} and \textit{S. N. Bora}, Fract. Calc. Appl. Anal. 26, No. 1, 220--236 (2023; Zbl 1509.34009) Full Text: DOI
Zeng, Biao Existence for a class of time-fractional evolutionary equations with applications involving weakly continuous operator. (English) Zbl 1509.35366 Fract. Calc. Appl. Anal. 26, No. 1, 172-192 (2023). MSC: 35R11 35Q30 26A33 76D05 PDF BibTeX XML Cite \textit{B. Zeng}, Fract. Calc. Appl. Anal. 26, No. 1, 172--192 (2023; Zbl 1509.35366) Full Text: DOI
Farid, Ghulam; Bibi, Sidra; Rathour, Laxmi; Mishra, Lakshmi Narayan; Mishra, Vishnu Narayan Fractional versions of Hadamard inequalities for strongly \((s,m)\)-convex functions via Caputo fractional derivatives. (English) Zbl 07680670 Korean J. Math. 31, No. 1, 75-94 (2023). MSC: 33E12 26A51 26A33 PDF BibTeX XML Cite \textit{G. Farid} et al., Korean J. Math. 31, No. 1, 75--94 (2023; Zbl 07680670) Full Text: DOI
Torres, Luis Caicedo; Gal, Ciprian G. Superdiffusive fractional in time Schrödinger equations: a unifying approach to superdiffusive waves. (English) Zbl 1512.35638 Commun. Nonlinear Sci. Numer. Simul. 120, Article ID 107141, 43 p. (2023). MSC: 35R11 35Q55 PDF BibTeX XML Cite \textit{L. C. Torres} and \textit{C. G. Gal}, Commun. Nonlinear Sci. Numer. Simul. 120, Article ID 107141, 43 p. (2023; Zbl 1512.35638) Full Text: DOI
Mohammady, Somaieh; Eslahchi, M. R. Application of fractional derivatives for obtaining new Tikhonov regularization matrices. (English) Zbl 1509.65032 J. Appl. Math. Comput. 69, No. 1, 1321-1342 (2023). MSC: 65F22 47A52 26A33 PDF BibTeX XML Cite \textit{S. Mohammady} and \textit{M. R. Eslahchi}, J. Appl. Math. Comput. 69, No. 1, 1321--1342 (2023; Zbl 1509.65032) Full Text: DOI
Caraballo, Tomás; Tuan, Nguyen Huy New results for convergence problem of fractional diffusion equations when order approach to \(1^-\). (English) Zbl 07675606 Differ. Integral Equ. 36, No. 5-6, 491-516 (2023). Reviewer: Vincenzo Vespri (Firenze) MSC: 35A08 26A33 35B65 35R11 PDF BibTeX XML Cite \textit{T. Caraballo} and \textit{N. H. Tuan}, Differ. Integral Equ. 36, No. 5--6, 491--516 (2023; Zbl 07675606) Full Text: DOI
Tomášek, Petr On Euler methods for Caputo fractional differential equations. (English) Zbl 07675598 Arch. Math., Brno 59, No. 3, 287-294 (2023). MSC: 34A08 65L05 26A33 PDF BibTeX XML Cite \textit{P. Tomášek}, Arch. Math., Brno 59, No. 3, 287--294 (2023; Zbl 07675598) Full Text: DOI
Dilna, Natalia General exact solvability conditions for the initial value problems for linear fractional functional differential equations. (English) Zbl 07675570 Arch. Math., Brno 59, No. 1, 11-19 (2023). MSC: 26A33 34A08 34B15 PDF BibTeX XML Cite \textit{N. Dilna}, Arch. Math., Brno 59, No. 1, 11--19 (2023; Zbl 07675570) Full Text: DOI
Abilassan, A.; Restrepo, J. E.; Suragan, D. On a variant of multivariate Mittag-Leffler’s function arising in the Laplace transform method. (English) Zbl 1512.33019 Integral Transforms Spec. Funct. 34, No. 3, 244-260 (2023). Reviewer: Sergei V. Rogosin (Minsk) MSC: 33E12 26A33 34A08 44A10 PDF BibTeX XML Cite \textit{A. Abilassan} et al., Integral Transforms Spec. Funct. 34, No. 3, 244--260 (2023; Zbl 1512.33019) Full Text: DOI
Wang, Yiming; Feng, Yiying; Pu, Hai; Yin, Qian; Ma, Dan; Wu, Jiangyu Step-variable-order fractional viscoelastic-viscoinertial constitutive model and experimental verification of cemented backfill. (English) Zbl 07671937 Acta Mech. 234, No. 3, 871-889 (2023). MSC: 74D05 74S40 74A20 74-05 26A33 PDF BibTeX XML Cite \textit{Y. Wang} et al., Acta Mech. 234, No. 3, 871--889 (2023; Zbl 07671937) Full Text: DOI
Hernandez, Eduardo; Gambera, Laura R.; dos Santos, José Paulo Carvalho Local and global existence and uniqueness of solution and local well-posednesss for abstract fractional differential equations with state-dependent delay. (English) Zbl 07671498 Appl. Math. Optim. 87, No. 3, Paper No. 41, 40 p. (2023). Reviewer: Syed Abbas (Mandi) MSC: 34K30 34K37 34K43 PDF BibTeX XML Cite \textit{E. Hernandez} et al., Appl. Math. Optim. 87, No. 3, Paper No. 41, 40 p. (2023; Zbl 07671498) Full Text: DOI
