Hashemi, M. S.; Haji-Badali, A.; Alizadeh, F.; Inc, Mustafa Classical and non-classical Lie symmetry analysis, conservation laws and exact solutions of the time-fractional Chen-Lee-Liu equation. (English) Zbl 07671194 Comput. Appl. Math. 42, No. 2, Paper No. 73, 21 p. (2023). MSC: 22E70 76M60 35L65 70S10 PDF BibTeX XML Cite \textit{M. S. Hashemi} et al., Comput. Appl. Math. 42, No. 2, Paper No. 73, 21 p. (2023; Zbl 07671194) Full Text: DOI OpenURL
Alrashed, Reyouf; Djob, Roger Bertin; Alshaery, A. A.; Alkhateeb, Sadah A.; Nuruddeen, R. I. Collective variables approach to the vector-coupled system of Chen-Lee-Liu equation. (English) Zbl 1504.65167 Chaos Solitons Fractals 161, Article ID 112315, 12 p. (2022). MSC: 65M06 65M50 PDF BibTeX XML Cite \textit{R. Alrashed} et al., Chaos Solitons Fractals 161, Article ID 112315, 12 p. (2022; Zbl 1504.65167) Full Text: DOI OpenURL
Zhang, Xu; Chen, Guanrong Boundedness of the complex Chen system. (English) Zbl 1508.34032 Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5673-5700 (2022). MSC: 34C11 34A34 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{G. Chen}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5673--5700 (2022; Zbl 1508.34032) Full Text: DOI OpenURL
Lu, Xiaoting; Liu, Yongjian; Liu, Aimin; Feng, Chunsheng New geometric viewpoints to Chen chaotic system. (English) Zbl 1499.34097 Miskolc Math. Notes 23, No. 1, 339-362 (2022). MSC: 34A26 34A34 34C37 34C28 34C14 PDF BibTeX XML Cite \textit{X. Lu} et al., Miskolc Math. Notes 23, No. 1, 339--362 (2022; Zbl 1499.34097) Full Text: DOI OpenURL
Rohila, Rajni; Mittal, R. C. Analysis of chaotic behavior of three-dimensional dynamical systems by a \(B\)-spline differential quadrature algorithm. (English) Zbl 07539588 Asian-Eur. J. Math. 15, No. 4, Article ID 2250077, 31 p. (2022). MSC: 65Pxx 37Dxx 65Lxx PDF BibTeX XML Cite \textit{R. Rohila} and \textit{R. C. Mittal}, Asian-Eur. J. Math. 15, No. 4, Article ID 2250077, 31 p. (2022; Zbl 07539588) Full Text: DOI OpenURL
Adiyaman, Meltem High order approach for solving chaotic and hyperchaotic problems. (English) Zbl 1499.65270 Hacet. J. Math. Stat. 51, No. 1, 27-47 (2022). MSC: 65L05 65L70 65P20 37M05 PDF BibTeX XML Cite \textit{M. Adiyaman}, Hacet. J. Math. Stat. 51, No. 1, 27--47 (2022; Zbl 1499.65270) Full Text: DOI OpenURL
Datta, Madhurima; Gupta, Nitin Usual stochastic ordering results for series and parallel systems with components having exponentiated Chen distribution. (English) Zbl 1497.60021 Chadli, Ouayl (ed.) et al., Mathematical analysis and applications, MAA 2020. Selected papers based on the presentations at the conference, Jamshedpur, India, November 2–4, 2020. Singapore: Springer. Springer Proc. Math. Stat. 381, 305-322 (2021). MSC: 60E15 PDF BibTeX XML Cite \textit{M. Datta} and \textit{N. Gupta}, Springer Proc. Math. Stat. 381, 305--322 (2021; Zbl 1497.60021) Full Text: DOI arXiv OpenURL
Zhan, Qingyi; Zhang, Zhifang; Li, Yuhong Numerical implementation of finite-time shadowing of stochastic differential equations. (English) Zbl 1487.37101 Indian J. Pure Appl. Math. 52, No. 4, 945-960 (2021). MSC: 37M99 37C50 65C30 PDF BibTeX XML Cite \textit{Q. Zhan} et al., Indian J. Pure Appl. Math. 52, No. 4, 945--960 (2021; Zbl 1487.37101) Full Text: DOI OpenURL
Ma, Suqi Two-dimensional manifolds of controlled Chen system. (English) Zbl 1467.93151 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2150122, 4 p. (2021). MSC: 93C15 34C37 34C25 PDF BibTeX XML Cite \textit{S. Ma}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2150122, 4 p. (2021; Zbl 1467.93151) Full Text: DOI OpenURL
Vijayalakshmi, Palanisamy; Jiang, Zhiheng; Wang, Xiong Lagrangian formulation of Lorenz and Chen systems. (English) Zbl 1464.37057 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150055, 7 p. (2021). MSC: 37J06 34A08 26A33 PDF BibTeX XML Cite \textit{P. Vijayalakshmi} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150055, 7 p. (2021; Zbl 1464.37057) Full Text: DOI OpenURL
Yin, Chuntao Chaos detection of the Chen system with Caputo-Hadamard fractional derivative. (English) Zbl 1464.34065 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021). MSC: 34C28 34A34 34A08 34D08 37D45 PDF BibTeX XML Cite \textit{C. Yin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021; Zbl 1464.34065) Full Text: DOI OpenURL
Zhan, Qingyi; Zhang, Zhifang; Li, Yuhong Numerical implementation of finite-time shadowing of stochastic differential equations. (English) Zbl 1467.65005 Indian J. Pure Appl. Math. 51, No. 4, 1939-1957 (2020). MSC: 65C30 60H10 PDF BibTeX XML Cite \textit{Q. Zhan} et al., Indian J. Pure Appl. Math. 51, No. 4, 1939--1957 (2020; Zbl 1467.65005) Full Text: DOI OpenURL
