×

Numerical solution of the coupled viscous Burgers equations by Chebyshev-Legendre pseudo-spectral method. (English) Zbl 1336.65177

Summary: In this paper, we consider Chebyshev-Legendre Pseudo-Spectral (CLPS) method for solving coupled viscous Burgers (VB) equations. A leapfrog scheme is used in time direction, while CLPS method is used for space direction. Chebyshev-Gauss-Lobatto (CGL) nodes are used for practical computation. The error estimates of semi-discrete and fully-discrete of CLPS method for coupled VB equations are obtained by energy estimation method. The numerical results of the present method are compared with the exact solution for two test problems.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Esipov, S. E., Coupled Burgers’ equations: a model of polydispersive sedimentation, Phys. Rev. E., 52, 3711-3718 (1995)
[2] La Bryer, A.; Attar, P. J.; Vedula, P., Optimal spatiotemporal reduced order modeling of the viscous Burgers’ equation, Finite Elem. Anal. Des., 79, 40-52 (2014)
[3] Huilin, L.; Chang Feng, M., A new lattice Boltzmann model for solving the coupled viscous Burgers equation, Physica A: Stat. Mech. Appl., 395, 445-457 (2014) · Zbl 1395.76070
[4] Hossein, A., An analytical approximation for coupled viscous Burgers equation, Appl. Math. Model., 37, 8, 5979-5983 (2013) · Zbl 1283.35106
[5] Mittal, R. C.; Arora, G., Numerical solution of the coupled viscous Burgers equation, Commun. Nonlinear Sci. Numer. Simul., 16, 3, 1304-1313 (2011) · Zbl 1221.65264
[6] Ismail, K.; Ibrahim, S., A numerical approach to an optimal boundary control of the viscous Burgers equation, Appl. Math. Comput., 210, 126-135 (2009) · Zbl 1162.65037
[7] Jerez, S., A nonstandard difference-integral method for the viscous Burgers equation, Appl. Math. Comput., 200, 378-386 (2008) · Zbl 1143.65069
[8] Horsin, T., Local exact Lagrangian controllability of the Burgers’ viscous equation, Ann. Inst. H. Poincare (C) Non Linear Anal., 25, 219-230 (2008) · Zbl 1145.35330
[9] Nejib, S., Boundary and distributed control of the viscous Burgers’ equation, J. Comput. Appl. Math., 182, 91-104 (2005) · Zbl 1074.93023
[10] Louise Perkins, A.; Rodrigue, G., A domain decomposition method for solving a two-dimensional viscous Burger’s equation, Appl. Numer. Math., 6, 329-340 (1990) · Zbl 0691.76028
[11] Rashid, A.; Ismail, A. I.B., A Fourier Pseudospectral method for solving coupled viscous Burgers’ equations, Comput. Methods Appl. Math., 9, 4, 412-420 (2009) · Zbl 1183.35245
[12] Fakhar-Izadi, F.; Dehghan, M., An efficient pseudo-spectral Legendre-Galerkin method for solving a nonlinear partial integro-differential equation arising in population dynamics, Math. Methods Appl. Sci., 36, 1485-1511 (2013) · Zbl 1279.65143
[13] Shamsi, M.; Dehghan, M., Determination of a control function in three-dimensional parabolic equations by Legendre pseudospectral method, Numer. Methods Partial Differ. Equ., 28, 74-93 (2012) · Zbl 1252.65161
[14] Salehi, R.; Dehghan, M., The use of Legendre pseudospectral viscosity technique to solve a class of nonlinear dynamic Hamilton-Jacobi equations, Comput. Math. Appl., 63, 629-644 (2012) · Zbl 1238.65100
[15] Shakeri, F.; Dehghan, M., A hybrid Legendre tau method for the solution of a class of nonlinear wave equations with nonlinear dissipative terms, Numer. Methods Partial Differ. Equ., 27, 1055-1071 (2011) · Zbl 1226.65079
[16] Fakhar-Izadi, F.; Dehghan, M., The spectral methods for parabolic Volterra integro-differential equations, J. Comput. Appl. Math., 235, 4032-4046 (2011) · Zbl 1219.65161
[17] Dehghan, M.; Fakhar-Izadi, F., The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves, Math. Comput. Modell., 53, 1865-1877 (2011) · Zbl 1219.65106
[18] Dehghan, M.; Taleei, A., A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrodinger equations, Comput. Phys. Commun., 182, 2519-2529 (2011) · Zbl 1261.65103
[19] Dehghan, M.; Saray, B. N.; Lakestani, M., Mixed finite difference and Galerkin methods for solving Burgers equations using interpolating scaling functions, Math. Methods Appl. Sci., 7, 894-912 (2014) · Zbl 1417.37271
[20] Dehghan, M.; Taleei, A., Numerical solution of nonlinear Schrodinger equation by using time-space pseudo-spectral method, Numer. Methods Partial Differ. Equ., 26, 979-992 (2010) · Zbl 1195.65137
[21] Eslahchi, M. R.; Dehghan, M.; Ahmadi-Asl, S., The general Jacobi matrix method for solving some nonlinear ordinary differential equations, Appl. Math. Modell., 36, 3387-3398 (2012) · Zbl 1252.65121
[22] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods (Fundamental in Single Domains) (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1093.76002
[23] Quarteroni, A.; Valli, A., Numerical approximation of partial differential equations, Springer Series in Comput. Math. (1997), Springer-Verlag
[24] Kaya, D., An explicit solution of coupled viscous Burgers equation by the decomposition method, IJMMS, 27, 11, 675-680 (2001) · Zbl 0997.35077
[25] Khater, A. H.; Temsah, R. S.; Hassan, M. M., A Chebyshev spectral collocation method for solving Burgers’-type equations, J. Comput. Appl. Math., 222, 2, 333-350 (2008) · Zbl 1153.65102
[26] Soliman, A. A., The modified extended tanh-function method for solving Burgers’-type equations, Physica A, 361, 394-404 (2006)
[27] Zhang, F.; Xinmin, X., Pseudospectral method for a class of system of LS wave interaction, Numer. Math. (J. Chin. Univ.), 17, 199-214 (1990) · Zbl 0739.65087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.