Cao, Xiwang; Feng, Keqin Perfect state transfer on Cayley graphs over dihedral groups. (English) Zbl 07318411 Linear Multilinear Algebra 69, No. 2, 343-360 (2021). MSC: 05C PDF BibTeX XML Cite \textit{X. Cao} and \textit{K. Feng}, Linear Multilinear Algebra 69, No. 2, 343--360 (2021; Zbl 07318411) Full Text: DOI
Jo, Hyungrok; Sugiyama, Shingo; Yamasaki, Yoshinori Ramanujan graphs for post-quantum cryptography. (English) Zbl 07315593 Takagi, Tsuyoshi (ed.) et al., International symposium on mathematics, quantum theory, and cryptography. Proceedings of MQC 2019, Fukuoka, Japan, September 25–27, 2019. Singapore: Springer (ISBN 978-981-15-5190-1/hbk; 978-981-15-5191-8/ebook). Mathematics for Industry 33, 231-250 (2021). MSC: 94A60 PDF BibTeX XML Cite \textit{H. Jo} et al., Math. Ind. (Tokyo) 33, 231--250 (2021; Zbl 07315593) Full Text: DOI
Kimoto, Kazufumi Generalized group-subgroup pair graphs. (English) Zbl 07315589 Takagi, Tsuyoshi (ed.) et al., International symposium on mathematics, quantum theory, and cryptography. Proceedings of MQC 2019, Fukuoka, Japan, September 25–27, 2019. Singapore: Springer (ISBN 978-981-15-5190-1/hbk; 978-981-15-5191-8/ebook). Mathematics for Industry 33, 169-185 (2021). MSC: 94A60 PDF BibTeX XML Cite \textit{K. Kimoto}, Math. Ind. (Tokyo) 33, 169--185 (2021; Zbl 07315589) Full Text: DOI
Fuller, Brandon; Morris, Joy Two new families of non-CCA groups. (English) Zbl 07313295 Art Discrete Appl. Math. 4, No. 1, Paper No. P1.08, 7 p. (2021). MSC: 05C25 PDF BibTeX XML Cite \textit{B. Fuller} and \textit{J. Morris}, Art Discrete Appl. Math. 4, No. 1, Paper No. P1.08, 7 p. (2021; Zbl 07313295) Full Text: DOI
Podestá, Ricardo A.; Videla, Denis E. Integral equienergetic non-isospectral unitary Cayley graphs. (English) Zbl 07312055 Linear Algebra Appl. 612, 42-74 (2021). MSC: 05C25 05C50 05C75 PDF BibTeX XML Cite \textit{R. A. Podestá} and \textit{D. E. Videla}, Linear Algebra Appl. 612, 42--74 (2021; Zbl 07312055) Full Text: DOI
Peng, Junhao; Sandev, Trifce; Kocarev, Ljupco First encounters on Bethe lattices and Cayley trees. (English) Zbl 07299007 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105594, 16 p. (2021). MSC: 05C81 05C25 05C05 60G50 60C05 PDF BibTeX XML Cite \textit{J. Peng} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105594, 16 p. (2021; Zbl 07299007) Full Text: DOI
Ryabov, G. On Cayley representations of finite graphs over abelian \(p\)-groups. (English. Russian original) Zbl 07296449 St. Petersbg. Math. J. 32, No. 1, 71-89 (2021); translation from Algebra Anal. 32, No. 1, 94-120 (2020). MSC: 05C62 05C25 05C85 05C60 20B35 20C05 PDF BibTeX XML Cite \textit{G. Ryabov}, St. Petersbg. Math. J. 32, No. 1, 71--89 (2021; Zbl 07296449); translation from Algebra Anal. 32, No. 1, 94--120 (2020) Full Text: DOI
Riyas, A.; Anusha, P. U.; Geetha, K. On Cayley graphs of Rees matrix semigroups relative to Green’s equivalence \(\mathcal{L}\)-class. (English) Zbl 1451.05112 Int. J. Math. Comput. Sci. 16, No. 2, 831-835 (2021). MSC: 05C25 20M10 20M17 PDF BibTeX XML Cite \textit{A. Riyas} et al., Int. J. Math. Comput. Sci. 16, No. 2, 831--835 (2021; Zbl 1451.05112) Full Text: Link
Morgan, Luke; Morris, Joy; Verret, Gabriel A finite simple group is CCA if and only if it has no element of order four. (English) Zbl 07286486 J. Algebra 569, 318-333 (2021). MSC: 05C25 PDF BibTeX XML Cite \textit{L. Morgan} et al., J. Algebra 569, 318--333 (2021; Zbl 07286486) Full Text: DOI
Georgakopoulos, Agelos; Lehner, Florian Invariant spanning double rays in amenable groups. (English) Zbl 07282521 Discrete Math. 344, No. 2, Article ID 112207, 7 p. (2021). MSC: 05E16 05C25 43A07 60D05 PDF BibTeX XML Cite \textit{A. Georgakopoulos} and \textit{F. Lehner}, Discrete Math. 344, No. 2, Article ID 112207, 7 p. (2021; Zbl 07282521) Full Text: DOI
Chang, Xuenan; Ma, Jicheng; Yang, Da-Wei Symmetric property and reliability of locally twisted cubes. (English) Zbl 1451.05102 Discrete Appl. Math. 288, 257-269 (2021). MSC: 05C25 05C82 05C40 68R10 68M10 PDF BibTeX XML Cite \textit{X. Chang} et al., Discrete Appl. Math. 288, 257--269 (2021; Zbl 1451.05102) Full Text: DOI
Yin, Fu-Gang; Feng, Yan-Quan; Zhou, Jin-Xin; Chen, Shan-Shan Arc-transitive Cayley graphs on nonabelian simple groups with prime valency. (English) Zbl 1448.05103 J. Comb. Theory, Ser. A 177, Article ID 105303, 20 p. (2021). MSC: 05C25 20D05 PDF BibTeX XML Cite \textit{F.-G. Yin} et al., J. Comb. Theory, Ser. A 177, Article ID 105303, 20 p. (2021; Zbl 1448.05103) Full Text: DOI
