Pollack, Paul Two problems on the distribution of Carmichael’s lambda function. (English) Zbl 07754843 Mathematika 69, No. 4, 1195-1220 (2023). Reviewer: Mehdi Hassani (Zanjan) MSC: 11N64 11A25 11B50 PDF BibTeX XML Cite \textit{P. Pollack}, Mathematika 69, No. 4, 1195--1220 (2023; Zbl 07754843) Full Text: DOI arXiv OA License
Larsen, Daniel Bertrand’s postulate for Carmichael numbers. (English) Zbl 1522.11095 Int. Math. Res. Not. 2023, No. 15, 13072-13098 (2023). Reviewer: Juan Luis Varona (Logroño) MSC: 11N25 11A51 PDF BibTeX XML Cite \textit{D. Larsen}, Int. Math. Res. Not. 2023, No. 15, 13072--13098 (2023; Zbl 1522.11095) Full Text: DOI arXiv
Shallue, Andrew; Webster, Jonathan Tabulating Carmichael numbers \(n=Pqr\) with small \(P\). (English) Zbl 07608397 Res. Number Theory 8, No. 4, Paper No. 84, 11 p. (2022). Reviewer: Kostantinos Draziotis (Thessaloniki) MSC: 11Y11 11Y16 11Y70 PDF BibTeX XML Cite \textit{A. Shallue} and \textit{J. Webster}, Res. Number Theory 8, No. 4, Paper No. 84, 11 p. (2022; Zbl 07608397) Full Text: DOI
Alahmadi, Adel; Luca, Florian There are no Carmichael numbers of the form \(2^np+1\) with \(p\) prime. (English) Zbl 1504.11013 C. R., Math., Acad. Sci. Paris 360, 1177-1181 (2022). Reviewer: Antonio M. Oller Marcén (Zaragoza) MSC: 11A51 PDF BibTeX XML Cite \textit{A. Alahmadi} and \textit{F. Luca}, C. R., Math., Acad. Sci. Paris 360, 1177--1181 (2022; Zbl 1504.11013) Full Text: DOI
Wagstaff, Samuel S. jun. Primary Carmichael numbers. (English) Zbl 1500.11010 Integers 22, Paper A55, 8 p. (2022). Reviewer: Antonio M. Oller Marcén (Zaragoza) MSC: 11A63 11A51 PDF BibTeX XML Cite \textit{S. S. Wagstaff jun.}, Integers 22, Paper A55, 8 p. (2022; Zbl 1500.11010) Full Text: Link
Pomerance, Carl A note on Carmichael numbers in residue classes. (English) Zbl 1507.11086 Integers 21A, Paper A19, 7 p. (2021). Reviewer: Kaisa Matomäki (Turku) MSC: 11N25 11A51 PDF BibTeX XML Cite \textit{C. Pomerance}, Integers 21A, Paper A19, 7 p. (2021; Zbl 1507.11086) Full Text: Link
Grantham, Jon Proof of two conjectures of Andrica and Bagdasar. (English) Zbl 1493.11033 Integers 21, Paper A111, 3 p. (2021). Reviewer: Amin Witno (Amman) MSC: 11B39 11A51 PDF BibTeX XML Cite \textit{J. Grantham}, Integers 21, Paper A111, 3 p. (2021; Zbl 1493.11033) Full Text: Link
Babinkostova, Liljana; Fillmore, Dylan; Lamkin, Philip; Lin, Alice; Yost-Wolff, Calvin L. Strongly nonzero points and elliptic pseudoprimes. (English) Zbl 1465.11190 Involve 14, No. 1, 65-88 (2021). MSC: 11N25 11G07 11G20 14H52 14K22 PDF BibTeX XML Cite \textit{L. Babinkostova} et al., Involve 14, No. 1, 65--88 (2021; Zbl 1465.11190) Full Text: DOI arXiv
Kellner, Bernd C.; Sondow, Jonathan On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-\(p\) digits. (English) Zbl 1479.11028 Integers 21, Paper A52, 21 p. (2021). Reviewer: Tanay V. Wakhare (Cambridge) MSC: 11A51 11B68 11A63 PDF BibTeX XML Cite \textit{B. C. Kellner} and \textit{J. Sondow}, Integers 21, Paper A52, 21 p. (2021; Zbl 1479.11028) Full Text: arXiv Link
Tsumura, Yu On the finiteness of Carmichael numbers with Fermat factors and \(L=2^{\alpha}P^2\). (English) Zbl 1475.11008 Integers 20, Paper A46, 40 p. (2020). Reviewer: Manouchehr Misaghian (Prairie View) MSC: 11A25 11A51 PDF BibTeX XML Cite \textit{Y. Tsumura}, Integers 20, Paper A46, 40 p. (2020; Zbl 1475.11008) Full Text: arXiv Link
Banderier, Cyril; Luca, Florian On the period mod \(m\) of polynomially-recursive sequences: a case study. (English) Zbl 1460.11025 J. Integer Seq. 22, No. 5, Article 19.5.2, 15 p. (2019). Reviewer: Uğur Duran (Iskenderun) MSC: 11B50 11B39 11B85 05A15 PDF BibTeX XML Cite \textit{C. Banderier} and \textit{F. Luca}, J. Integer Seq. 22, No. 5, Article 19.5.2, 15 p. (2019; Zbl 1460.11025) Full Text: arXiv Link
Babinkostova, L.; Bahr, J. C.; Kim, Y. H.; Neyman, E.; Taylor, G. K. Anomalous primes and the elliptic Korselt criterion. (English) Zbl 1439.14109 J. Number Theory 201, 108-123 (2019). Reviewer: Imin Chen (Burnaby) MSC: 14H52 14K22 11G05 11G20 PDF BibTeX XML Cite \textit{L. Babinkostova} et al., J. Number Theory 201, 108--123 (2019; Zbl 1439.14109) Full Text: DOI arXiv
Wright, Thomas There are infinitely many elliptic Carmichael numbers. (English) Zbl 1457.11007 Bull. Lond. Math. Soc. 50, No. 5, 791-800 (2018). MSC: 11A05 11A51 PDF BibTeX XML Cite \textit{T. Wright}, Bull. Lond. Math. Soc. 50, No. 5, 791--800 (2018; Zbl 1457.11007) Full Text: DOI arXiv