Gray, W. Steven; Venkatesh, G. S.; Duffaut Espinosa, Luis A. Nonlinear system identification for multivariable control via discrete-time Chen-Fliess series. (English) Zbl 1453.93061 Automatica 119, Article ID 109085, 8 p. (2020). Reviewer: Denis Sidorov (Irkutsk) MSC: 93B30 93C35 93C40 93C10 PDF BibTeX XML Cite \textit{W. S. Gray} et al., Automatica 119, Article ID 109085, 8 p. (2020; Zbl 1453.93061) Full Text: DOI OpenURL
Yu, Fei; Qian, Shuai; Chen, Xi; Huang, Yuanyuan; Liu, Li; Shi, Changqiong; Cai, Shuo; Song, Yun; Wang, Chunhua A new 4D four-wing memristive hyperchaotic system: dynamical analysis, electronic circuit design, shape synchronization and secure communication. (English) Zbl 1450.37094 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050147, 20 p. (2020). MSC: 37N35 94C05 PDF BibTeX XML Cite \textit{F. Yu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050147, 20 p. (2020; Zbl 1450.37094) Full Text: DOI OpenURL
Marwan, Muhammad; Mehboob, Memoona; Ahmad, Salman; Aqeel, Muhammad Hopf bifurcation of forced Chen system and its stability via adaptive control with arbitrary parameters. (English) Zbl 1446.37098 Soft Comput. 24, No. 6, 4333-4341 (2020). MSC: 37N35 37D45 93C40 70K50 70K55 PDF BibTeX XML Cite \textit{M. Marwan} et al., Soft Comput. 24, No. 6, 4333--4341 (2020; Zbl 1446.37098) Full Text: DOI OpenURL
Zeng, Caibin; Lin, Xiaofang; Huang, Jianhua; Yang, Qigui Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise. (English) Zbl 1440.60057 Commun. Pure Appl. Anal. 19, No. 2, 811-834 (2020). Reviewer: Xiaohu Wang (Chengdu) MSC: 60H15 37H10 37K60 60G22 PDF BibTeX XML Cite \textit{C. Zeng} et al., Commun. Pure Appl. Anal. 19, No. 2, 811--834 (2020; Zbl 1440.60057) Full Text: DOI OpenURL
Khan, Mubashar; Rasheed, Amer Permutation-based special linear transforms with application in quantum image encryption algorithm. (English) Zbl 1508.81477 Quantum Inf. Process. 18, No. 10, Paper No. 298, 21 p. (2019). MSC: 81P68 81P94 PDF BibTeX XML Cite \textit{M. Khan} and \textit{A. Rasheed}, Quantum Inf. Process. 18, No. 10, Paper No. 298, 21 p. (2019; Zbl 1508.81477) Full Text: DOI OpenURL
Čermák, Jan; Nechvátal, Luděk Stability and chaos in the fractional Chen system. (English) Zbl 1448.34087 Chaos Solitons Fractals 125, 24-33 (2019). MSC: 34C28 34A08 34C60 37G10 37G35 37M05 37D45 PDF BibTeX XML Cite \textit{J. Čermák} and \textit{L. Nechvátal}, Chaos Solitons Fractals 125, 24--33 (2019; Zbl 1448.34087) Full Text: DOI OpenURL
Li, Dekui Partial states linearized synchronization of the single parameter Chen system. (Chinese. English summary) Zbl 1449.34185 J. Math., Wuhan Univ. 39, No. 4, 601-608 (2019). MSC: 34D06 34C28 93B18 34H10 PDF BibTeX XML Cite \textit{D. Li}, J. Math., Wuhan Univ. 39, No. 4, 601--608 (2019; Zbl 1449.34185) Full Text: DOI OpenURL
Huang, Qiujian; Liu, Aimin; Liu, Yongjian Jacobi stability analysis of the Chen system. (English) Zbl 1435.34022 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950139, 15 p. (2019). MSC: 34A34 34D99 34C14 34C05 34C28 PDF BibTeX XML Cite \textit{Q. Huang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950139, 15 p. (2019; Zbl 1435.34022) Full Text: DOI OpenURL
Seferi, Ylldrita; Markoski, Gjorgji; Gjurchinovski, Aleksandar Comparison of different numerical methods for fractional differential equations. (English) Zbl 1467.65071 Mat. Bilt. 42, No. 2, 61-74 (2018). MSC: 65L06 34A08 PDF BibTeX XML Cite \textit{Y. Seferi} et al., Mat. Bilt. 42, No. 2, 61--74 (2018; Zbl 1467.65071) Full Text: Link OpenURL
He, Hongjun; Cui, Yan; Sun, Guan Hopf bifurcation analysis of single time delay class Chen system. (Chinese. English summary) Zbl 1424.34242 Pure Appl. Math. 34, No. 3, 264-271 (2018). MSC: 34K18 34K20 34K13 PDF BibTeX XML Cite \textit{H. He} et al., Pure Appl. Math. 34, No. 3, 264--271 (2018; Zbl 1424.34242) Full Text: DOI OpenURL
Wen, Heping Dynamic characteristics and circuit simulation of Chen hyperchaotic system driven by sine wave. (Chinese. English summary) Zbl 1424.37055 J. Hefei Univ. Technol., Nat. Sci. 41, No. 8, 1046-1051 (2018). MSC: 37N99 94C05 37D45 37M05 PDF BibTeX XML Cite \textit{H. Wen}, J. Hefei Univ. Technol., Nat. Sci. 41, No. 8, 1046--1051 (2018; Zbl 1424.37055) Full Text: DOI OpenURL
Lei, Tengfei Dynamics analysis and circuit implementation of fractional-order Chen chaotic system with time-delay. (Chinese. English summary) Zbl 1424.37054 J. Qufu Norm. Univ., Nat. Sci. 44, No. 3, 59-65 (2018). MSC: 37N99 94C05 26A33 34K37 37D45 PDF BibTeX XML Cite \textit{T. Lei}, J. Qufu Norm. Univ., Nat. Sci. 44, No. 3, 59--65 (2018; Zbl 1424.37054) OpenURL
Zhang, Meng A new image encryption algorithm based on 3D chaotic system. (Chinese. English summary) Zbl 1424.68070 J. Inn. Mong. Norm. Univ., Nat. Sci. 47, No. 3, 241-244 (2018). MSC: 68P25 37D45 68U10 PDF BibTeX XML Cite \textit{M. Zhang}, J. Inn. Mong. Norm. Univ., Nat. Sci. 47, No. 3, 241--244 (2018; Zbl 1424.68070) Full Text: DOI OpenURL