Arezoomand, Majid; Ghasemi, Mohsen Normality of one-matching semi-Cayley graphs over finite abelian groups with maximum degree 3. (English) Zbl 07309082 Contrib. Discrete Math. 15, No. 3, 75-87 (2020). MSC: 05C25 20B25 PDF BibTeX XML Cite \textit{M. Arezoomand} and \textit{M. Ghasemi}, Contrib. Discrete Math. 15, No. 3, 75--87 (2020; Zbl 07309082) Full Text: DOI
Rahmatullaev, Muzaffar M.; Abraev, B. U. Non-translation-invariant Gibbs measures of an SOS model on a Cayley tree. (English) Zbl 07304323 Rep. Math. Phys. 86, No. 3, 315-324 (2020). MSC: 82B05 82B20 60K35 PDF BibTeX XML Cite \textit{M. M. Rahmatullaev} and \textit{B. U. Abraev}, Rep. Math. Phys. 86, No. 3, 315--324 (2020; Zbl 07304323) Full Text: DOI
Haydarov, Farhod Halimjonovich; Akhtamaliyev, Shamshod A.; Nazirov, Madalixon A.; Qarshiyev, Behzod Boyxonovich Uniqueness of Gibbs measures for an Ising model with continuous spin values on a Cayley tree. (English) Zbl 07304321 Rep. Math. Phys. 86, No. 3, 293-302 (2020). MSC: 82B05 82B20 60K35 PDF BibTeX XML Cite \textit{F. H. Haydarov} et al., Rep. Math. Phys. 86, No. 3, 293--302 (2020; Zbl 07304321) Full Text: DOI
Wang, Li; Wang, Zixuan; Li, Yuan Cubic bi-Cayley graphs over a group of order \(3p\). (Chinese. English summary) Zbl 07295933 J. Yunnan Univ., Nat. Sci. 42, No. 4, 617-622 (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Yunnan Univ., Nat. Sci. 42, No. 4, 617--622 (2020; Zbl 07295933) Full Text: DOI
Talebi, Ali Asghar; Amiri, S. Omidbakhsh On a rough Cayley graph related to conjugacy classes. (English) Zbl 1451.05113 J. Indones. Math. Soc. 26, No. 3, 275-285 (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{A. A. Talebi} and \textit{S. O. Amiri}, J. Indones. Math. Soc. 26, No. 3, 275--285 (2020; Zbl 1451.05113) Full Text: DOI
Eshkabilov, Yu. Kh.; Botirov, G. I.; Khaidarov, F. Kh. Phase transitions for models with a continuum set of spin values on a Bethe lattice. (English. Russian original) Zbl 07284350 Theor. Math. Phys. 205, No. 1, 1372-1380 (2020); translation from Teor. Mat. Fiz. 205, No. 1, 146-155 (2020). MSC: 82B20 82B26 82B28 05C05 PDF BibTeX XML Cite \textit{Yu. Kh. Eshkabilov} et al., Theor. Math. Phys. 205, No. 1, 1372--1380 (2020; Zbl 07284350); translation from Teor. Mat. Fiz. 205, No. 1, 146--155 (2020) Full Text: DOI
Khakimov, R. M.; Makhammadaliev, M. T. Uniqueness and nonuniqueness conditions for weakly periodic Gibbs measures for the hard-core model. (English. Russian original) Zbl 07283654 Theor. Math. Phys. 204, No. 2, 1059-1078 (2020); translation from Teor. Mat. Fiz. 204, No. 2, 258-279 (2020). MSC: 82B30 82B20 05C05 PDF BibTeX XML Cite \textit{R. M. Khakimov} and \textit{M. T. Makhammadaliev}, Theor. Math. Phys. 204, No. 2, 1059--1078 (2020; Zbl 07283654); translation from Teor. Mat. Fiz. 204, No. 2, 258--279 (2020) Full Text: DOI
Miklavič, Štefko; Šparl, Primož On minimal distance-regular Cayley graphs of generalized dihedral groups. (English) Zbl 1453.05046 Electron. J. Comb. 27, No. 4, Research Paper P4.33, 16 p. (2020). MSC: 05C25 05C12 05E18 05E30 PDF BibTeX XML Cite \textit{Š. Miklavič} and \textit{P. Šparl}, Electron. J. Comb. 27, No. 4, Research Paper P4.33, 16 p. (2020; Zbl 1453.05046) Full Text: DOI
Afkhami, Mojgan; Hassankhani, Mehdi; Khashyarmanesh, K. The Cayley sum graph of ideals of a lattice. (English) Zbl 07278261 Discuss. Math., Gen. Algebra Appl. 40, No. 2, 217-230 (2020). MSC: 05C69 05C75 06B10 PDF BibTeX XML Cite \textit{M. Afkhami} et al., Discuss. Math., Gen. Algebra Appl. 40, No. 2, 217--230 (2020; Zbl 07278261) Full Text: DOI
Abdollahzadeh Ahangar, H.; Mojdeh, D. A.; Sayed-Khalkhali, A.; Samodivkin, V. Efficient \(k\)-distance dominating set in Cayley graphs. (English) Zbl 1453.05084 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 1, 141-147 (2020). MSC: 05C69 05C12 05C15 PDF BibTeX XML Cite \textit{H. Abdollahzadeh Ahangar} et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 1, 141--147 (2020; Zbl 1453.05084) Full Text: DOI
Deka, Budheswar; Bharali, A. The generalized ISI index of some derived networks. (English) Zbl 07274321 J. Adv. Math. Stud. 13, No. 2, 179-191 (2020). MSC: 05C82 05C09 05C07 05C40 05C92 92E10 PDF BibTeX XML Cite \textit{B. Deka} and \textit{A. Bharali}, J. Adv. Math. Stud. 13, No. 2, 179--191 (2020; Zbl 07274321) Full Text: Link