Sha, Min Correction to: The arithmetic of Carmichael quotients. (English) Zbl 1399.11016 Period. Math. Hung. 76, No. 2, 271-273 (2018). MSC: 11A25 11B50 11A07 PDF BibTeX XML Cite \textit{M. Sha}, Period. Math. Hung. 76, No. 2, 271--273 (2018; Zbl 1399.11016) Full Text: DOI
Luca, Florian; Sha, Min; Shparlinski, Igor E. On two functions arising in the study of the Euler and Carmichael quotients. (English) Zbl 1425.11009 Colloq. Math. 149, No. 2, 179-192 (2017). MSC: 11A25 11K65 11N36 PDF BibTeX XML Cite \textit{F. Luca} et al., Colloq. Math. 149, No. 2, 179--192 (2017; Zbl 1425.11009) Full Text: DOI arXiv
Luca, Florian; Stănică, Pantelimon On Fibonacci numbers which are elliptic Carmichael. (English) Zbl 1389.11048 Period. Math. Hung. 72, No. 2, 171-179 (2016). Reviewer: Krassimir Atanassov (Sofia) MSC: 11B39 11A51 PDF BibTeX XML Cite \textit{F. Luca} and \textit{P. Stănică}, Period. Math. Hung. 72, No. 2, 171--179 (2016; Zbl 1389.11048) Full Text: DOI
Schlage-Puchta, Jan-Christoph The non-existence of universal Carmichael numbers. (English) Zbl 1398.11091 Sander, Jürgen (ed.) et al., From arithmetic to zeta-functions. Number theory in memory of Wolfgang Schwarz. Cham: Springer (ISBN 978-3-319-28202-2/hbk; 978-3-319-28203-9/ebook). 435-453 (2016). MSC: 11G05 11G20 11N25 11Y11 14K15 PDF BibTeX XML Cite \textit{J.-C. Schlage-Puchta}, in: From arithmetic to zeta-functions. Number theory in memory of Wolfgang Schwarz. Cham: Springer. 435--453 (2016; Zbl 1398.11091) Full Text: DOI arXiv
Bach, Eric; Fernando, Rex Infinitely many Carmichael numbers for a modified Miller-Rabin prime test. (English) Zbl 1364.11159 Rosenkranz, Markus (ed.), Proceedings of the 41st international symposium on symbolic and algebraic computation, ISSAC 2016, Waterloo, Canada, July 20–22, 2016. New York, NY: Association for Computing Machinery (ACM) (ISBN 978-1-4503-4380-0). 47-54 (2016). MSC: 11Y11 11A51 PDF BibTeX XML Cite \textit{E. Bach} and \textit{R. Fernando}, in: Proceedings of the 41st international symposium on symbolic and algebraic computation, ISSAC 2016, Waterloo, Canada, July 20--22, 2016. New York, NY: Association for Computing Machinery (ACM). 47--54 (2016; Zbl 1364.11159) Full Text: DOI arXiv
Lewis, Max; Scharaschkin, Victor \(k\)-Lehmer and \(k\)-Carmichael numbers. (English) Zbl 1386.11010 Integers 16, Paper A80, 13 p. (2016). Reviewer: Amin Witno (Amman) MSC: 11A25 PDF BibTeX XML Cite \textit{M. Lewis} and \textit{V. Scharaschkin}, Integers 16, Paper A80, 13 p. (2016; Zbl 1386.11010) Full Text: EMIS
McnNew, Nathan; Wright, Thomas Infinitude of \(k\)-Lehmer numbers which are not Carmichael. (English) Zbl 1406.11097 Int. J. Number Theory 12, No. 7, 1863-1869 (2016). MSC: 11N25 11A25 11A41 PDF BibTeX XML Cite \textit{N. McnNew} and \textit{T. Wright}, Int. J. Number Theory 12, No. 7, 1863--1869 (2016; Zbl 1406.11097) Full Text: DOI arXiv
Wright, Thomas Factors of Carmichael numbers and a weak \(k\)-tuples conjecture. (English) Zbl 1405.11007 J. Aust. Math. Soc. 100, No. 3, 421-429 (2016). Reviewer: Eira J. Scourfield (Egham) MSC: 11A51 PDF BibTeX XML Cite \textit{T. Wright}, J. Aust. Math. Soc. 100, No. 3, 421--429 (2016; Zbl 1405.11007) Full Text: DOI
Banks, William D.; Freiberg, Tristan Carmichael numbers and the sieve. (English) Zbl 1401.11129 J. Number Theory 165, 15-29 (2016). MSC: 11N25 11N36 PDF BibTeX XML Cite \textit{W. D. Banks} and \textit{T. Freiberg}, J. Number Theory 165, 15--29 (2016; Zbl 1401.11129) Full Text: DOI arXiv
Cilleruelo, Javier; Luca, Florian; Pizarro-Madariaga, Amalia Carmichael numbers in the sequence \((2^{n} k+1)_{n\geq 1}\). (English) Zbl 1400.11017 Math. Comput. 85, No. 297, 357-377 (2016). MSC: 11A51 11J86 11J87 PDF BibTeX XML Cite \textit{J. Cilleruelo} et al., Math. Comput. 85, No. 297, 357--377 (2016; Zbl 1400.11017) Full Text: DOI arXiv Link
Sha, Min The arithmetic of Carmichael quotients. (English) Zbl 1363.11007 Period. Math. Hung. 71, No. 1, 11-23 (2015). Reviewer: Pentti Haukkanen (Tampere) MSC: 11A25 11B50 11A07 PDF BibTeX XML Cite \textit{M. Sha}, Period. Math. Hung. 71, No. 1, 11--23 (2015; Zbl 1363.11007) Full Text: DOI arXiv