Pu, Tianyi; Fasondini, Marco The numerical solution of fractional integral equations via orthogonal polynomials in fractional powers. (English) Zbl 1505.62519 Adv. Comput. Math. 49, No. 1, Paper No. 7, 40 p. (2023). MSC: 65R20 26A33 33E12 45A05 PDF BibTeX XML Cite \textit{T. Pu} and \textit{M. Fasondini}, Adv. Comput. Math. 49, No. 1, Paper No. 7, 40 p. (2023; Zbl 1505.62519) Full Text: DOI arXiv
Hamoud, Ahmed A.; Mohammed, Nedal M. Existence and uniqueness results for fractional Volterra-Fredholm integro differential equations with integral boundary conditions. (English) Zbl 1516.45006 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75-86 (2023). Reviewer: Vitaliy Volchkov (Donetsk) MSC: 45J05 45D05 45B05 45M20 45M10 26A33 47N20 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{N. M. Mohammed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75--86 (2023; Zbl 1516.45006) Full Text: Link
Tarate, Shivaji Ashok; Bhadane, Ashok P.; Gaikwad, Shrikisan B.; Kshirsagar, Kishor Ashok Solution of time-fractional equations via Sumudu-Adomian decomposition method. (English) Zbl 07665315 Comput. Methods Differ. Equ. 11, No. 2, 345-356 (2023). MSC: 26A33 35R11 33E12 PDF BibTeX XML Cite \textit{S. A. Tarate} et al., Comput. Methods Differ. Equ. 11, No. 2, 345--356 (2023; Zbl 07665315) Full Text: DOI
Fazli, Hossein; Bahrami, Fariba; Shahmorad, Sedaghat Extremal solutions for multi-term nonlinear fractional differential equations with nonlinear boundary conditions. (English) Zbl 07665292 Comput. Methods Differ. Equ. 11, No. 1, 32-41 (2023). MSC: 26A33 34A08 34A12 PDF BibTeX XML Cite \textit{H. Fazli} et al., Comput. Methods Differ. Equ. 11, No. 1, 32--41 (2023; Zbl 07665292) Full Text: DOI
Beghin, Luisa; Caputo, Michele Stochastic applications of Caputo-type convolution operators with nonsingular kernels. (English) Zbl 07661021 Stochastic Anal. Appl. 41, No. 2, 377-393 (2023). MSC: 26A33 47G20 60G51 33B20 PDF BibTeX XML Cite \textit{L. Beghin} and \textit{M. Caputo}, Stochastic Anal. Appl. 41, No. 2, 377--393 (2023; Zbl 07661021) Full Text: DOI arXiv
Rahou, Wafaa; Salim, Abdelkrim; Lazreg, Jamal Eddine; Benchohra, Mouffak Existence and stability results for impulsive implicit fractional differential equations with delay and Riesz-Caputo derivative. (English) Zbl 07660383 Mediterr. J. Math. 20, No. 3, Paper No. 143, 28 p. (2023). MSC: 26A33 34A08 34A37 PDF BibTeX XML Cite \textit{W. Rahou} et al., Mediterr. J. Math. 20, No. 3, Paper No. 143, 28 p. (2023; Zbl 07660383) Full Text: DOI
Salah Derradji, Lylia; Hamidane, Nacira; Aouchal, Sofiane A fractional SEIRS model with disease resistance and nonlinear generalized incidence rate in Caputo-Fabrizio sense. (English) Zbl 07658686 Rend. Circ. Mat. Palermo (2) 72, No. 1, 81-98 (2023). MSC: 92-XX 26A33 47H10 PDF BibTeX XML Cite \textit{L. Salah Derradji} et al., Rend. Circ. Mat. Palermo (2) 72, No. 1, 81--98 (2023; Zbl 07658686) Full Text: DOI
Cheng, Yuhong; Zhang, Hai; Stamova, Ivanka; Cao, Jinde Estimate scheme for fractional order-dependent fixed-time synchronization on Caputo quaternion-valued BAM network systems with time-varying delays. (English) Zbl 1507.93202 J. Franklin Inst. 360, No. 3, 2379-2403 (2023). MSC: 93D40 93B70 93C43 93B52 26A33 PDF BibTeX XML Cite \textit{Y. Cheng} et al., J. Franklin Inst. 360, No. 3, 2379--2403 (2023; Zbl 1507.93202) Full Text: DOI
Kumar, Yashveer; Srivastava, Nikhil; Singh, Aman; Singh, Vineet Kumar Wavelets based computational algorithms for multidimensional distributed order fractional differential equations with nonlinear source term. (English) Zbl 07648417 Comput. Math. Appl. 132, 73-103 (2023). MSC: 26A33 34A08 65T60 65L60 65L05 PDF BibTeX XML Cite \textit{Y. Kumar} et al., Comput. Math. Appl. 132, 73--103 (2023; Zbl 07648417) Full Text: DOI