Mukhamedov, F. M.; Rakhmatullaev, M. M.; Rasulova, M. A. Weakly periodic ground states for the \(\lambda \)-model. (English. Russian original) Zbl 1453.82014 Ukr. Math. J. 72, No. 5, 771-784 (2020); translation from Ukr. Mat. Zh. 72, No. 5, 667-678 (2020). MSC: 82B20 05C05 PDF BibTeX XML Cite \textit{F. M. Mukhamedov} et al., Ukr. Math. J. 72, No. 5, 771--784 (2020; Zbl 1453.82014); translation from Ukr. Mat. Zh. 72, No. 5, 667--678 (2020) Full Text: DOI
Liu, Xiaogang; Yan, Chengxin Unitary homogeneous bi-Cayley graphs over finite commutative rings. (English) Zbl 1451.05141 J. Algebra Appl. 19, No. 9, Article ID 2050173, 18 p. (2020). MSC: 05C50 05C25 PDF BibTeX XML Cite \textit{X. Liu} and \textit{C. Yan}, J. Algebra Appl. 19, No. 9, Article ID 2050173, 18 p. (2020; Zbl 1451.05141) Full Text: DOI
Li, Peiheng; Meng, Jixiang Linearly many faults in Cayley graphs generated by transposition triangle free unicyclic graphs. (English) Zbl 07270969 Theor. Comput. Sci. 847, 95-102 (2020). MSC: 68Q PDF BibTeX XML Cite \textit{P. Li} and \textit{J. Meng}, Theor. Comput. Sci. 847, 95--102 (2020; Zbl 07270969) Full Text: DOI
Khatamov, N. M. Translation-invariant extreme Gibbs measures for the Blume-Capel model withwand on a Cayley tree. (English. Russian original) Zbl 1451.82036 Ukr. Math. J. 72, No. 4, 623-641 (2020); translation from Ukr. Mat. Zh. 72, No. 4, 540-556 (2020). MSC: 82C20 82C27 05C05 PDF BibTeX XML Cite \textit{N. M. Khatamov}, Ukr. Math. J. 72, No. 4, 623--641 (2020; Zbl 1451.82036); translation from Ukr. Mat. Zh. 72, No. 4, 540--556 (2020) Full Text: DOI
Ma, Xuanlong; Walls, Gary L.; Wang, Kaishun; Zhou, Sanming Subgroup perfect codes in Cayley graphs. (English) Zbl 1453.05045 SIAM J. Discrete Math. 34, No. 3, 1909-1921 (2020). Reviewer: Valeriano Aiello (Genève) MSC: 05C25 05C69 94B25 PDF BibTeX XML Cite \textit{X. Ma} et al., SIAM J. Discrete Math. 34, No. 3, 1909--1921 (2020; Zbl 1453.05045) Full Text: DOI
Zhang, Yan; Mamut, Aygul The generalized 3-connectivity of Cayley graphs generated by wheel graphs. (Chinese. English summary) Zbl 07267093 J. Sichuan Norm. Univ., Nat. Sci. 43, No. 3, 345-349 (2020). MSC: 05C40 05C25 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{A. Mamut}, J. Sichuan Norm. Univ., Nat. Sci. 43, No. 3, 345--349 (2020; Zbl 07267093) Full Text: DOI
Ramezani, F. Domination parameters of Cayley graphs of some groups. (English) Zbl 1451.13020 J. Linear Topol. Algebra 9, No. 3, 193-200 (2020). Reviewer: T. Tamizh Chelvam (Tirunelveli) MSC: 13A70 05C69 05C25 PDF BibTeX XML Cite \textit{F. Ramezani}, J. Linear Topol. Algebra 9, No. 3, 193--200 (2020; Zbl 1451.13020) Full Text: Link
Zhao, Shu-Li; Chang, Jou-Ming; Hao, Rong-Xia Reliability assessment of the Cayley graph generated by trees. (English) Zbl 1450.05047 Discrete Appl. Math. 287, 10-14 (2020). Reviewer: Valeriano Aiello (Genève) MSC: 05C40 05C25 05C05 05C10 PDF BibTeX XML Cite \textit{S.-L. Zhao} et al., Discrete Appl. Math. 287, 10--14 (2020; Zbl 1450.05047) Full Text: DOI
Khazaei, Soghra; Sharifi, Hesam On connected tetravalent normal edge-transitive Cayley graphs of non-abelian groups of order \(5p^2\). (English) Zbl 07257399 Turk. J. Math. 44, No. 2, 524-537 (2020). MSC: 05C25 20D60 PDF BibTeX XML Cite \textit{S. Khazaei} and \textit{H. Sharifi}, Turk. J. Math. 44, No. 2, 524--537 (2020; Zbl 07257399) Full Text: DOI
Ilić-Georgijević, Emil A description of the Cayley graphs of homogeneous semigroups. (English) Zbl 07253612 Commun. Algebra 48, No. 12, 5203-5214 (2020). Reviewer: Joy Morris (Lethbridge) MSC: 05C25 20M99 PDF BibTeX XML Cite \textit{E. Ilić-Georgijević}, Commun. Algebra 48, No. 12, 5203--5214 (2020; Zbl 07253612) Full Text: DOI
Ye, Zuo; Zhang, Tao; Zhang, Xiande; Ge, Gennian Some new results on splitter sets. (English) Zbl 1448.94300 IEEE Trans. Inf. Theory 66, No. 5, 2765-2776 (2020). MSC: 94B60 05D05 PDF BibTeX XML Cite \textit{Z. Ye} et al., IEEE Trans. Inf. Theory 66, No. 5, 2765--2776 (2020; Zbl 1448.94300) Full Text: DOI
Conder, Marston; Zhou, Jin-Xin; Feng, Yan-Quan; Zhang, Mi-Mi Edge-transitive bi-Cayley graphs. (English) Zbl 1448.05098 J. Comb. Theory, Ser. B 145, 264-306 (2020). Reviewer: Joy Morris (Lethbridge) MSC: 05C25 PDF BibTeX XML Cite \textit{M. Conder} et al., J. Comb. Theory, Ser. B 145, 264--306 (2020; Zbl 1448.05098) Full Text: DOI