Pollack, Paul; Vandehey, Joseph Some normal numbers generated by arithmetic functions. (English) Zbl 1318.11096 Can. Math. Bull. 58, No. 1, 160-173 (2015). Reviewer: Manfred G. Madritsch (Vandœuvre) MSC: 11K16 11A63 11N25 11N37 PDF BibTeX XML Cite \textit{P. Pollack} and \textit{J. Vandehey}, Can. Math. Bull. 58, No. 1, 160--173 (2015; Zbl 1318.11096) Full Text: DOI arXiv
Zhang, Zhenxiang Estimating the counts of Carmichael and Williams numbers with small multiple seeds. (English) Zbl 1315.11101 Math. Comput. 84, No. 291, 309-337 (2015). MSC: 11Y16 11A51 11Y11 PDF BibTeX XML Cite \textit{Z. Zhang}, Math. Comput. 84, No. 291, 309--337 (2015; Zbl 1315.11101) Full Text: DOI
McIntosh, Richard J.; Dipra, Mitra Carmichael numbers with \(p+1\mid n+1\). (English) Zbl 1303.11017 J. Number Theory 147, 81-91 (2015). MSC: 11A51 11Y11 11B39 11Y50 PDF BibTeX XML Cite \textit{R. J. McIntosh} and \textit{M. Dipra}, J. Number Theory 147, 81--91 (2015; Zbl 1303.11017) Full Text: DOI
McIntosh, Richard J. Carmichael numbers with \((p+1)\mid (n-1)\). (English) Zbl 1379.11028 Integers 14, Paper A59, 9 p. (2014). MSC: 11B83 11B39 11A51 11Y11 PDF BibTeX XML Cite \textit{R. J. McIntosh}, Integers 14, Paper A59, 9 p. (2014; Zbl 1379.11028) Full Text: EMIS
Ford, Kevin; Luca, Florian; Pomerance, Carl The image of Carmichael’s \(\lambda\)-function. (English) Zbl 1322.11104 Algebra Number Theory 8, No. 8, 2009-2026 (2014). Reviewer: Adam J. Harper (Cambridge) MSC: 11N64 11A25 11N25 11N36 PDF BibTeX XML Cite \textit{K. Ford} et al., Algebra Number Theory 8, No. 8, 2009--2026 (2014; Zbl 1322.11104) Full Text: DOI arXiv
Luca, Florian; Shparlinski, Igor E. On the counting function of elliptic Carmichael numbers. (English) Zbl 1331.11115 Can. Math. Bull. 57, No. 1, 105-112 (2014). MSC: 11Y11 11N36 PDF BibTeX XML Cite \textit{F. Luca} and \textit{I. E. Shparlinski}, Can. Math. Bull. 57, No. 1, 105--112 (2014; Zbl 1331.11115) Full Text: DOI arXiv
Grantham, Jon; Hayman, Steven; Shallue, Andrew Constructing Carmichael numbers through improved subset-product algorithms. (English) Zbl 1327.11087 Math. Comput. 83, No. 286, 899-915 (2014). MSC: 11Y16 11A51 11Y05 PDF BibTeX XML Cite \textit{J. Grantham} et al., Math. Comput. 83, No. 286, 899--915 (2014; Zbl 1327.11087) Full Text: DOI arXiv
Pollack, Paul; Pomerance, Carl Paul Erdős and the rise of statistical thinking in elementary number theory. (English) Zbl 1300.11021 Lovász, László (ed.) et al., Erdős centennial. On the occasion of Paul Erdős 100th anniversary of his birth. Berlin: Springer; Budapest: János Bolyai Mathematical Society (ISBN 978-3-642-39285-6/hbk; 978-3-642-39286-3/ebook). Bolyai Society Mathematical Studies 25, 515-533 (2013). Reviewer: Štefan Porubský (Praha) MSC: 11-02 11-03 11A25 11B05 11N37 PDF BibTeX XML Cite \textit{P. Pollack} and \textit{C. Pomerance}, Bolyai Soc. Math. Stud. 25, 515--533 (2013; Zbl 1300.11021) Full Text: DOI
Tixier, Michel On the greatest common divisor of integers of type \(n^r-n\). (Sur le PGCD des entiers du type \(n^r-n\).) (French) Zbl 1284.11003 Quadrature 89, 26-29 (2013). MSC: 11A05 11A51 PDF BibTeX XML Cite \textit{M. Tixier}, Quadrature 89, 26--29 (2013; Zbl 1284.11003)
Banks, William D.; Güloğlu, Ahmet M.; Yeager, Aaron M. Carmichael meets Chebotarev. (English) Zbl 1370.11108 Can. Math. Bull. 56, No. 4, 695-708 (2013). MSC: 11N25 11R45 11A51 PDF BibTeX XML Cite \textit{W. D. Banks} et al., Can. Math. Bull. 56, No. 4, 695--708 (2013; Zbl 1370.11108) Full Text: DOI
Knapp, Wolfgang On Korselt’s criterion for Carmichael numbers. (English) Zbl 1370.11012 Elem. Math. 68, No. 3, 93-95 (2013). Reviewer: Amin Witno (Amman) MSC: 11A51 11A07 PDF BibTeX XML Cite \textit{W. Knapp}, Elem. Math. 68, No. 3, 93--95 (2013; Zbl 1370.11012) Full Text: DOI
Wright, Thomas Infinitely many Carmichael numbers in arithmetic progressions. (English) Zbl 1319.11065 Bull. Lond. Math. Soc. 45, No. 5, 943-952 (2013). Reviewer: Eira J. Scourfield (Egham) MSC: 11N13 11N25 11A05 PDF BibTeX XML Cite \textit{T. Wright}, Bull. Lond. Math. Soc. 45, No. 5, 943--952 (2013; Zbl 1319.11065) Full Text: DOI arXiv
Baker, Roger C.; Banks, William D.; Brüdern, Jörg; Shparlinski, Igor E.; Weingartner, Andreas J. Piatetski-Shapiro sequences. (English) Zbl 1327.11062 Acta Arith. 157, No. 1, 37-68 (2013). Reviewer: Eira J. Scourfield (Egham) MSC: 11N25 11L07 PDF BibTeX XML Cite \textit{R. C. Baker} et al., Acta Arith. 157, No. 1, 37--68 (2013; Zbl 1327.11062) Full Text: DOI arXiv