Doungmo Goufo, Emile Franc Mathematical analysis of peculiar behavior by chaotic, fractional and strange multiwing attractors. (English) Zbl 1401.34008 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 10, Article ID 1850125, 14 p. (2018). MSC: 34A08 34A34 34C28 37D45 65L05 PDF BibTeX XML Cite \textit{E. F. Doungmo Goufo}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 10, Article ID 1850125, 14 p. (2018; Zbl 1401.34008) Full Text: DOI OpenURL
Yakubu, Gulibur Dauda Accurate multistep multi-derivative collocation methods applied to chaotic systems. (English) Zbl 1398.65154 J. Mod. Methods Numer. Math. 9, No. 1-2, 1-15 (2018). MSC: 65L04 65L05 65L06 PDF BibTeX XML Cite \textit{G. D. Yakubu}, J. Mod. Methods Numer. Math. 9, No. 1--2, 1--15 (2018; Zbl 1398.65154) OpenURL
Barboza, Ruy On Lorenz and Chen systems. (English) Zbl 1388.34012 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 1, Article ID 1850018, 8 p. (2018). MSC: 34A34 34C28 37D45 PDF BibTeX XML Cite \textit{R. Barboza}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 1, Article ID 1850018, 8 p. (2018; Zbl 1388.34012) Full Text: DOI OpenURL
Zhang, Xiaoyu; Li, Xiaodi; Han, Xiuping Design of hybrid controller for synchronization control of Chen chaotic system. (English) Zbl 1412.34222 J. Nonlinear Sci. Appl. 10, No. 6, 3320-3327 (2017). MSC: 34K35 34D06 34K34 PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Nonlinear Sci. Appl. 10, No. 6, 3320--3327 (2017; Zbl 1412.34222) Full Text: DOI OpenURL
Liao, Xiaoxin; Zhou, Guopeng; Yang, Qigui; Fu, Yuli; Chen, Guanrong Constructive proof of Lagrange stability and sufficient – necessary conditions of Lyapunov stability for Yang-Chen chaotic system. (English) Zbl 1411.34078 Appl. Math. Comput. 309, 205-221 (2017). MSC: 34D20 37C75 37D45 PDF BibTeX XML Cite \textit{X. Liao} et al., Appl. Math. Comput. 309, 205--221 (2017; Zbl 1411.34078) Full Text: DOI OpenURL
Leonov, G. A.; Andrievskiy, B. R.; Mokaev, R. N. Asymptotic behavior of solutions of Lorenz-like systems: analytical results and computer error structures. (English. Russian original) Zbl 1385.34014 Vestn. St. Petersbg. Univ., Math. 50, No. 1, 15-23 (2017); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 62, No. 1, 25-37 (2017). MSC: 34A34 34C28 37D45 34D08 34D05 34D23 34C45 PDF BibTeX XML Cite \textit{G. A. Leonov} et al., Vestn. St. Petersbg. Univ., Math. 50, No. 1, 15--23 (2017; Zbl 1385.34014); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 62, No. 1, 25--37 (2017) Full Text: DOI OpenURL
Yang, Zhihong; Zhang, Caixia; Qu, Shuanghui; Wang, Li The dynamic properties of the heterogeneous fractional order Chen system and its plural circuit implementation. (Chinese. English summary) Zbl 1389.37060 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 41, No. 2, 133-139 (2017). MSC: 37N99 37D45 94C05 34A08 PDF BibTeX XML Cite \textit{Z. Yang} et al., J. Jiangxi Norm. Univ., Nat. Sci. Ed. 41, No. 2, 133--139 (2017; Zbl 1389.37060) Full Text: DOI OpenURL
Liang, Xiyin; Qi, Guoyuan Mechanical analysis of Chen chaotic system. (English) Zbl 1372.37070 Chaos Solitons Fractals 98, 173-177 (2017). MSC: 37D45 34C28 70H05 PDF BibTeX XML Cite \textit{X. Liang} and \textit{G. Qi}, Chaos Solitons Fractals 98, 173--177 (2017; Zbl 1372.37070) Full Text: DOI OpenURL
Liu, Lixia; Guo, Rongwei Control problems of Chen-Lee system by adaptive control method. (English) Zbl 1371.93163 Nonlinear Dyn. 87, No. 1, 503-510 (2017). MSC: 93D15 93D21 93B52 93C40 93C10 37D45 34D06 PDF BibTeX XML Cite \textit{L. Liu} and \textit{R. Guo}, Nonlinear Dyn. 87, No. 1, 503--510 (2017; Zbl 1371.93163) Full Text: DOI OpenURL
Gray, W. Steven; Duffaut Espinosa, Luis A.; Ebrahimi-Fard, Kurusch Discrete-time approximations of Fliess operators. (English) Zbl 1369.93245 Numer. Math. 137, No. 1, 35-62 (2017). MSC: 93C10 93C55 93C15 93B17 65L70 93B40 PDF BibTeX XML Cite \textit{W. S. Gray} et al., Numer. Math. 137, No. 1, 35--62 (2017; Zbl 1369.93245) Full Text: DOI arXiv OpenURL
Torrisi, Giovanni Luca Poisson approximation of point processes with stochastic intensity, and application to nonlinear Hawkes processes. (English. French summary) Zbl 1367.60020 Ann. Inst. Henri Poincaré, Probab. Stat. 53, No. 2, 679-700 (2017). MSC: 60F05 60G55 60H05 60H07 60K25 PDF BibTeX XML Cite \textit{G. L. Torrisi}, Ann. Inst. Henri Poincaré, Probab. Stat. 53, No. 2, 679--700 (2017; Zbl 1367.60020) Full Text: DOI Euclid OpenURL
Cang, Shijian; Wu, Aiguo; Wang, Zenghui; Chen, Zengqiang Distinguishing Lorenz and Chen systems based upon Hamiltonian energy theory. (English) Zbl 1362.34022 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 2, Article ID 1750024, 12 p. (2017). MSC: 34A34 34C28 37J99 PDF BibTeX XML Cite \textit{S. Cang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 2, Article ID 1750024, 12 p. (2017; Zbl 1362.34022) Full Text: DOI OpenURL