Nupo, Nuttawoot; Pookpienlert, Chollawat On connectedness and completeness of Cayley digraphs of transformation semigroups with fixed sets. (English) Zbl 07251176 Int. Electron. J. Algebra 28, 110-126 (2020). Reviewer: Wai-Kai Chen (Fremont) MSC: 05C20 05C25 20M20 PDF BibTeX XML Cite \textit{N. Nupo} and \textit{C. Pookpienlert}, Int. Electron. J. Algebra 28, 110--126 (2020; Zbl 07251176) Full Text: Link
Feng, Yan-Quan; Kovács, István; Wang, Jie; Yang, Da-Wei Existence of non-Cayley Haar graphs. (English) Zbl 1447.05102 Eur. J. Comb. 89, Article ID 103146, 11 p. (2020). MSC: 05C25 20B25 PDF BibTeX XML Cite \textit{Y.-Q. Feng} et al., Eur. J. Comb. 89, Article ID 103146, 11 p. (2020; Zbl 1447.05102) Full Text: DOI
Morris, Dave Witte; Wilk, Kirsten Cayley graphs of order \(kp\) are Hamiltonian for \(k < 48\). (English) Zbl 1441.05106 Art Discrete Appl. Math. 3, No. 2, Paper No. P2.02, 17 p. (2020). MSC: 05C25 05C45 PDF BibTeX XML Cite \textit{D. W. Morris} and \textit{K. Wilk}, Art Discrete Appl. Math. 3, No. 2, Paper No. P2.02, 17 p. (2020; Zbl 1441.05106) Full Text: DOI
Yuan, Kai; Wang, Yan; Qu, Haipeng Regular balanced Cayley maps on nonabelian metacyclic groups of odd order. (English) Zbl 1441.05110 Art Discrete Appl. Math. 3, No. 1, Paper No. P1.05, 5 p. (2020). MSC: 05C25 05C30 PDF BibTeX XML Cite \textit{K. Yuan} et al., Art Discrete Appl. Math. 3, No. 1, Paper No. P1.05, 5 p. (2020; Zbl 1441.05110) Full Text: DOI
Jasenčáková, Katarína; Jajcay, Robert; Pisanski, Tomaž A new generalization of generalized Petersen graphs. (English) Zbl 1441.05103 Art Discrete Appl. Math. 3, No. 1, Paper No. P1.04, 20 p. (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{K. Jasenčáková} et al., Art Discrete Appl. Math. 3, No. 1, Paper No. P1.04, 20 p. (2020; Zbl 1441.05103) Full Text: DOI
Morgan, Luke; Morris, Joy; Verret, Gabriel Digraphs with small automorphism groups that are Cayley on two nonisomorphic groups. (English) Zbl 1441.05105 Art Discrete Appl. Math. 3, No. 1, Paper No. P1.01, 11 p. (2020). MSC: 05C25 20B25 05C20 PDF BibTeX XML Cite \textit{L. Morgan} et al., Art Discrete Appl. Math. 3, No. 1, Paper No. P1.01, 11 p. (2020; Zbl 1441.05105) Full Text: DOI
Janssen, Jeannette; MacKeigan, Kyle Orthogonal colourings of Cayley graphs. (English) Zbl 1447.05082 Discrete Math. 343, No. 11, Article ID 112079, 9 p. (2020). Reviewer: Valeriano Aiello (Genève) MSC: 05C15 05C25 PDF BibTeX XML Cite \textit{J. Janssen} and \textit{K. MacKeigan}, Discrete Math. 343, No. 11, Article ID 112079, 9 p. (2020; Zbl 1447.05082) Full Text: DOI
Amir, Gideon; Baldasso, Rangel; Kozma, Gady The firefighter problem on polynomial and intermediate growth groups. (English) Zbl 1447.05101 Discrete Math. 343, No. 11, Article ID 112077, 4 p. (2020). MSC: 05C25 05C69 05C57 91A43 PDF BibTeX XML Cite \textit{G. Amir} et al., Discrete Math. 343, No. 11, Article ID 112077, 4 p. (2020; Zbl 1447.05101) Full Text: DOI
Alikhani, Saeid; Ramezani, Fatemeh; Vatandoost, Ebrahim On the signed domination number of some Cayley graphs. (English) Zbl 1447.05152 Commun. Algebra 48, No. 7, 2825-2832 (2020). MSC: 05C69 05C22 05C25 PDF BibTeX XML Cite \textit{S. Alikhani} et al., Commun. Algebra 48, No. 7, 2825--2832 (2020; Zbl 1447.05152) Full Text: DOI
Grimmett, Geoffrey R.; Li, Zhongyang Weighted self-avoiding walks. (English) Zbl 1447.05184 J. Algebr. Comb. 52, No. 1, 77-102 (2020). MSC: 05C81 05C25 05C30 20F65 82B20 82D40 PDF BibTeX XML Cite \textit{G. R. Grimmett} and \textit{Z. Li}, J. Algebr. Comb. 52, No. 1, 77--102 (2020; Zbl 1447.05184) Full Text: DOI
Feng, Yan-Quan; Kovács, István; Yang, Da-Wei On groups all of whose Haar graphs are Cayley graphs. (English) Zbl 1447.05103 J. Algebr. Comb. 52, No. 1, 59-76 (2020). MSC: 05C25 05E18 20B25 05C85 05C12 05C60 05C38 PDF BibTeX XML Cite \textit{Y.-Q. Feng} et al., J. Algebr. Comb. 52, No. 1, 59--76 (2020; Zbl 1447.05103) Full Text: DOI
Arezoomand, Majid On the Laplacian and signless Laplacian polynomials of graphs with semiregular automorphisms. (English) Zbl 1447.05119 J. Algebr. Comb. 52, No. 1, 21-32 (2020). MSC: 05C50 05C25 05C31 PDF BibTeX XML Cite \textit{M. Arezoomand}, J. Algebr. Comb. 52, No. 1, 21--32 (2020; Zbl 1447.05119) Full Text: DOI
Lu, Fuliang; Chen, Xiaodan The Pfaffian property of Cayley graphs on dihedral groups. (English) Zbl 07242129 Discrete Appl. Math. 285, 642-649 (2020). Reviewer: William G. Brown (Montréal) MSC: 20F05 05C25 05C70 PDF BibTeX XML Cite \textit{F. Lu} and \textit{X. Chen}, Discrete Appl. Math. 285, 642--649 (2020; Zbl 07242129) Full Text: DOI