Di Biagio, Lorenzo Euler pseudoprimes for half of the bases. (English) Zbl 1281.11005 Integers 12, No. 6, 1231-1237, A7 (2012). Reviewer: Juan Tena Ayuso (Valladolid) MSC: 11A51 11Y11 11A15 PDF BibTeX XML Cite \textit{L. Di Biagio}, Integers 12, No. 6, 1231--1237, A7 (2012; Zbl 1281.11005) Full Text: DOI arXiv EMIS
Grau, José María; Oller-Marcén, Antonio M. On \(k\)-Lehmer numbers. (English) Zbl 1293.11007 Integers 12, No. 5, 1081-1089, A37 (2012). MSC: 11A25 11A51 PDF BibTeX XML Cite \textit{J. M. Grau} and \textit{A. M. Oller-Marcén}, Integers 12, No. 5, 1081--1089, A37 (2012; Zbl 1293.11007) Full Text: DOI arXiv
Wright, Thomas The impossibility of certain types of Carmichael numbers. (English) Zbl 1293.11009 Integers 12, No. 5, 951-964, A31 (2012). MSC: 11A51 11A25 PDF BibTeX XML Cite \textit{T. Wright}, Integers 12, No. 5, 951--964, A31 (2012; Zbl 1293.11009) Full Text: DOI
Banks, William D. Carmichael numbers with a totient of the form \(a^2+nb^2\). (English) Zbl 1321.11100 Monatsh. Math. 167, No. 2, 157-163 (2012). MSC: 11N25 11A25 PDF BibTeX XML Cite \textit{W. D. Banks}, Monatsh. Math. 167, No. 2, 157--163 (2012; Zbl 1321.11100) Full Text: DOI
Jameson, G. J. O. Finding Carmichael numbers. (English) Zbl 1383.11007 Math. Gaz. 95, No. 533, 244-255 (2011). MSC: 11A51 11Y11 PDF BibTeX XML Cite \textit{G. J. O. Jameson}, Math. Gaz. 95, No. 533, 244--255 (2011; Zbl 1383.11007) Full Text: DOI
Banks, William D.; Yeager, Aaron M. Carmichael numbers composed of primes from a Beatty sequence. (English) Zbl 1276.11151 Colloq. Math. 125, No. 1, 129-137 (2011). Reviewer: Eira J. Scourfield (Egham) MSC: 11N25 11N13 11B83 PDF BibTeX XML Cite \textit{W. D. Banks} and \textit{A. M. Yeager}, Colloq. Math. 125, No. 1, 129--137 (2011; Zbl 1276.11151) Full Text: DOI Link
Pollack, Paul Values of the Euler and Carmichael functions which are sums of three squares. (English) Zbl 1236.11006 Integers 11, No. 2, 145-161, A13 (2011). Reviewer: Florian Luca (Morelia) MSC: 11A25 11N64 PDF BibTeX XML Cite \textit{P. Pollack}, Integers 11, No. 2, 145--161, A13 (2011; Zbl 1236.11006) Full Text: DOI EMIS
Zhang, Zhenxiang Counting Carmichael numbers with small seeds. (English) Zbl 1225.11161 Math. Comput. 80, No. 273, 437-442 (2011). Reviewer: Florin Nicolae (Berlin) MSC: 11Y11 11Y16 11Y35 PDF BibTeX XML Cite \textit{Z. Zhang}, Math. Comput. 80, No. 273, 437--442 (2011; Zbl 1225.11161) Full Text: DOI
Boulagouaz, M’hammed; Mignotte, Maurice RSA and Carmichael numbers. (RSA et nombres de Carmichael.) (French) Zbl 1225.11011 Afr. Math. Ann. (AFMA) 1, 69-71 (2010). Reviewer: Florin Nicolae (Berlin) MSC: 11A51 11A07 94A60 PDF BibTeX XML Cite \textit{M. Boulagouaz} and \textit{M. Mignotte}, Afr. Math. Ann. (AFMA) 1, 69--71 (2010; Zbl 1225.11011)
Lelechenko, A. V. Carmichael function on the square-free numbers. (Russian. English summary) Zbl 1224.11087 Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 875, 69-79 (2009). MSC: 11N64 11A25 PDF BibTeX XML Cite \textit{A. V. Lelechenko}, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 875, 69--79 (2009; Zbl 1224.11087)
Luca, Florian; Pomerance, Carl; Shparlinski, Igor On Giuga numbers. (English) Zbl 1231.11115 Int. J. Mod. Math. 4, No. 1, 13-18 (2009). MSC: 11N25 PDF BibTeX XML Cite \textit{F. Luca} et al., Int. J. Mod. Math. 4, No. 1, 13--18 (2009; Zbl 1231.11115)
Dartyge, Cécile; Luca, Florian; Stănică, Pantelimon On digit sums of multiples of an integer. (English) Zbl 1241.11113 J. Number Theory 129, No. 11, 2820-2830 (2009). Reviewer: Manfred G. Madritsch (Graz) MSC: 11N25 11N37 PDF BibTeX XML Cite \textit{C. Dartyge} et al., J. Number Theory 129, No. 11, 2820--2830 (2009; Zbl 1241.11113) Full Text: DOI
Banks, W. D. Carmichael numbers with a square totient. (English) Zbl 1194.11094 Can. Math. Bull. 52, No. 1, 3-8 (2009). Reviewer: Angel V. Kumchev (Towson) MSC: 11N25 11A25 PDF BibTeX XML Cite \textit{W. D. Banks}, Can. Math. Bull. 52, No. 1, 3--8 (2009; Zbl 1194.11094) Full Text: DOI
Lerner, E. Yu. Prime witnesses in the Shor algorithm and the Miller-Rabin algorithm. (English. Russian original) Zbl 1157.94360 Russ. Math. 52, No. 12, 36-40 (2008); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2008, No. 12, 43-48 (2008). MSC: 94A60 PDF BibTeX XML Cite \textit{E. Yu. Lerner}, Russ. Math. 52, No. 12, 36--40 (2008; Zbl 1157.94360); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2008, No. 12, 43--48 (2008) Full Text: DOI