Zhang, Fuchen; Liao, Xiaofeng; Mu, Chunlai; Zhang, Guangyun; Chen, Yi-An On global boundedness of the Chen system. (English) Zbl 1362.65137 Discrete Contin. Dyn. Syst., Ser. B 22, No. 4, 1673-1681 (2017). MSC: 65P20 37D45 37C70 65P30 65P40 PDF BibTeX XML Cite \textit{F. Zhang} et al., Discrete Contin. Dyn. Syst., Ser. B 22, No. 4, 1673--1681 (2017; Zbl 1362.65137) Full Text: DOI OpenURL
Das, Saptarshi; Pan, Indranil; Das, Shantanu Effect of random parameter switching on commensurate fractional order chaotic systems. (English) Zbl 1372.34113 Chaos Solitons Fractals 91, 157-173 (2016). MSC: 34K23 34K37 37H10 65P20 PDF BibTeX XML Cite \textit{S. Das} et al., Chaos Solitons Fractals 91, 157--173 (2016; Zbl 1372.34113) Full Text: DOI arXiv Link OpenURL
Lozi, René; Pogonin, Vasiliy A.; Pchelintsev, Alexander N. A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities. (English) Zbl 1372.34089 Chaos Solitons Fractals 91, 108-114 (2016). MSC: 34D45 65P20 37D45 65L05 65L70 PDF BibTeX XML Cite \textit{R. Lozi} et al., Chaos Solitons Fractals 91, 108--114 (2016; Zbl 1372.34089) Full Text: DOI HAL OpenURL
Oumate, A. A.; Zourmba, K.; Gambo, B.; Mohamadou, A. Synchronization of the fractional-order Chen system and its circuit implementation. (English) Zbl 1365.34018 Far East J. Dyn. Syst. 28, No. 3, 205-220 (2016). MSC: 34A08 34C28 34D06 93C40 94C05 34A34 34H10 PDF BibTeX XML Cite \textit{A. A. Oumate} et al., Far East J. Dyn. Syst. 28, No. 3, 205--220 (2016; Zbl 1365.34018) Full Text: DOI Link OpenURL
Oliveira, Regilene; Valls, Claudia Global dynamical aspects of a generalized Chen-Wang differential system. (English) Zbl 1354.34074 Nonlinear Dyn. 84, No. 3, 1497-1516 (2016). MSC: 34C28 34C05 34A34 34C25 34C23 37D45 PDF BibTeX XML Cite \textit{R. Oliveira} and \textit{C. Valls}, Nonlinear Dyn. 84, No. 3, 1497--1516 (2016; Zbl 1354.34074) Full Text: DOI OpenURL
Leonov, G. A. Necessary and sufficient conditions of the existence of homoclinic trajectories and cascade of bifurcations in Lorenz-like systems: birth of strange attractor and 9 homoclinic bifurcations. (English) Zbl 1354.37033 Nonlinear Dyn. 84, No. 2, 1055-1062 (2016). MSC: 37C29 34C37 37D45 37G10 PDF BibTeX XML Cite \textit{G. A. Leonov}, Nonlinear Dyn. 84, No. 2, 1055--1062 (2016; Zbl 1354.37033) Full Text: DOI OpenURL
Xu, Fei A class of integer order and fractional order hyperchaotic systems via the Chen system. (English) Zbl 1343.34103 Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 6, Article ID 1650109, 32 p. (2016). MSC: 34C28 34A34 34A08 PDF BibTeX XML Cite \textit{F. Xu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 6, Article ID 1650109, 32 p. (2016; Zbl 1343.34103) Full Text: DOI OpenURL
Rosalie, Martin Templates of two foliated attractors – Lorenz and Chen systems. (English) Zbl 1334.37033 Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 2, Article ID 1650037, 11 p. (2016). MSC: 37D45 34A34 34C28 37C70 PDF BibTeX XML Cite \textit{M. Rosalie}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 2, Article ID 1650037, 11 p. (2016; Zbl 1334.37033) Full Text: DOI OpenURL
Duffaut Espinosa, Luis A.; Ebrahimi-Fard, Kurusch; Gray, W. Steven A combinatorial Hopf algebra for nonlinear output feedback control systems. (English) Zbl 1341.93020 J. Algebra 453, 609-643 (2016). MSC: 93B25 93B52 16T30 PDF BibTeX XML Cite \textit{L. A. Duffaut Espinosa} et al., J. Algebra 453, 609--643 (2016; Zbl 1341.93020) Full Text: DOI arXiv OpenURL
Wang, Zhiqiang; Wang, Shuling; Liang, Song; Wu, Ranchao Chaos in the fractional Chen-like system and its control. (Chinese. English summary) Zbl 1349.37040 Math. Pract. Theory 45, No. 9, 250-258 (2015). MSC: 37D45 34D20 34H10 PDF BibTeX XML Cite \textit{Z. Wang} et al., Math. Pract. Theory 45, No. 9, 250--258 (2015; Zbl 1349.37040) OpenURL
Feng, Yingling; Wang, Jianhong; Zhou, Zhi; Lv, Xiaoguo A predictor-corrector approach with controller for the fractional order used in Chen chaotic system. (Chinese. English summary) Zbl 1349.37025 Math. Pract. Theory 45, No. 23, 255-259 (2015). MSC: 37D45 34A08 34H10 PDF BibTeX XML Cite \textit{Y. Feng} et al., Math. Pract. Theory 45, No. 23, 255--259 (2015; Zbl 1349.37025) OpenURL
Leonov, G. A.; Kuznetsov, N. V. On differences and similarities in the analysis of Lorenz, Chen, and Lu systems. (English) Zbl 1338.37046 Appl. Math. Comput. 256, 334-343 (2015). MSC: 37D45 PDF BibTeX XML Cite \textit{G. A. Leonov} and \textit{N. V. Kuznetsov}, Appl. Math. Comput. 256, 334--343 (2015; Zbl 1338.37046) Full Text: DOI arXiv OpenURL