Vemuri, Harish Domination in direct products of complete graphs. (English) Zbl 1447.05161 Discrete Appl. Math. 285, 473-482 (2020). MSC: 05C69 05C76 05C25 PDF BibTeX XML Cite \textit{H. Vemuri}, Discrete Appl. Math. 285, 473--482 (2020; Zbl 1447.05161) Full Text: DOI
Tamizh Chelvam, T.; Anukumar Kathirvel, S.; Balamurugan, M. Domination in generalized unit and unitary Cayley graphs of finite rings. (English) Zbl 1447.05105 Indian J. Pure Appl. Math. 51, No. 2, 533-556 (2020). Reviewer: Joy Morris (Lethbridge) MSC: 05C25 05C69 16P10 PDF BibTeX XML Cite \textit{T. Tamizh Chelvam} et al., Indian J. Pure Appl. Math. 51, No. 2, 533--556 (2020; Zbl 1447.05105) Full Text: DOI
Ghasemi, Mohsen; Varmazyar, Rezvan A classification of tetravalent arc-transitive graphs of order \(5p^2\). (English) Zbl 07241019 Indian J. Pure Appl. Math. 51, No. 2, 403-411 (2020). MSC: 05C25 20B25 PDF BibTeX XML Cite \textit{M. Ghasemi} and \textit{R. Varmazyar}, Indian J. Pure Appl. Math. 51, No. 2, 403--411 (2020; Zbl 07241019) Full Text: DOI
Zhang, Hengbin; Nan, Jizhu Automorphism groups of some graphs for the ring of Gaussian integers modulo \({p^s}\). (English) Zbl 1449.05141 J. Math. Res. Appl. 40, No. 2, 111-118 (2020). MSC: 05C25 20B25 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{J. Nan}, J. Math. Res. Appl. 40, No. 2, 111--118 (2020; Zbl 1449.05141) Full Text: DOI
Dalfó, C.; Fiol, M. A.; López, N.; Ryan, J. An improved Moore bound and some new optimal families of mixed abelian Cayley graphs. (English) Zbl 1445.05047 Discrete Math. 343, No. 10, Article ID 112034, 9 p. (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{C. Dalfó} et al., Discrete Math. 343, No. 10, Article ID 112034, 9 p. (2020; Zbl 1445.05047) Full Text: DOI
Li, Fei A method to determine algebraically integral Cayley digraphs on finite abelian group. (English) Zbl 07232891 Contrib. Discrete Math. 15, No. 2, 148-152 (2020). MSC: 05C20 PDF BibTeX XML Cite \textit{F. Li}, Contrib. Discrete Math. 15, No. 2, 148--152 (2020; Zbl 07232891) Full Text: DOI
Lyons, Russell; Peres, Yuval; Sun, Xin; Zheng, Tianyi Occupation measure of random walks and wired spanning forests in balls of Cayley graphs. (English. French summary) Zbl 1444.05134 Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 97-109 (2020). MSC: 05C81 05C25 60C05 PDF BibTeX XML Cite \textit{R. Lyons} et al., Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 97--109 (2020; Zbl 1444.05134) Full Text: DOI
Ma, Xuanlong; Feng, Min; Wang, Kaishun Subgroup perfect codes in Cayley sum graphs. (English) Zbl 1448.05153 Des. Codes Cryptography 88, No. 7, 1447-1461 (2020). MSC: 05C69 05C25 94B25 PDF BibTeX XML Cite \textit{X. Ma} et al., Des. Codes Cryptography 88, No. 7, 1447--1461 (2020; Zbl 1448.05153) Full Text: DOI
Li, Jing Jian; Yang, Jing; Zhu, Wen Ying Vertex primitive \(s\)-transitive Cayley graphs. (English) Zbl 1443.05092 Discrete Math. 343, No. 9, Article ID 111966, 5 p. (2020). MSC: 05C25 20B15 PDF BibTeX XML Cite \textit{J. J. Li} et al., Discrete Math. 343, No. 9, Article ID 111966, 5 p. (2020; Zbl 1443.05092) Full Text: DOI
Zhang, Guozhen The preclusion numbers and edge preclusion numbers in a class of Cayley graphs. (English) Zbl 1443.05096 Discrete Appl. Math. 284, 465-471 (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{G. Zhang}, Discrete Appl. Math. 284, 465--471 (2020; Zbl 1443.05096) Full Text: DOI
Kuzman, Boštjan On \(k\)-rainbow domination in regular graphs. (English) Zbl 1443.05147 Discrete Appl. Math. 284, 454-464 (2020). MSC: 05C69 05C25 PDF BibTeX XML Cite \textit{B. Kuzman}, Discrete Appl. Math. 284, 454--464 (2020; Zbl 1443.05147) Full Text: DOI
Stewart, Iain A. Using semidirect products of groups to build classes of interconnection networks. (English) Zbl 1442.05090 Discrete Appl. Math. 283, 78-97 (2020). MSC: 05C25 05C82 94C15 PDF BibTeX XML Cite \textit{I. A. Stewart}, Discrete Appl. Math. 283, 78--97 (2020; Zbl 1442.05090) Full Text: DOI
Rattanakangwanwong, Jitsupat; Meemark, Yotsanan Unitary Cayley graphs of matrix rings over finite commutative rings. (English) Zbl 1442.05088 Finite Fields Appl. 65, Article ID 101689, 15 p. (2020). MSC: 05C25 05E16 05E30 05C69 05C15 PDF BibTeX XML Cite \textit{J. Rattanakangwanwong} and \textit{Y. Meemark}, Finite Fields Appl. 65, Article ID 101689, 15 p. (2020; Zbl 1442.05088) Full Text: DOI