Jacobs, David Pokrass; Rayes, Mohamed O.; Trevisan, Vilmar Characterization of Chebyshev numbers. (English) Zbl 1164.11005 Algebra Discrete Math. 2008, No. 2, 65-82 (2008). MSC: 11A51 11Y35 PDF BibTeX XML Cite \textit{D. P. Jacobs} et al., Algebra Discrete Math. 2008, No. 2, 65--82 (2008; Zbl 1164.11005)
Watt, Nigel Bounds for a mean value of character sums. (English) Zbl 1221.11176 Int. J. Number Theory 4, No. 2, 249-293 (2008). Reviewer: Olaf Ninnemann (Berlin) MSC: 11L40 11M06 11F72 PDF BibTeX XML Cite \textit{N. Watt}, Int. J. Number Theory 4, No. 2, 249--293 (2008; Zbl 1221.11176) Full Text: DOI
Harman, Glyn Watt’s mean value theorem and Carmichael numbers. (English) Zbl 1221.11194 Int. J. Number Theory 4, No. 2, 241-248 (2008). Reviewer: Olaf Ninnemann (Berlin) MSC: 11N13 11N36 PDF BibTeX XML Cite \textit{G. Harman}, Int. J. Number Theory 4, No. 2, 241--248 (2008; Zbl 1221.11194) Full Text: DOI
Steele, G. Ander Carmichael numbers in number rings. (English) Zbl 1176.11049 J. Number Theory 128, No. 4, 910-917 (2008). Reviewer: Pieter Moree (Bonn) MSC: 11R04 11A07 11A41 PDF BibTeX XML Cite \textit{G. A. Steele}, J. Number Theory 128, No. 4, 910--917 (2008; Zbl 1176.11049) Full Text: DOI
Chick, J. M.; Davies, G. H. The evaluation of \(\kappa_3\). (English) Zbl 1130.11074 Math. Comput. 77, No. 261, 547-550 (2008). Reviewer: Tom M. Apostol (Pasadena) MSC: 11Y11 11Y60 PDF BibTeX XML Cite \textit{J. M. Chick} and \textit{G. H. Davies}, Math. Comput. 77, No. 261, 547--550 (2008; Zbl 1130.11074) Full Text: DOI
Wei, Qijiao Comments on Carmichael numbers of order \(k\). (Chinese. English summary) Zbl 1164.11306 J. Sichuan Univ., Nat. Sci. Ed. 44, No. 4, 744-746 (2007). MSC: 11A51 11T06 11Y11 PDF BibTeX XML Cite \textit{Q. Wei}, J. Sichuan Univ., Nat. Sci. Ed. 44, No. 4, 744--746 (2007; Zbl 1164.11306)
Echi, Othman Williams numbers. (English) Zbl 1204.11185 C. R. Math. Acad. Sci., Soc. R. Can. 29, No. 2, 41-47 (2007). MSC: 11Y16 11Y11 11A51 PDF BibTeX XML Cite \textit{O. Echi}, C. R. Math. Acad. Sci., Soc. R. Can. 29, No. 2, 41--47 (2007; Zbl 1204.11185)
Carlip, Walter; Somer, Lawrence Primitive Lucas \(d\)-pseudoprimes and Carmichael-Lucas numbers. (English) Zbl 1187.11007 Colloq. Math. 108, No. 1, 73-92 (2007). MSC: 11B39 11Y11 11A51 PDF BibTeX XML Cite \textit{W. Carlip} and \textit{L. Somer}, Colloq. Math. 108, No. 1, 73--92 (2007; Zbl 1187.11007) Full Text: DOI
Doyon, Nicolas; Luca, Florian On the local behavior of the Carmichael \(\lambda\)-function. (English) Zbl 1112.11047 Mich. Math. J. 54, No. 2, 283-300 (2006). Reviewer: Florin Nicolae (Berlin) MSC: 11N37 11A25 PDF BibTeX XML Cite \textit{N. Doyon} and \textit{F. Luca}, Mich. Math. J. 54, No. 2, 283--300 (2006; Zbl 1112.11047) Full Text: DOI
Ji, Yigui Finding Carmichael numbers which are also strong pseudoprimes. (Chinese. English summary) Zbl 1210.11011 J. Anhui Norm. Univ., Nat. Sci. 29, No. 2, 111-114 (2006). MSC: 11A51 11Y11 PDF BibTeX XML Cite \textit{Y. Ji}, J. Anhui Norm. Univ., Nat. Sci. 29, No. 2, 111--114 (2006; Zbl 1210.11011)
Banks, William D.; Luca, Florian; Shparlinski, Igor E. Arithmetic properties of \(\varphi(n)/\lambda(n)\) and the structure of the multiplicative group modulo \(n\). (English) Zbl 1142.11067 Comment. Math. Helv. 81, No. 1, 1-22 (2006). Reviewer: Angel V. Kumchev (Towson) MSC: 11N37 11A25 11N64 PDF BibTeX XML Cite \textit{W. D. Banks} et al., Comment. Math. Helv. 81, No. 1, 1--22 (2006; Zbl 1142.11067) Full Text: DOI
Zhu, Wen Yu; Sun, Qi; Zhou, Xian Hua Generalized Carmichael numbers. (Chinese. English summary) Zbl 1124.11301 Acta Math. Sin. 48, No. 6, 1209-1212 (2005). MSC: 11A51 11T06 11Y11 PDF BibTeX XML Cite \textit{W. Y. Zhu} et al., Acta Math. Sin. 48, No. 6, 1209--1212 (2005; Zbl 1124.11301)
Paszkiewicz, Andrzej; Rotkiewicz, Andrzej On a problem of H. J. A. Duparc. (English) Zbl 1150.11302 Tatra Mt. Math. Publ. 32, 15-32 (2005). Reviewer: Ladislav Skula (Brno) MSC: 11A07 11-04 PDF BibTeX XML Cite \textit{A. Paszkiewicz} and \textit{A. Rotkiewicz}, Tatra Mt. Math. Publ. 32, 15--32 (2005; Zbl 1150.11302)
Harman, Glyn On the number of Carmichael numbers up to \(x\). (English) Zbl 1108.11065 Bull. Lond. Math. Soc. 37, No. 5, 641-650 (2005). Reviewer: Angel V. Kumchev (Towson) MSC: 11N25 11N13 11A51 11N36 PDF BibTeX XML Cite \textit{G. Harman}, Bull. Lond. Math. Soc. 37, No. 5, 641--650 (2005; Zbl 1108.11065) Full Text: DOI