Ebrahimi-Fard, Kurusch; Malham, Simon J. A.; Patras, Frédéric; Wiese, Anke Flows and stochastic Taylor series in Itô calculus. (English) Zbl 1416.60058 J. Phys. A, Math. Theor. 48, No. 49, Article ID 495202, 17 p. (2015). MSC: 60H05 60H10 PDF BibTeX XML Cite \textit{K. Ebrahimi-Fard} et al., J. Phys. A, Math. Theor. 48, No. 49, Article ID 495202, 17 p. (2015; Zbl 1416.60058) Full Text: DOI arXiv OpenURL
Maza, Susanna Periodic orbits in hyperchaotic Chen systems. (English) Zbl 1342.37055 Electron. J. Differ. Equ. 2015, Paper No. 224, 6 p. (2015). MSC: 37G15 37G10 34C28 34C25 34C29 PDF BibTeX XML Cite \textit{S. Maza}, Electron. J. Differ. Equ. 2015, Paper No. 224, 6 p. (2015; Zbl 1342.37055) Full Text: arXiv EMIS OpenURL
Alomari, A. K. A novel solution for fractional chaotic Chen system. (English) Zbl 1326.65101 J. Nonlinear Sci. Appl. 8, No. 5, 478-488 (2015). MSC: 65L99 34A08 34H10 PDF BibTeX XML Cite \textit{A. K. Alomari}, J. Nonlinear Sci. Appl. 8, No. 5, 478--488 (2015; Zbl 1326.65101) Full Text: DOI Link OpenURL
Llibre, Jaume; Rodrigues, Ana On the dynamics of the unified chaotic system between Lorenz and Chen systems. (English) Zbl 1325.34017 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 9, Article ID 1550122, 9 p. (2015). MSC: 34A34 34C23 34C05 34C45 34C28 PDF BibTeX XML Cite \textit{J. Llibre} and \textit{A. Rodrigues}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 9, Article ID 1550122, 9 p. (2015; Zbl 1325.34017) OpenURL
Dai, Yunxian; Lin, Yiping; Yang, Wenjie; Zhao, Huitao Rank one chaos in periodically-kicked time-delayed Chen system. (English) Zbl 1321.34095 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 8, Article ID 1550097, 15 p. (2015). MSC: 34K23 34K19 34K18 34K25 PDF BibTeX XML Cite \textit{Y. Dai} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 8, Article ID 1550097, 15 p. (2015; Zbl 1321.34095) OpenURL
Algaba, Antonio; Domínguez-Moreno, María C.; Merino, Manuel; Rodríguez-Luis, Alejandro J. Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems. (English) Zbl 1345.34069 Nonlinear Dyn. 79, No. 2, 885-902 (2015). MSC: 34C23 37G10 34C28 34C05 37D45 PDF BibTeX XML Cite \textit{A. Algaba} et al., Nonlinear Dyn. 79, No. 2, 885--902 (2015; Zbl 1345.34069) Full Text: DOI OpenURL
Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comments on: “Invariant algebraic surfaces of the generalized Lorenz system”. (English) Zbl 1323.34019 Z. Angew. Math. Phys. 66, No. 3, 1295-1297 (2015). MSC: 34A34 34C05 34C45 PDF BibTeX XML Cite \textit{A. Algaba} et al., Z. Angew. Math. Phys. 66, No. 3, 1295--1297 (2015; Zbl 1323.34019) Full Text: DOI OpenURL
Karmokar, Pintu; Islam, Nurul The generalized synchronization of bidirectionally coupled Qi-Chen systems via linear transformation. (English) Zbl 1314.34118 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 85, No. 1, 137-141 (2015). MSC: 34D06 34C28 PDF BibTeX XML Cite \textit{P. Karmokar} and \textit{N. Islam}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 85, No. 1, 137--141 (2015; Zbl 1314.34118) Full Text: DOI OpenURL
Zhang, Leo Yu; Hu, Xiaobo; Liu, Yuansheng; Wong, Kwok-Wo; Gan, Jie A chaotic image encryption scheme owning temp-value feedback. (English) Zbl 1470.94100 Commun. Nonlinear Sci. Numer. Simul. 19, No. 10, 3653-3659 (2014). MSC: 94A60 93B52 PDF BibTeX XML Cite \textit{L. Y. Zhang} et al., Commun. Nonlinear Sci. Numer. Simul. 19, No. 10, 3653--3659 (2014; Zbl 1470.94100) Full Text: DOI arXiv OpenURL
Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comment on “Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems”. (English) Zbl 1335.37011 Appl. Math. Comput. 244, 49-56 (2014). MSC: 37D45 34C28 34C37 PDF BibTeX XML Cite \textit{A. Algaba} et al., Appl. Math. Comput. 244, 49--56 (2014; Zbl 1335.37011) Full Text: DOI OpenURL
Wang, Xiong; Chen, Guanrong Generating Lorenz-like and Chen-like attractors from a simple algebraic structure. (English) Zbl 1342.37038 Sci. China, Inf. Sci. 57, No. 7, Article ID 072201, 7 p. (2014). MSC: 37D45 34C28 34C14 PDF BibTeX XML Cite \textit{X. Wang} and \textit{G. Chen}, Sci. China, Inf. Sci. 57, No. 7, Article ID 072201, 7 p. (2014; Zbl 1342.37038) Full Text: DOI Link OpenURL
Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comments on “Dynamics of the general Lorenz family” by Y. Liu and W. Pang. (English) Zbl 1319.37011 Nonlinear Dyn. 76, No. 1, 887-891 (2014). MSC: 37C10 37C29 37D10 PDF BibTeX XML Cite \textit{A. Algaba} et al., Nonlinear Dyn. 76, No. 1, 887--891 (2014; Zbl 1319.37011) Full Text: DOI OpenURL
Fan, Tao; Chen, Chang-Zhong; Ren, Xiao-Hong; He, Ping Adaptive synchronization of delayed chen chaotic system. (English) Zbl 1316.70022 Discontin. Nonlinearity Complex. 3, No. 4, 367-378 (2014). MSC: 70K55 93C40 34D06 34C28 PDF BibTeX XML Cite \textit{T. Fan} et al., Discontin. Nonlinearity Complex. 3, No. 4, 367--378 (2014; Zbl 1316.70022) Full Text: DOI OpenURL