Georgakopoulos, Agelos On planar Cayley graphs and Kleinian groups. (English) Zbl 1442.05086 Trans. Am. Math. Soc. 373, No. 7, 4649-4684 (2020). MSC: 05C25 05C10 57M60 57M07 57M15 PDF BibTeX XML Cite \textit{A. Georgakopoulos}, Trans. Am. Math. Soc. 373, No. 7, 4649--4684 (2020; Zbl 1442.05086) Full Text: DOI
Dalfó, C.; Fiol, M. A.; López, N. New Moore-like bounds and some optimal families of abelian Cayley mixed graphs. (English) Zbl 1442.05083 Ann. Comb. 24, No. 2, 405-424 (2020). MSC: 05C25 05C12 05C20 05C35 90B10 PDF BibTeX XML Cite \textit{C. Dalfó} et al., Ann. Comb. 24, No. 2, 405--424 (2020; Zbl 1442.05083) Full Text: DOI
Caucal, Didier Cayley graphs of basic algebraic structures. (English) Zbl 1441.05100 Discrete Math. Theor. Comput. Sci. 21(2019-2020), No. 1, Paper No. 16, 20 p. (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{D. Caucal}, Discrete Math. Theor. Comput. Sci. 21, No. 1, Paper No. 16, 20 p. (2020; Zbl 1441.05100) Full Text: Link
Du, Jia-Li; Feng, Yan-Quan; Spiga, Pablo A conjecture on bipartite graphical regular representations. (English) Zbl 1441.05163 Discrete Math. 343, No. 8, Article ID 111913, 15 p. (2020); corrigendum ibid. 343, No. 11, Article ID 112078, 1 p. (2020). MSC: 05C62 05C20 05C25 PDF BibTeX XML Cite \textit{J.-L. Du} et al., Discrete Math. 343, No. 8, Article ID 111913, 15 p. (2020; Zbl 1441.05163) Full Text: DOI
Feng, Yan-Quan; Kutnar, Klavdija; Marušič, Dragan; Yang, Da-Wei On cubic symmetric non-Cayley graphs with solvable automorphism groups. (English) Zbl 1441.05102 Discrete Math. 343, No. 8, Article ID 111720, 4 p. (2020). MSC: 05C25 20B25 PDF BibTeX XML Cite \textit{Y.-Q. Feng} et al., Discrete Math. 343, No. 8, Article ID 111720, 4 p. (2020; Zbl 1441.05102) Full Text: DOI
Green, Holly M.; Liebeck, Martin W. Some codes in symmetric and linear groups. (English) Zbl 07209394 Discrete Math. 343, No. 8, Article ID 111719, 4 p. (2020). MSC: 94B05 05C25 20B30 PDF BibTeX XML Cite \textit{H. M. Green} and \textit{M. W. Liebeck}, Discrete Math. 343, No. 8, Article ID 111719, 4 p. (2020; Zbl 07209394) Full Text: DOI
Parshina, Ol’ga Gennad’evna; Lisitsyna, Mariya Aleksandrovna The perfect 2-colorings of infinite circulant graphs with a continuous set of odd distances. (English) Zbl 1440.05095 Sib. Èlektron. Mat. Izv. 17, 590-603 (2020). MSC: 05C15 05C25 05C30 PDF BibTeX XML Cite \textit{O. G. Parshina} and \textit{M. A. Lisitsyna}, Sib. Èlektron. Mat. Izv. 17, 590--603 (2020; Zbl 1440.05095) Full Text: DOI
Gu, Mei-Mei; Hao, Rong-Xia; Tang, Shyue-Ming; Chang, Jou-Ming Analysis on component connectivity of bubble-sort star graphs and burnt pancake graphs. (English) Zbl 1439.05126 Discrete Appl. Math. 279, 80-91 (2020). MSC: 05C40 05C82 05C25 PDF BibTeX XML Cite \textit{M.-M. Gu} et al., Discrete Appl. Math. 279, 80--91 (2020; Zbl 1439.05126) Full Text: DOI
Dvořák, Tomáš; Gu, Mei-Mei Neighbor connectivity of \(k\)-ary \(n\)-cubes. (English) Zbl 07200792 Appl. Math. Comput. 379, Article ID 125237, 8 p. (2020). MSC: 05C40 05C25 68M10 68R10 PDF BibTeX XML Cite \textit{T. Dvořák} and \textit{M.-M. Gu}, Appl. Math. Comput. 379, Article ID 125237, 8 p. (2020; Zbl 07200792) Full Text: DOI
Mančinska, Laura; Pivotto, Irene; Roberson, David E.; Royle, Gordon F. Cores of cubelike graphs. (English) Zbl 1439.05159 Eur. J. Comb. 87, Article ID 103092, 15 p. (2020). MSC: 05C60 05C25 PDF BibTeX XML Cite \textit{L. Mančinska} et al., Eur. J. Comb. 87, Article ID 103092, 15 p. (2020; Zbl 1439.05159) Full Text: DOI
Alinejad, Mohsen; Khashyarmanesh, Kazem Automorphism groups of some generalized Cayley graphs. (English) Zbl 1437.05094 Rend. Circ. Mat. Palermo (2) 69, No. 1, 167-174 (2020). MSC: 05C25 05C69 05C75 13A15 PDF BibTeX XML Cite \textit{M. Alinejad} and \textit{K. Khashyarmanesh}, Rend. Circ. Mat. Palermo (2) 69, No. 1, 167--174 (2020; Zbl 1437.05094) Full Text: DOI
Akın, Hasan; Chang, Chih-Hung The entropy and reversibility of cellular automata on Cayley tree. (English) Zbl 1442.37028 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 4, Article ID 2050061, 12 p. (2020). MSC: 37B15 37E25 28D20 PDF BibTeX XML Cite \textit{H. Akın} and \textit{C.-H. Chang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 4, Article ID 2050061, 12 p. (2020; Zbl 1442.37028) Full Text: DOI