Zhu, Wenyu; Sun, Qi Carmichael numbers of order 3. (English) Zbl 1109.11009 J. Sichuan Univ., Nat. Sci. Ed. 42, No. 1, 47-51 (2005). Reviewer: Solomon Marcus (Bucureşti) MSC: 11A51 11A07 11C08 PDF BibTeX XML Cite \textit{W. Zhu} and \textit{Q. Sun}, J. Sichuan Univ., Nat. Sci. Ed. 42, No. 1, 47--51 (2005; Zbl 1109.11009)
Shparlinski, Igor E. Orders of points on elliptic curves. (English) Zbl 1063.11016 Gutierrez, Jaime (ed.) et al., Affine algebraic geometry. Contributions of the special session on affine algebraic geometry at the 1st joint AMS-RSME meeting, Seville, Spain, June 18–21, 2003. Providence, RI: American Mathematical Society (AMS) (ISBN 0-8218-3476-2/pbk). Contemporary Mathematics 369, 245-251 (2005). Reviewer: Florian Luca (Morelia) MSC: 11G20 11K45 11T71 14H52 14G50 94A60 PDF BibTeX XML Cite \textit{I. E. Shparlinski}, Contemp. Math. 369, 245--251 (2005; Zbl 1063.11016)
Zhang, Zhenxiang Finding \(C_3\)-strong pseudoprimes. (English) Zbl 1069.11055 Math. Comput. 74, No. 250, 1009-1024 (2005). Reviewer: Juan Tena Ayuso (Valladolid) MSC: 11Y11 11A15 11A51 PDF BibTeX XML Cite \textit{Z. Zhang}, Math. Comput. 74, No. 250, 1009--1024 (2005; Zbl 1069.11055) Full Text: DOI
Sándor, Jozsef; Crstici, Borislav Handbook of number theory II. (English) Zbl 1079.11001 Dordrecht: Kluwer Academic Publishers (ISBN 1-4020-2546-7/hbk). 637 p. (2004). Reviewer: Wolfgang Schwarz (Frankfurt / Main) MSC: 11-00 11-01 11-02 11A25 11B68 11B73 11N37 11N64 PDF BibTeX XML Cite \textit{J. Sándor} and \textit{B. Crstici}, Handbook of number theory II. Dordrecht: Kluwer Academic Publishers (2004; Zbl 1079.11001)
Eterevsky, Oleg; Vsemirnov, Maxim On the number of prime divisors of higher-order Carmichael numbers. (English) Zbl 1096.11003 Fibonacci Q. 42, No. 2, 141-148 (2004). Reviewer: Clemens Heuberger (Graz) MSC: 11A51 11A25 PDF BibTeX XML Cite \textit{O. Eterevsky} and \textit{M. Vsemirnov}, Fibonacci Q. 42, No. 2, 141--148 (2004; Zbl 1096.11003)
Luca, Florian Positive integers \(n\) such that \(n\mid a^{\sigma(n)}-1\). (English) Zbl 1085.11047 Novi Sad J. Math. 33, No. 2, 49-66 (2003). Reviewer: Aleksandar Ivić (Beograd) MSC: 11N37 11A51 PDF BibTeX XML Cite \textit{F. Luca}, Novi Sad J. Math. 33, No. 2, 49--66 (2003; Zbl 1085.11047) Full Text: EuDML
Zhang, Zhenxiang; Tang, Min Finding strong pseudoprimes to several bases. II. (English) Zbl 1113.11007 Math. Comput. 72, No. 244, 2085-2097 (2003). MSC: 11A51 11Y11 11A15 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{M. Tang}, Math. Comput. 72, No. 244, 2085--2097 (2003; Zbl 1113.11007) Full Text: DOI
Dubner, Harvey Carmichael numbers of the form \((6m+1)(12m+1)(18m+1)\). (English) Zbl 1020.11005 J. Integer Seq. 5, No. 2, Art. 02.2.1, 8 p. (2002). Reviewer: Jürgen Spilker (Freiburg i.Br.) MSC: 11A07 11Y11 PDF BibTeX XML Cite \textit{H. Dubner}, J. Integer Seq. 5, No. 2, Art. 02.2.1, 8 p. (2002; Zbl 1020.11005) Full Text: EMIS
Granville, Andrew; Pomerance, Carl Two contradictory conjectures concerning Carmichael numbers. (English) Zbl 0991.11067 Math. Comput. 71, No. 238, 883-908 (2002). Reviewer: Florian Luca (Morelia) MSC: 11Y35 11N60 11N05 PDF BibTeX XML Cite \textit{A. Granville} and \textit{C. Pomerance}, Math. Comput. 71, No. 238, 883--908 (2002; Zbl 0991.11067) Full Text: DOI
Friedlander, John B.; Pomerance, Carl; Shparlinski, Igor E. Period of the power generator and small values of Carmichael’s function. (English) Zbl 1029.11043 Math. Comput. 70, No. 236, 1591-1605 (2001); Corrigendum ibid. 71, No. 240, 1803-1806 (2002). Reviewer: T.Helleseth (Bergen) MSC: 11K45 11B50 11N56 11T71 94A60 PDF BibTeX XML Cite \textit{J. B. Friedlander} et al., Math. Comput. 70, No. 236, 1591--1605 (2002; Zbl 1029.11043) Full Text: DOI
Friedlander, John B.; Pomerance, Carl; Shparlinski, Igor E. Small values of the Carmichael function and cryptographic applications. (English) Zbl 0996.11075 Lam, Kwok-Yan (ed.) et al., Cryptography and computational number theory. Proceedings of the workshop, CCNT’99, Singapore, November 22-26, 1999. Basel: Birkhäuser. Prog. Comput. Sci. Appl. Log. 20, 25-32 (2001). Reviewer: Richard A.Mollin (Calgary) MSC: 11T71 94A60 11B50 11A25 PDF BibTeX XML Cite \textit{J. B. Friedlander} et al., Prog. Comput. Sci. Appl. Log. 20, 25--32 (2001; Zbl 0996.11075)