Yu, Yue; Zhang, Chun; Bi, Qinsheng Oscillated behavior and Lyapunov exponent calculation of nonlinear switching systems. (Chinese. English summary) Zbl 1324.93061 J. Jiangsu Univ., Nat. Sci. 35, No. 5, 611-615 (2014). MSC: 93C10 93C30 37D45 PDF BibTeX XML Cite \textit{Y. Yu} et al., J. Jiangsu Univ., Nat. Sci. 35, No. 5, 611--615 (2014; Zbl 1324.93061) Full Text: DOI OpenURL
Chairez, I. Multiple DNN identifier for uncertain nonlinear systems based on Takagi-Sugeno inference. (English) Zbl 1315.93047 Fuzzy Sets Syst. 237, 118-135 (2014). MSC: 93C42 PDF BibTeX XML Cite \textit{I. Chairez}, Fuzzy Sets Syst. 237, 118--135 (2014; Zbl 1315.93047) Full Text: DOI OpenURL
Matouk, A. E.; Elsadany, A. A. Achieving synchronization between the fractional-order hyperchaotic novel and Chen systems via a new nonlinear control technique. (English) Zbl 1315.34013 Appl. Math. Lett. 29, 30-35 (2014). MSC: 34A08 34D06 34A34 34C28 34D20 93C10 PDF BibTeX XML Cite \textit{A. E. Matouk} and \textit{A. A. Elsadany}, Appl. Math. Lett. 29, 30--35 (2014; Zbl 1315.34013) Full Text: DOI OpenURL
Nasrollahi, A.; Bigdeli, N. Extended Chen: a new class of chaotic fractional-order systems. (English) Zbl 1300.26004 Int. J. Gen. Syst. 43, No. 7-8, 880-896 (2014). MSC: 26A33 PDF BibTeX XML Cite \textit{A. Nasrollahi} and \textit{N. Bigdeli}, Int. J. Gen. Syst. 43, No. 7--8, 880--896 (2014; Zbl 1300.26004) Full Text: DOI OpenURL
Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comments on “The Chen system revisited”. (English) Zbl 1306.34020 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 21, No. 4-5, 275-280 (2014). MSC: 34A34 34C20 37D45 34C28 PDF BibTeX XML Cite \textit{A. Algaba} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 21, No. 4--5, 275--280 (2014; Zbl 1306.34020) Full Text: Link OpenURL
Sprott, J. C.; Wang, Xiong; Chen, Guanrong When two dual chaotic systems shake hands. (English) Zbl 1296.34115 Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 6, Article ID 1450086, 3 p. (2014). MSC: 34C28 34A34 PDF BibTeX XML Cite \textit{J. C. Sprott} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 6, Article ID 1450086, 3 p. (2014; Zbl 1296.34115) Full Text: DOI OpenURL
Xu, Fei Integer and fractional order multiwing chaotic attractors via the Chen system and the Lü system with switching controls. (English) Zbl 1296.34116 Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 3, Article ID 1450029, 22 p. (2014). MSC: 34C28 34D45 37D45 34A08 34A34 34H05 PDF BibTeX XML Cite \textit{F. Xu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 3, Article ID 1450029, 22 p. (2014; Zbl 1296.34116) Full Text: DOI OpenURL
Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. On Darboux polynomials and rational first integrals of the generalized Lorenz system. (English) Zbl 1302.34001 Bull. Sci. Math. 138, No. 3, 317-322 (2014). Reviewer: Jaume Giné (Lleida) MSC: 34A05 34A34 34C20 34C14 PDF BibTeX XML Cite \textit{A. Algaba} et al., Bull. Sci. Math. 138, No. 3, 317--322 (2014; Zbl 1302.34001) Full Text: DOI OpenURL
Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comments on “Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces”. (English) Zbl 1291.34080 Physica D 266, 80-82 (2014). MSC: 34C45 34C05 34C28 PDF BibTeX XML Cite \textit{A. Algaba} et al., Physica D 266, 80--82 (2014; Zbl 1291.34080) Full Text: DOI OpenURL
Algaba, Antonio; Fernández-Sánchez, Fernando; Merino, Manuel; Rodríguez-Luis, Alejandro J. Comment on ‘Šilnikov-type orbits of Lorenz-family systems’. (English) Zbl 1395.37020 Physica A 392, No. 19, 4252-4257 (2013). MSC: 37D45 37C29 PDF BibTeX XML Cite \textit{A. Algaba} et al., Physica A 392, No. 19, 4252--4257 (2013; Zbl 1395.37020) Full Text: DOI OpenURL
Zhao, Jiakun; Zhou, Di; Li, Yexin A new impulsive synchronization of Chen hyper-chaotic system and Lü hyper-chaotic system. (English) Zbl 1349.34215 J. Vib. Control 19, No. 12, 1773-1778 (2013). MSC: 34D06 93C40 93C10 PDF BibTeX XML Cite \textit{J. Zhao} et al., J. Vib. Control 19, No. 12, 1773--1778 (2013; Zbl 1349.34215) Full Text: DOI OpenURL
Zhou, Xiaobing; Jiang, Murong; Huang, Yaqun Combination synchronization of three identical or different nonlinear complex hyperchaotic systems. (English) Zbl 1339.37031 Entropy 15, No. 9, 3746-3761 (2013). MSC: 37D45 34D06 PDF BibTeX XML Cite \textit{X. Zhou} et al., Entropy 15, No. 9, 3746--3761 (2013; Zbl 1339.37031) Full Text: DOI OpenURL
Petrişor, Camelia; Pop, Camelia Some remarks about a metriplectic system arisen from the Chen-Lee’s system. (English) Zbl 1340.34048 Bul. Științ. Univ. Politeh. Timiș., Ser. Mat.-Fiz. 58(72), No. 2, 20-27 (2013). MSC: 34A34 34D06 PDF BibTeX XML Cite \textit{C. Petrişor} and \textit{C. Pop}, Bul. Științ. Univ. Politeh. Timiș., Ser. Mat.-Fiz. 58(72), No. 2, 20--27 (2013; Zbl 1340.34048) OpenURL