Qiao, Sha; Zhou, Jin-Xin On tetravalent vertex-transitive bi-circulants. (English) Zbl 1437.05099 Indian J. Pure Appl. Math. 51, No. 1, 277-288 (2020). MSC: 05C25 20B25 PDF BibTeX XML Cite \textit{S. Qiao} and \textit{J.-X. Zhou}, Indian J. Pure Appl. Math. 51, No. 1, 277--288 (2020; Zbl 1437.05099) Full Text: DOI
Spiga, Pablo On the existence of graphical Frobenius representations and their asymptotic enumeration. (English) Zbl 1437.05100 J. Comb. Theory, Ser. B 142, 210-243 (2020). MSC: 05C25 05C62 05C30 20B27 PDF BibTeX XML Cite \textit{P. Spiga}, J. Comb. Theory, Ser. B 142, 210--243 (2020; Zbl 1437.05100) Full Text: DOI
Cao, Jianji; Cheng, Huiwen A classification of cubic connected bi-dicirculants. (English) Zbl 1435.05101 Discrete Math. 343, No. 5, Article ID 111814, 7 p. (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{J. Cao} and \textit{H. Cheng}, Discrete Math. 343, No. 5, Article ID 111814, 7 p. (2020; Zbl 1435.05101) Full Text: DOI
Chen, Jiyong; Wang, Yanpeng; Xia, Binzhou Characterization of subgroup perfect codes in Cayley graphs. (English) Zbl 1439.05104 Discrete Math. 343, No. 5, Article ID 111813, 4 p. (2020). Reviewer: T. Tamizh Chelvam (Tirunelveli) MSC: 05C25 05C12 05C69 94B60 PDF BibTeX XML Cite \textit{J. Chen} et al., Discrete Math. 343, No. 5, Article ID 111813, 4 p. (2020; Zbl 1439.05104) Full Text: DOI
Wang, Xiuyun; Wang, Jihui; Liu, Yan Tetravalent half-arc-transitive graphs of order \(8p\). (English) Zbl 1432.05050 J. Algebr. Comb. 51, No. 2, 237-246 (2020). MSC: 05C25 20B25 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Algebr. Comb. 51, No. 2, 237--246 (2020; Zbl 1432.05050) Full Text: DOI
Yang, Yuefeng; Lv, Benjian; Wang, Kaishun Quasi-thin weakly distance-regular digraphs. (English) Zbl 1434.05070 J. Algebr. Comb. 51, No. 1, 19-50 (2020). MSC: 05C25 05C12 05C20 PDF BibTeX XML Cite \textit{Y. Yang} et al., J. Algebr. Comb. 51, No. 1, 19--50 (2020; Zbl 1434.05070) Full Text: DOI
Dai, Wenjing; Yuan, Jiabin; Li, Dan Discrete-time quantum walk with memory on the Cayley graph of the dihedral group. (English) Zbl 1439.81029 Int. J. Theor. Phys. 59, No. 1, 10-28 (2020). MSC: 81P68 05C81 16B50 65T50 68P20 60G50 PDF BibTeX XML Cite \textit{W. Dai} et al., Int. J. Theor. Phys. 59, No. 1, 10--28 (2020; Zbl 1439.81029) Full Text: DOI
Konstantinova, Elena V.; Lytkina, Daria Integral Cayley graphs over finite groups. (English) Zbl 1433.05199 Algebra Colloq. 27, No. 1, 131-136 (2020). MSC: 05C50 05C25 05E10 05E16 90B10 PDF BibTeX XML Cite \textit{E. V. Konstantinova} and \textit{D. Lytkina}, Algebra Colloq. 27, No. 1, 131--136 (2020; Zbl 1433.05199) Full Text: DOI
Gyürki, Štefan Small directed strongly regular graphs. (English) Zbl 1433.05331 Algebra Colloq. 27, No. 1, 11-30 (2020). MSC: 05E30 05C20 05C25 PDF BibTeX XML Cite \textit{Š. Gyürki}, Algebra Colloq. 27, No. 1, 11--30 (2020; Zbl 1433.05331) Full Text: DOI
Wang, Zeying New necessary conditions on (negative) Latin square type partial difference sets in abelian groups. (English) Zbl 1433.05056 J. Comb. Theory, Ser. A 172, Article ID 105208, 10 p. (2020). MSC: 05B15 05C25 05E30 05B10 20K01 PDF BibTeX XML Cite \textit{Z. Wang}, J. Comb. Theory, Ser. A 172, Article ID 105208, 10 p. (2020; Zbl 1433.05056) Full Text: DOI
Du, Jia-Li; Feng, Yan-Quan; Spiga, Pablo A classification of the graphical \(m\)-semiregular representation of finite groups. (English) Zbl 1433.05144 J. Comb. Theory, Ser. A 171, Article ID 105174, 35 p. (2020). MSC: 05C25 05C20 20C99 PDF BibTeX XML Cite \textit{J.-L. Du} et al., J. Comb. Theory, Ser. A 171, Article ID 105174, 35 p. (2020; Zbl 1433.05144) Full Text: DOI
Crnković, Dean; Kharaghani, Hadi; Švob, Andrea Divisible design Cayley digraphs. (English) Zbl 1433.05215 Discrete Math. 343, No. 4, Article ID 111784, 8 p. (2020). MSC: 05C51 05C20 05C25 PDF BibTeX XML Cite \textit{D. Crnković} et al., Discrete Math. 343, No. 4, Article ID 111784, 8 p. (2020; Zbl 1433.05215) Full Text: DOI
Stewart, Iain A. Variational networks of cube-connected cycles are recursive cubes of rings. (English) Zbl 07168546 Inf. Process. Lett. 157, Article ID 105925, 4 p. (2020). MSC: 68Q PDF BibTeX XML Cite \textit{I. A. Stewart}, Inf. Process. Lett. 157, Article ID 105925, 4 p. (2020; Zbl 07168546) Full Text: DOI