Rotkiewicz, Andrzej Arithmetic progressions formed by pseudoprimes. (English) Zbl 1075.11003 Acta Math. Inform. Univ. Ostrav. 8, No. 1, 61-74 (2000). Reviewer: Juraj Kostra (Ostrava) MSC: 11A07 11B39 PDF BibTeX XML Cite \textit{A. Rotkiewicz}, Acta Math. Inform. Univ. Ostrav. 8, No. 1, 61--74 (2000; Zbl 1075.11003) Full Text: EuDML
Halbeisen, L.; Hungerbühler, N. On generalized Carmichael numbers. (English) Zbl 1002.11006 Hardy-Ramanujan J. 22, 8-22 (1999). MSC: 11A51 11A07 11N25 PDF BibTeX XML Cite \textit{L. Halbeisen} and \textit{N. Hungerbühler}, Hardy-Ramanujan J. 22, 8--22 (1999; Zbl 1002.11006)
Rotkiewicz, Andrzej Solved and unsolved problems on pseudoprime numbers and their generalizations. (English) Zbl 0951.11004 Howard, Fredric T. (ed.), Applications of Fibonacci numbers. Volume 8: Proceedings of the eighth international research conference on Fibonacci numbers and their applications, Rochester, NY, USA, June 22-26, 1998. Dordrecht: Kluwer Academic Publishers. 293-306 (1999). Reviewer: Peter Kiss (Eger) MSC: 11A07 11B39 PDF BibTeX XML Cite \textit{A. Rotkiewicz}, in: Applications of Fibonacci numbers. Volume 8: Proceedings of the eighth international research conference on Fibonacci numbers and their applications, Rochester, NY, USA, June 22--26, 1998. Dordrecht: Kluwer Academic Publishers. 293--306 (1999; Zbl 0951.11004)
Rotkiewicz, A. Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function \(l^C_x\). (English) Zbl 0951.11001 Acta Arith. 91, No. 1, 75-83 (1999). Reviewer: Peter Kiss (Eger) MSC: 11A07 11B39 PDF BibTeX XML Cite \textit{A. Rotkiewicz}, Acta Arith. 91, No. 1, 75--83 (1999; Zbl 0951.11001) Full Text: DOI EuDML
Müller, Siguna M. S. Carmichael numbers and Lucas tests. (English) Zbl 0918.11004 Mullin, Ronald C. (ed.) et al., Finite fields: theory, applications, and algorithms. Fourth international conference, Waterloo, Ontario, Canada, August 12–15, 1997. Providence, RI: American Mathematical Society. Contemp. Math. 225, 193-202 (1999). Reviewer: Jürgen Wolfart (Frankfurt am Main) MSC: 11A51 11Y11 11B39 PDF BibTeX XML Cite \textit{S. M. S. Müller}, Contemp. Math. 225, 193--202 (1999; Zbl 0918.11004)
Ramadan-Jradi, Walid Amin Some aspects of Carmichael’s conjecture. (English) Zbl 0918.11002 Bull. Aust. Math. Soc. 58, No. 1, 173-175 (1998). MSC: 11A25 PDF BibTeX XML Cite \textit{W. A. Ramadan-Jradi}, Bull. Aust. Math. Soc. 58, No. 1, 173--175 (1998; Zbl 0918.11002) Full Text: DOI
Ford, Kevin The distribution of totients. (English) Zbl 0914.11053 Ramanujan J. 2, No. 1-2, 67-151 (1998). Reviewer: D.Wolke (Freiburg i.Br.) MSC: 11N64 11A25 11N37 PDF BibTeX XML Cite \textit{K. Ford}, Ramanujan J. 2, No. 1--2, 67--151 (1998; Zbl 0914.11053) Full Text: DOI
Ford, Kevin The distribution of totients. (English) Zbl 0888.11003 Electron. Res. Announc. Am. Math. Soc. 4, No. 5, 27-34 (1998). MSC: 11A25 11N64 11N37 PDF BibTeX XML Cite \textit{K. Ford}, Electron. Res. Announc. Am. Math. Soc. 4, No. 5, 27--34 (1998; Zbl 0888.11003) Full Text: DOI arXiv EuDML
Conway, J. H.; Guy, R. K.; Schneeberger, W. A.; Sloane, N. J. A. The primary pretenders. (English) Zbl 0863.11005 Acta Arith. 78, No. 4, 307-313 (1997). Reviewer: N.J.A.Sloane (Murray Hill, NJ) MSC: 11A51 11A07 PDF BibTeX XML Full Text: DOI arXiv EuDML
Porubský, Štefan On Smarandache’s form of the individual Fermat-Euler theorem. (English) Zbl 0945.11005 Smarandache Notions J. 8, No. 1-3, 5-20 (1997). Reviewer: Corey Powell (San José) MSC: 11A07 11R04 11Y16 13F05 11T99 PDF BibTeX XML Cite \textit{Š. Porubský}, Smarandache Notions J. 8, No. 1--3, 5--20 (1997; Zbl 0945.11005)
Borwein, J. M.; Wong, E. A survey of results relating to Giuga’s conjecture on primality. (English) Zbl 0898.11002 Vinet, Luc (ed.), Advances in mathematical sciences: CRM’s 25 years. Providence, RI: American Mathematical Society. CRM Proc. Lect. Notes. 11, 13-27 (1997). Reviewer: R.Girgensohn (Neuherberg) MSC: 11A41 11Y11 11Y50 PDF BibTeX XML Cite \textit{J. M. Borwein} and \textit{E. Wong}, in: Advances in mathematical sciences: CRM's 25 years. Providence, RI: American Mathematical Society. 13--27 (1997; Zbl 0898.11002)
Zhu, Wenyu Numbers which are Carmichael numbers and strong pseudoprimes to some bases. (Chinese. English summary) Zbl 0884.11004 J. Sichuan Univ., Nat. Sci. Ed. 34, No. 3, 269-275 (1997). Reviewer: Peter Shiu (Loughborough) MSC: 11A15 11A51 11Y11 PDF BibTeX XML Cite \textit{W. Zhu}, J. Sichuan Univ., Nat. Sci. Ed. 34, No. 3, 269--275 (1997; Zbl 0884.11004)