Kang, Ning; Kong, Xiangxing; Hou, Zhenting; Yan, Guojun The non-equivalence of two chaotic systems. (Chinese. English summary) Zbl 1299.37031 J. Syst. Sci. Math. Sci. 33, No. 9, 1113-1118 (2013). MSC: 37D45 37C15 PDF BibTeX XML Cite \textit{N. Kang} et al., J. Syst. Sci. Math. Sci. 33, No. 9, 1113--1118 (2013; Zbl 1299.37031) OpenURL
Chen, Yuming; Yang, Qigui The nonequivalence and dimension formula for attractors of Lorenz-type systems. (English) Zbl 1284.34058 Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 12, Article ID 1350200, 12 p. (2013). MSC: 34C28 34A34 37D45 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{Q. Yang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 12, Article ID 1350200, 12 p. (2013; Zbl 1284.34058) Full Text: DOI OpenURL
Markhasin, Lev Quasi-Monte Carlo methods for integration of functions with dominating mixed smoothness in arbitrary dimension. (English) Zbl 1286.65005 J. Complexity 29, No. 5, 370-388 (2013). MSC: 65C05 11K38 65D32 PDF BibTeX XML Cite \textit{L. Markhasin}, J. Complexity 29, No. 5, 370--388 (2013; Zbl 1286.65005) Full Text: DOI arXiv OpenURL
Sun, Junwei; Shen, Yi; Zhang, Guodong; Xu, Chengjie; Cui, Guangzhao Combination-combination synchronization among four identical or different chaotic systems. (English) Zbl 1281.34075 Nonlinear Dyn. 73, No. 3, 1211-1222 (2013). MSC: 34C28 34D06 PDF BibTeX XML Cite \textit{J. Sun} et al., Nonlinear Dyn. 73, No. 3, 1211--1222 (2013; Zbl 1281.34075) Full Text: DOI OpenURL
Markhasin, Lev Discrepancy and integration in function spaces with dominating mixed smoothness. (English) Zbl 1284.46030 Diss. Math. 494, 81 p. (2013). Reviewer: Hans Triebel (Jena) MSC: 46E35 11K06 11K38 42C10 65C05 PDF BibTeX XML Cite \textit{L. Markhasin}, Diss. Math. 494, 81 p. (2013; Zbl 1284.46030) Full Text: DOI arXiv OpenURL
Effati, S.; Nik, H. Saberi; Jajarmi, A. Hyperchaos control of the hyperchaotic Chen system by optimal control design. (English) Zbl 1281.34111 Nonlinear Dyn. 73, No. 1-2, 499-508 (2013). MSC: 34H10 34C28 93D30 93C40 PDF BibTeX XML Cite \textit{S. Effati} et al., Nonlinear Dyn. 73, No. 1--2, 499--508 (2013; Zbl 1281.34111) Full Text: DOI OpenURL
Chen, Guanrong The Chen system revisited. (English) Zbl 1279.93064 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 20, No. 6, 691-696 (2013). MSC: 93C15 34H10 PDF BibTeX XML Cite \textit{G. Chen}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 20, No. 6, 691--696 (2013; Zbl 1279.93064) Full Text: Link OpenURL
Wang, Xiong; Chen, Guanrong A gallery of Lorenz-like and Chen-like attractors. (English) Zbl 1270.34142 Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 4, Article ID 1330011, 20 p. (2013). MSC: 34C60 34D45 37D45 34C14 PDF BibTeX XML Cite \textit{X. Wang} and \textit{G. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 4, Article ID 1330011, 20 p. (2013; Zbl 1270.34142) Full Text: DOI OpenURL
Leonov, G. A. Shilnikov chaos in Lorenz-like systems. (English) Zbl 1270.34103 Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 3, Article ID 1350058, 10 p. (2013). MSC: 34C37 34C28 34D08 34C23 PDF BibTeX XML Cite \textit{G. A. Leonov}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, No. 3, Article ID 1350058, 10 p. (2013; Zbl 1270.34103) Full Text: DOI OpenURL
Leonov, G. A. Criteria for the existence of homoclinic orbits of systems Lu and Chen. (English. Russian original) Zbl 1278.34049 Dokl. Math. 87, No. 2, 220-223 (2013); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk, Vol. 449, No. 6, 635-638 (2013). Reviewer: Kwok-wai Chung (Hong Kong) MSC: 34C37 34A34 PDF BibTeX XML Cite \textit{G. A. Leonov}, Dokl. Math. 87, No. 2, 220--223 (2013; Zbl 1278.34049); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk, Vol. 449, No. 6, 635--638 (2013) Full Text: DOI OpenURL
Zhou, Wenhui; Chao, Xiuli Stein-Chen approximation and error bounds for order fill rates in assemble-to-order systems. (English) Zbl 1407.90123 Nav. Res. Logist. 59, No. 8, 643-655 (2012). MSC: 90B22 90B05 90B30 PDF BibTeX XML Cite \textit{W. Zhou} and \textit{X. Chao}, Nav. Res. Logist. 59, No. 8, 643--655 (2012; Zbl 1407.90123) Full Text: DOI Link OpenURL
Wang, Qinlong; Li, Jing; Huang, Wentao Existence of multiple limit cycles in Chen system. (English) Zbl 1320.34049 J. Appl. Anal. Comput. 2, No. 4, 441-447 (2012). MSC: 34C05 34C23 37G15 34A34 34C45 PDF BibTeX XML Cite \textit{Q. Wang} et al., J. Appl. Anal. Comput. 2, No. 4, 441--447 (2012; Zbl 1320.34049) OpenURL