Abas, Marcel; Vetrík, Tomáš Metric dimension of Cayley digraphs of split metacyclic groups. (English) Zbl 1439.05067 Theor. Comput. Sci. 809, 61-72 (2020). Reviewer: Ioan Tomescu (Bucureşti) MSC: 05C12 05C25 PDF BibTeX XML Cite \textit{M. Abas} and \textit{T. Vetrík}, Theor. Comput. Sci. 809, 61--72 (2020; Zbl 1439.05067) Full Text: DOI
Zhou, Hui; Xu, Liufeng; Cui, Yang; Feng, Rongquan; Ding, Qi On Hamilton decompositions of Cayley graphs on dihedral groups. (English) Zbl 1433.05180 Appl. Math. Comput. 372, Article ID 124967, 4 p. (2020). MSC: 05C45 05C25 20D60 20F05 PDF BibTeX XML Cite \textit{H. Zhou} et al., Appl. Math. Comput. 372, Article ID 124967, 4 p. (2020; Zbl 1433.05180) Full Text: DOI
Defant, Colin Enumerating cliques in direct product graphs. (English) Zbl 1430.05052 J. Comb. 11, No. 2, 351-358 (2020). MSC: 05C30 05C69 05C76 05C25 05C62 PDF BibTeX XML Cite \textit{C. Defant}, J. Comb. 11, No. 2, 351--358 (2020; Zbl 1430.05052) Full Text: DOI arXiv
Xia, Binzhou On cubic graphical regular representations of finite simple groups. (English) Zbl 1430.05079 J. Comb. Theory, Ser. B 141, 1-30 (2020). MSC: 05C62 05C25 20C99 PDF BibTeX XML Cite \textit{B. Xia}, J. Comb. Theory, Ser. B 141, 1--30 (2020; Zbl 1430.05079) Full Text: DOI arXiv
Erde, Joshua; Lehner, Florian; Pitz, Max Hamilton decompositions of one-ended Cayley graphs. (English) Zbl 1430.05049 J. Comb. Theory, Ser. B 140, 171-191 (2020). MSC: 05C25 05C70 PDF BibTeX XML Cite \textit{J. Erde} et al., J. Comb. Theory, Ser. B 140, 171--191 (2020; Zbl 1430.05049) Full Text: DOI arXiv
Cushing, David; Liu, Shiping; Peyerimhoff, Norbert Bakry-Émery curvature functions on graphs. (English) Zbl 1430.05019 Can. J. Math. 72, No. 1, 89-143 (2020). MSC: 05C10 05C50 05C25 52C99 53A40 PDF BibTeX XML Cite \textit{D. Cushing} et al., Can. J. Math. 72, No. 1, 89--143 (2020; Zbl 1430.05019) Full Text: DOI
Mokhtar, Hamid Cube-connected circulants: bisection width, Wiener and forwarding indices. (English) Zbl 1429.05092 Discrete Appl. Math. 272, 48-68 (2020). MSC: 05C25 05C09 05C12 PDF BibTeX XML Cite \textit{H. Mokhtar}, Discrete Appl. Math. 272, 48--68 (2020; Zbl 1429.05092) Full Text: DOI
Cesi, Filippo On the spectral gap of some Cayley graphs on the Weyl group \(W(B_n)\). (English) Zbl 1429.05089 Linear Algebra Appl. 586, 274-295 (2020). MSC: 05C25 05C50 20C15 20C30 60K35 PDF BibTeX XML Cite \textit{F. Cesi}, Linear Algebra Appl. 586, 274--295 (2020; Zbl 1429.05089) Full Text: DOI arXiv
Xia, Binzhou Cubic graphical regular representations of \(\mathrm{PSL}_3(q)\). (English) Zbl 1429.05096 Discrete Math. 343, No. 1, Article ID 111646, 9 p. (2020). MSC: 05C25 20B25 20G40 PDF BibTeX XML Cite \textit{B. Xia}, Discrete Math. 343, No. 1, Article ID 111646, 9 p. (2020; Zbl 1429.05096) Full Text: DOI
Cao, Xiwang; Wang, Dandan; Feng, Keqin Pretty good state transfer on Cayley graphs over dihedral groups. (English) Zbl 1429.05121 Discrete Math. 343, No. 1, Article ID 111636, 12 p. (2020). MSC: 05C50 05C25 PDF BibTeX XML Cite \textit{X. Cao} et al., Discrete Math. 343, No. 1, Article ID 111636, 12 p. (2020; Zbl 1429.05121) Full Text: DOI
Bradshaw, Peter A proof of the Meyniel conjecture for abelian Cayley graphs. (English) Zbl 1429.05088 Discrete Math. 343, No. 1, Article ID 111546, 5 p. (2020). MSC: 05C25 05C40 PDF BibTeX XML Cite \textit{P. Bradshaw}, Discrete Math. 343, No. 1, Article ID 111546, 5 p. (2020; Zbl 1429.05088) Full Text: DOI
Sawada, Joe; Williams, Aaron Solving the sigma-tau problem. (English) Zbl 07138993 ACM Trans. Algorithms 16, No. 1, Article No. 11, 17 p. (2020). MSC: 05C25 05C45 05A05 PDF BibTeX XML Cite \textit{J. Sawada} and \textit{A. Williams}, ACM Trans. Algorithms 16, No. 1, Article No. 11, 17 p. (2020; Zbl 07138993) Full Text: DOI
Vatandoost, Ebrahim; Ramezani, Fatemeh Domination and signed domination number of Cayley graphs. (English) Zbl 07317448 Iran. J. Math. Sci. Inform. 14, No. 1, 35-42 (2019). MSC: 05C69 05C25 PDF BibTeX XML Cite \textit{E. Vatandoost} and \textit{F. Ramezani}, Iran. J. Math. Sci. Inform. 14, No. 1, 35--42 (2019; Zbl 07317448) Full Text: Link
Philipose, Roshan Sara; Balakrishnan, Sarasija Perurkada Vertex and edge Padmakar-Ivan indices of unitary Cayley graphs. (English) Zbl 1448.05102 Missouri J. Math. Sci. 31, No. 2, 146-151 (2019). MSC: 05C25 05C09 05C78 05C10 PDF BibTeX XML Cite \textit{R. S. Philipose} and \textit{S. P. Balakrishnan}, Missouri J. Math. Sci. 31, No. 2, 146--151 (2019; Zbl 1448.05102) Full Text: DOI Euclid