Guillaume, D.; Morain, F. Building pseudoprimes with a large number of prime factors. (English) Zbl 0862.11005 Appl. Algebra Eng. Commun. Comput. 7, No. 4, 263-277 (1996). Reviewer: J.Sorenson (Indianapolis) MSC: 11A51 11Y11 11Y16 PDF BibTeX XML Cite \textit{D. Guillaume} and \textit{F. Morain}, Appl. Algebra Eng. Commun. Comput. 7, No. 4, 263--277 (1996; Zbl 0862.11005) Full Text: DOI
Dubner, Harvey Carmichael numbers and Egyptian fractions. (English) Zbl 0849.11011 Math. Jap. 43, No. 2, 411-419 (1996). Reviewer: P.Haukkanen (Tampere) MSC: 11A51 11Y70 11D68 11-04 PDF BibTeX XML Cite \textit{H. Dubner}, Math. Japon. 43, No. 2, 411--419 (1996; Zbl 0849.11011)
Löh, Günter; Niebuhr, Wolfgang A new algorithm for constructing large Carmichael numbers. (English) Zbl 0855.11066 Math. Comput. 65, No. 214, 823-836 (1996). Reviewer: J.Sorenson (Indianapolis) MSC: 11Y16 11Y11 11A51 11-04 PDF BibTeX XML Cite \textit{G. Löh} and \textit{W. Niebuhr}, Math. Comput. 65, No. 214, 823--836 (1996; Zbl 0855.11066) Full Text: DOI
Adiga, Chandrashekar; Ramaswamy, H. N. A note on Euler’s totient function. (English) Zbl 0894.11002 J. Indian Math. Soc., New Ser. 62, No. 1-4, 169-174 (1996). Reviewer: P.Haukkanen (Tampere) MSC: 11A25 11A07 PDF BibTeX XML Cite \textit{C. Adiga} and \textit{H. N. Ramaswamy}, J. Indian Math. Soc., New Ser. 62, No. 1--4, 169--174 (1996; Zbl 0894.11002)
Zhang, Mingzhi On the equation \(\varphi (x)= \varphi (y)\). (Chinese. English summary) Zbl 0862.11003 J. Sichuan Univ., Nat. Sci. Ed. 32, No. 6, 628-631 (1995). Reviewer: P.Shiu (Loughborough) MSC: 11A25 11Y70 PDF BibTeX XML Cite \textit{M. Zhang}, J. Sichuan Univ., Nat. Sci. Ed. 32, No. 6, 628--631 (1995; Zbl 0862.11003)
Agoh, Takashi On Giuga’s conjecture. (English) Zbl 0845.11004 Manuscr. Math. 87, No. 4, 501-510 (1995). Reviewer: T.Maxsein (Clausthal) MSC: 11A07 11A41 PDF BibTeX XML Cite \textit{T. Agoh}, Manuscr. Math. 87, No. 4, 501--510 (1995; Zbl 0845.11004) Full Text: DOI EuDML
Alford, W. R.; Granville, Andrew; Pomerance, Carl On the difficulty of finding reliable witnesses. (English) Zbl 0828.11074 Adleman, Leonard M. (ed.) et al., Algorithmic number theory. 1st international symposium, ANTS-I, Ithaca, NY, USA, May 6-9, 1994. Proceedings. Berlin: Springer-Verlag. Lect. Notes Comput. Sci. 877, 1-16 (1994). Reviewer: D. R. Heath-Brown (Oxford) MSC: 11Y11 11A51 PDF BibTeX XML Cite \textit{W. R. Alford} et al., Lect. Notes Comput. Sci. 877, 1--16 (1994; Zbl 0828.11074)
Matthews, Rex Strong pseudoprimes and generalized Carmichael numbers. (English) Zbl 0814.11060 Mullen, Gary L. (ed.) et al., Finite fields: theory, applications and algorithms. 2nd international conference, August 17-21, 1993, Las Vegas, NV, USA. Providence, RI: American Mathematical Society. Contemp. Math. 168, 227-233 (1994). Reviewer: I.F.Blake (Waterloo / Ontario) MSC: 11Y11 PDF BibTeX XML Cite \textit{R. Matthews}, Contemp. Math. 168, 227--233 (1994; Zbl 0814.11060)
Alford, W. R.; Granville, Andrew; Pomerance, Carl There are infinitely many Carmichael numbers. (English) Zbl 0816.11005 Ann. Math. (2) 139, No. 3, 703-722 (1994). Reviewer: Thomas Maxsein (Frankfurt / Main) MSC: 11A25 11N56 11A07 11N69 PDF BibTeX XML Cite \textit{W. R. Alford} et al., Ann. Math. (2) 139, No. 3, 703--722 (1994; Zbl 0816.11005) Full Text: DOI Link
Schlafly, Aaron; Wagon, Stan Carmichael’s conjecture on the Euler function is valid below \(10^{10,000,000}\). (English) Zbl 0801.11001 Math. Comput. 63, No. 207, 415-419 (1994). MSC: 11A25 11Y70 11A41 PDF BibTeX XML Cite \textit{A. Schlafly} and \textit{S. Wagon}, Math. Comput. 63, No. 207, 415--419 (1994; Zbl 0801.11001) Full Text: DOI
Ito, Hideji On elliptic pseudoprimes. (English) Zbl 0813.11005 Mem. Coll. Educ., Akita Univ., Nat. Sci. 46, 1-7 (1994). Reviewer: R.J.Stroeker (Rotterdam) MSC: 11A51 11G07 PDF BibTeX XML Cite \textit{H. Ito}, Mem. Coll. Educ., Akita Univ., Nat. Sci. 46, 1--7 (1994; Zbl 0813.11005)
Pomerance, Carl Carmichael numbers. (English) Zbl 0806.11005 Nieuw Arch. Wiskd., IV. Ser. 11, No. 3, 199-209 (1993). Reviewer: T.Maxsein (Frankfurt / Main) MSC: 11A25 11A51 11B75 PDF BibTeX XML Cite \textit{C. Pomerance}, Nieuw Arch. Wiskd., IV. Ser. 11, No. 3, 199--209 (1993; Zbl 0806.11005)