Anastassiou, George A.; Karateke, Seda Richards’s curve induced Banach space valued ordinary and fractional neural network approximation. (English) Zbl 07647280 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 14, 33 p. (2023). MSC: 26A33 41A17 41A25 41A30 46B25 PDF BibTeX XML Cite \textit{G. A. Anastassiou} and \textit{S. Karateke}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 14, 33 p. (2023; Zbl 07647280) Full Text: DOI
Tunç, Osman; Tunç, Cemil Solution estimates to Caputo proportional fractional derivative delay integro-differential equations. (English) Zbl 1503.34129 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 12, 13 p. (2023). MSC: 34K20 34K37 45A05 45D05 45H05 45J05 PDF BibTeX XML Cite \textit{O. Tunç} and \textit{C. Tunç}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 12, 13 p. (2023; Zbl 1503.34129) Full Text: DOI
Nghia, Bui Dai; Nguyen, Van Tien; Long, Le Dinh On Cauchy problem for pseudo-parabolic equation with Caputo-Fabrizio operator. (English) Zbl 1507.35328 Demonstr. Math. 56, Article ID 20220180, 20 p. (2023). MSC: 35R11 26A33 35B65 35K20 35K70 PDF BibTeX XML Cite \textit{B. D. Nghia} et al., Demonstr. Math. 56, Article ID 20220180, 20 p. (2023; Zbl 1507.35328) Full Text: DOI
Fareed, Aisha F.; Elbarawy, Menna T. M.; Semary, Mourad S. Fractional discrete Temimi-Ansari method with singular and nonsingular operators: applications to electrical circuits. (English) Zbl 07644553 Adv. Contin. Discrete Models 2023, Paper No. 5, 17 p. (2023). MSC: 65C30 65L12 26A33 35R11 PDF BibTeX XML Cite \textit{A. F. Fareed} et al., Adv. Contin. Discrete Models 2023, Paper No. 5, 17 p. (2023; Zbl 07644553) Full Text: DOI
Alzabut, J.; Grace, S. R.; Jonnalagadda, J. M.; Thandapani, E. Bounded non-oscillatory solutions of nabla forced fractional difference equations with positive and negative terms. (English) Zbl 07644521 Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 28, 16 p. (2023). MSC: 39A22 39A13 26A33 39A12 39A21 PDF BibTeX XML Cite \textit{J. Alzabut} et al., Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 28, 16 p. (2023; Zbl 07644521) Full Text: DOI
Choudhary, Renu; Kumar, Devendra; Singh, Satpal Second-order convergent scheme for time-fractional partial differential equations with a delay in time. (English) Zbl 07643849 J. Math. Chem. 61, No. 1, 21-46 (2023). MSC: 65-XX 26A33 65D07 34K37 65M12 65M70 35R11 PDF BibTeX XML Cite \textit{R. Choudhary} et al., J. Math. Chem. 61, No. 1, 21--46 (2023; Zbl 07643849) Full Text: DOI
Abdelkawy, M. A.; Soluma, E. M.; Al-Dayel, Ibrahim; Baleanu, Dumitru Spectral solutions for a class of nonlinear wave equations with Riesz fractional based on Legendre collocation technique. (English) Zbl 1505.65271 J. Comput. Appl. Math. 423, Article ID 114970, 15 p. (2023). MSC: 65M70 65D32 42C10 74D10 74J30 35Q74 26A33 35R11 PDF BibTeX XML Cite \textit{M. A. Abdelkawy} et al., J. Comput. Appl. Math. 423, Article ID 114970, 15 p. (2023; Zbl 1505.65271) Full Text: DOI
Cacace, Simone; Lai, Anna Chiara; Loreti, Paola A dynamic programming approach for controlled fractional SIS models. (English) Zbl 07639050 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 2, Paper No. 20, 36 p. (2023). MSC: 65-XX 26A33 92D30 49J20 49L25 65M22 PDF BibTeX XML Cite \textit{S. Cacace} et al., NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 2, Paper No. 20, 36 p. (2023; Zbl 07639050) Full Text: DOI arXiv
Park, Daehan Weighted maximal \(L_q (L_p)\)-regularity theory for time-fractional diffusion-wave equations with variable coefficients. (English) Zbl 1505.35075 J. Evol. Equ. 23, No. 1, Paper No. 12, 35 p. (2023). MSC: 35B65 35B45 35R09 45K05 26A33 46B70 47B38 PDF BibTeX XML Cite \textit{D. Park}, J. Evol. Equ. 23, No. 1, Paper No. 12, 35 p. (2023; Zbl 1505.35075) Full Text: DOI arXiv