Feng, Sheng-Ya; Chang, Der-Chen The singular Fredholm integral operators and related integral equations of Chandrasekhar type. (English) Zbl 07565317 Milman, Mario (ed.) et al., Geometric potential analysis. Selected papers based on the presentations at the special session, virtual, July 15–16 and 19, 2021. Berlin: De Gruyter. Adv. Anal. Geom. 6, 89-104 (2022). MSC: 45B05 26D15 47H10 47N20 PDF BibTeX XML Cite \textit{S.-Y. Feng} and \textit{D.-C. Chang}, Adv. Anal. Geom. 6, 89--104 (2022; Zbl 07565317) Full Text: DOI OpenURL
Hernández-Verón, M. A.; Martínez, Eulalia Iterative schemes for solving the Chandrasekhar \(H\)-equation using the Bernstein polynomials. (English) Zbl 1481.65268 J. Comput. Appl. Math. 404, Article ID 113391, 12 p. (2022). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{M. A. Hernández-Verón} and \textit{E. Martínez}, J. Comput. Appl. Math. 404, Article ID 113391, 12 p. (2022; Zbl 1481.65268) Full Text: DOI OpenURL
Feng, Sheng-Ya; Chang, Der-Chen Boundedness and approximation of the Chandrasekhar integral operators in \(L^P\) spaces. (English) Zbl 07399393 J. Nonlinear Var. Anal. 5, No. 5, 683-707 (2021). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{S.-Y. Feng} and \textit{D.-C. Chang}, J. Nonlinear Var. Anal. 5, No. 5, 683--707 (2021; Zbl 07399393) Full Text: DOI OpenURL
Feng, Sheng-Ya; Chang, Der-Chen Existence, uniqueness, and approximation solutions to linearized Chandrasekhar equation with sharp bounds. (English) Zbl 1447.45002 Anal. Math. Phys. 10, No. 2, Paper No. 17, 21 p. (2020). MSC: 45B05 65R20 PDF BibTeX XML Cite \textit{S.-Y. Feng} and \textit{D.-C. Chang}, Anal. Math. Phys. 10, No. 2, Paper No. 17, 21 p. (2020; Zbl 1447.45002) Full Text: DOI OpenURL
Feng, Sheng-Ya; Chang, Der-Chen Exact bounds and approximating solutions to the Fredholm integral equations of Chandrasekhar type. (English) Zbl 1412.45004 Taiwanese J. Math. 23, No. 2, 409-425 (2019). MSC: 45B05 26D15 47H10 PDF BibTeX XML Cite \textit{S.-Y. Feng} and \textit{D.-C. Chang}, Taiwanese J. Math. 23, No. 2, 409--425 (2019; Zbl 1412.45004) Full Text: DOI Euclid OpenURL
Feng, Sheng-Ya; Chang, Der-Chen An existence and uniqueness result for parameterized integral equations with Chandrasekhar kernels. (English) Zbl 1463.45003 J. Nonlinear Convex Anal. 19, No. 12, 2053-2068 (2018). MSC: 45B05 26D15 47H10 PDF BibTeX XML Cite \textit{S.-Y. Feng} and \textit{D.-C. Chang}, J. Nonlinear Convex Anal. 19, No. 12, 2053--2068 (2018; Zbl 1463.45003) Full Text: Link OpenURL
Argyros, Ioannis K.; Hilout, Saïd On the convergence of inexact two-step Newton-like algorithms using recurrent functions. (English) Zbl 1295.65063 J. Appl. Math. Comput. 38, No. 1-2, 41-61 (2012). MSC: 65J15 47J25 65R20 45G10 85A25 34B15 65L10 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, J. Appl. Math. Comput. 38, No. 1--2, 41--61 (2012; Zbl 1295.65063) Full Text: DOI OpenURL
Argyros, Ioannis K.; Hilout, Saïd Improved generalized differentiability conditions for Newton-like methods. (English) Zbl 1196.65100 J. Complexity 26, No. 3, 316-333 (2010). Reviewer: Erwin Schechter (Moers) MSC: 65J15 65L10 65R20 34B15 45G10 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, J. Complexity 26, No. 3, 316--333 (2010; Zbl 1196.65100) Full Text: DOI OpenURL
Argyros, Ioannis K.; Hilout, Saïd Extending the Newton-Kantorovich hypothesis for solving equations. (English) Zbl 1195.65075 J. Comput. Appl. Math. 234, No. 10, 2993-3006 (2010). Reviewer: Erwin Schechter (Moers) MSC: 65J15 65L10 65R20 47J25 34B15 45G10 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, J. Comput. Appl. Math. 234, No. 10, 2993--3006 (2010; Zbl 1195.65075) Full Text: DOI OpenURL
Ioakimidis, N. I.; Theocaris, P. S. Numerical determination of a class of generalized stress intensity factors. (English) Zbl 0402.65069 Int. J. Numer. Methods Eng. 14, 949-959 (1979). MSC: 65R20 45E05 PDF BibTeX XML Cite \textit{N. I. Ioakimidis} and \textit{P. S. Theocaris}, Int. J. Numer. Methods Eng. 14, 949--959 (1979; Zbl 0402.65069) Full Text: DOI OpenURL