Llibre, Jaume; Messias, Marcelo; Ricardo da Silva, Paulo Global dynamics in the Poincaré ball of the Chen system having invariant algebraic surfaces. (English) Zbl 1270.34130 Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 6, Article ID 1250154, 17 p. (2012). MSC: 34C60 34C37 34C45 34C05 PDF BibTeX XML Cite \textit{J. Llibre} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 6, Article ID 1250154, 17 p. (2012; Zbl 1270.34130) Full Text: DOI OpenURL
Liu, Xinzhi; Shen, Xuemin (Sherman); Zhang, Hongtao Multi-scroll chaotic and hyperchaotic attractors generated from Chen system. (English) Zbl 1270.34099 Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 2, Article ID 1250033, 15 p. (2012). MSC: 34C28 34D45 93B52 34C23 34D08 34K35 PDF BibTeX XML Cite \textit{X. Liu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 2, Article ID 1250033, 15 p. (2012; Zbl 1270.34099) Full Text: DOI OpenURL
Leonov, G. A. General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems. (English) Zbl 1266.34079 Phys. Lett., A 376, No. 45, 3045-3050 (2012). MSC: 34C37 37C29 PDF BibTeX XML Cite \textit{G. A. Leonov}, Phys. Lett., A 376, No. 45, 3045--3050 (2012; Zbl 1266.34079) Full Text: DOI OpenURL
Pan, Xiaoming; Li, Chuandong; Han, Qi Complete synchronization between Lorenz system and Chen system. (Chinese. English summary) Zbl 1274.93133 J. Guangxi Univ. Technol. 23, No. 3, 23-25, 44 (2012). MSC: 93C15 93C10 34D06 34H10 93D20 PDF BibTeX XML Cite \textit{X. Pan} et al., J. Guangxi Univ. Technol. 23, No. 3, 23--25, 44 (2012; Zbl 1274.93133) OpenURL
Jiang, Haibo; Zhang, Liping; Chen, Zhangyao; Bi, Qinsheng Non-smooth bifurcation analysis of the Chen system via impulsive force. (Chinese. English summary) Zbl 1274.37030 Acta Phys. Sin. 61, No. 8, 080505 (2012). MSC: 37G15 37D45 37G35 PDF BibTeX XML Cite \textit{H. Jiang} et al., Acta Phys. Sin. 61, No. 8, 080505 (2012; Zbl 1274.37030) OpenURL
Zhang, Guoshan; Niu, Hong Analysis and synchronization of a novel chaotic system based on Chen’s system. (Chinese. English summary) Zbl 1274.93130 Acta Phys. Sin. 61, No. 11, 110503 (2012). MSC: 93C10 34D06 34C28 34H10 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{H. Niu}, Acta Phys. Sin. 61, No. 11, 110503 (2012; Zbl 1274.93130) OpenURL
Dong, Pengzhen; Shang, Gang; Liu, Jie Anticipating synchronization of integer order and fractional order hyper-chaotic Chen system. (English) Zbl 1260.34079 Int. J. Mod. Phys. B 26, No. 32, Article ID 1250211, 15 p. (2012). MSC: 34C28 34D06 34B45 34A08 34D08 PDF BibTeX XML Cite \textit{P. Dong} et al., Int. J. Mod. Phys. B 26, No. 32, Article ID 1250211, 15 p. (2012; Zbl 1260.34079) Full Text: DOI OpenURL
Wang, Xiong; Chen, Juan; Lu, Jun-An; Chen, Guanrong A simple yet complex one-parameter family of generalized Lorenz-like systems. (English) Zbl 1258.34112 Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 5, Paper No. 1250116, 16 p. (2012). MSC: 34C60 34C28 34D45 34C23 PDF BibTeX XML Cite \textit{X. Wang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 5, Paper No. 1250116, 16 p. (2012; Zbl 1258.34112) Full Text: DOI arXiv OpenURL
Tang, Jianeng; Zou, Cairong; Wang, Shaoping; Zhao, Li; Liu, Pingxiang Chaos synchronization of Chen systems with time-varying delays. (English) Zbl 1258.34140 Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 8, Paper No. 1250183, 8 p. (2012). MSC: 34H10 34D06 34K25 34K60 34C28 PDF BibTeX XML Cite \textit{J. Tang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 8, Paper No. 1250183, 8 p. (2012; Zbl 1258.34140) Full Text: DOI OpenURL
Xu, Shu-Jiang; Chen, Xiu-Bo; Zhang, Ru; Yang, Yi-Xian; Guo, Yu-Cui An improved chaotic cryptosystem based on circular bit shift and XOR operations. (English) Zbl 1255.94070 Phys. Lett., A 376, No. 10-11, 1003-1010 (2012). MSC: 94A60 37D45 68P25 68U20 PDF BibTeX XML Cite \textit{S.-J. Xu} et al., Phys. Lett., A 376, No. 10--11, 1003--1010 (2012; Zbl 1255.94070) Full Text: DOI OpenURL
Gambino, G.; Choudhury, S. Roy; Chen, T. Modified post-bifurcation dynamics and routes to chaos from double-Hopf bifurcations in a hyperchaotic system. (English) Zbl 1254.37035 Nonlinear Dyn. 69, No. 3, 1439-1455 (2012). MSC: 37G15 34C23 37D45 PDF BibTeX XML Cite \textit{G. Gambino} et al., Nonlinear Dyn. 69, No. 3, 1439--1455 (2012; Zbl 1254.37035) Full Text: DOI OpenURL
Yüzbaşı, Şuayip A numerical scheme for solutions of the Chen system. (English) Zbl 1245.65091 Math. Methods Appl. Sci. 35, No. 8, 885-893 (2012). MSC: 65L05 34A34 34C28 65L60 PDF BibTeX XML Cite \textit{Ş. Yüzbaşı}, Math. Methods Appl. Sci. 35, No. 8, 885--893 (2012; Zbl 1245.65091) Full Text: DOI OpenURL
Wu, Xiang-Jun; Lu, Hong-Tao Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters. (English) Zbl 1268.93088 Chaos Solitons Fractals 44, No. 10, 802-810 (2011). MSC: 93C40 34C28 34D06 PDF BibTeX XML Cite \textit{X.-J. Wu} and \textit{H.-T. Lu}, Chaos Solitons Fractals 44, No. 10, 802--810 (2011; Zbl 1268.93088) Full Text: DOI Link OpenURL