Zhang, Weiqiang; Zhao, Peihao Existence, multiplicity and concentration of positive solutions for a fractional Choquard equation. (English) Zbl 07572903 Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 2, 470-490 (2022). MSC: 35A01 35A15 35A23 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{P. Zhao}, Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 2, 470--490 (2022; Zbl 07572903) Full Text: Link OpenURL
He, Xiaoming; Rădulescu, Vicenţiu D.; Zou, Wenming Normalized ground states for the critical fractional Choquard equation with a local perturbation. (English) Zbl 07565440 J. Geom. Anal. 32, No. 10, Paper No. 252, 51 p. (2022). MSC: 35R11 35A15 35B33 35J20 35J61 35Q55 46N50 81Q05 PDF BibTeX XML Cite \textit{X. He} et al., J. Geom. Anal. 32, No. 10, Paper No. 252, 51 p. (2022; Zbl 07565440) Full Text: DOI OpenURL
He, Rui Infinitely many solutions for the Brézis-Nirenberg problem with nonlinear Choquard equations. (English) Zbl 07562084 J. Math. Anal. Appl. 515, No. 2, Article ID 126426, 24 p. (2022). MSC: 35Jxx 35Bxx 35Qxx PDF BibTeX XML Cite \textit{R. He}, J. Math. Anal. Appl. 515, No. 2, Article ID 126426, 24 p. (2022; Zbl 07562084) Full Text: DOI OpenURL
Chen, Yongpeng; Yang, Zhipeng Existence and asymptotical behavior of multiple solutions for the critical Choquard equation. (English) Zbl 07560210 J. Geom. Anal. 32, No. 9, Paper No. 238, 34 p. (2022). MSC: 35B25 35B33 35B40 35J20 35J61 35R09 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{Z. Yang}, J. Geom. Anal. 32, No. 9, Paper No. 238, 34 p. (2022; Zbl 07560210) Full Text: DOI OpenURL
Zhang, Wen; Yuan, Shuai; Wen, Lixi Existence and concentration of ground-states for fractional Choquard equation with indefinite potential. (English) Zbl 07559935 Adv. Nonlinear Anal. 11, 1552-1578 (2022). MSC: 35R11 35A15 35B09 35B25 35J92 58E05 PDF BibTeX XML Cite \textit{W. Zhang} et al., Adv. Nonlinear Anal. 11, 1552--1578 (2022; Zbl 07559935) Full Text: DOI OpenURL
Yang, Xiaolong Existence of positive solution for the Choquard equation in exterior domain. (English) Zbl 07557628 Complex Var. Elliptic Equ. 67, No. 8, 2043-2059 (2022). MSC: 35Jxx 35A15 35J20 PDF BibTeX XML Cite \textit{X. Yang}, Complex Var. Elliptic Equ. 67, No. 8, 2043--2059 (2022; Zbl 07557628) Full Text: DOI OpenURL
Liu, Senli; Su, Yu; Wang, Sainan Ground state solution of Schrödinger-Poisson-Choquard equation: double critical case. (English) Zbl 07554619 Result. Math. 77, No. 4, Paper No. 156, 34 p. (2022). MSC: 35J60 35J20 PDF BibTeX XML Cite \textit{S. Liu} et al., Result. Math. 77, No. 4, Paper No. 156, 34 p. (2022; Zbl 07554619) Full Text: DOI OpenURL
Chergui, L. Well-posedness and blow-up of Virial type for some fractional inhomogeneous Choquard equations. (English) Zbl 07548878 Appl. Anal. 101, No. 8, 2966-2995 (2022). MSC: 35Q55 35B44 35A01 35A02 35A23 26A33 35R11 PDF BibTeX XML Cite \textit{L. Chergui}, Appl. Anal. 101, No. 8, 2966--2995 (2022; Zbl 07548878) Full Text: DOI OpenURL
Huang, Ling; Wang, Li; Feng, Shenghao Ground state solutions for fractional Schrödinger-Choquard-Kirchhoff type equations with critical growth. (English) Zbl 07548760 Complex Var. Elliptic Equ. 67, No. 7, 1624-1638 (2022). MSC: 35R11 35A15 35B33 35J62 PDF BibTeX XML Cite \textit{L. Huang} et al., Complex Var. Elliptic Equ. 67, No. 7, 1624--1638 (2022; Zbl 07548760) Full Text: DOI OpenURL
Liu, Zeng; Moroz, Vitaly Limit profiles for singularly perturbed Choquard equations with local repulsion. (English) Zbl 07547956 Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 160, 59 p. (2022). Reviewer: Rodica Luca (Iaşi) MSC: 35J61 35B09 35A01 35B65 35A15 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{V. Moroz}, Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 160, 59 p. (2022; Zbl 07547956) Full Text: DOI OpenURL
Yu, Mingzhu; Chen, Haibo Infinitely many non-radial positive solutions for Choquard equations. (English) Zbl 07545069 J. Math. Anal. Appl. 514, No. 2, Article ID 126332, 21 p. (2022). MSC: 35J61 35A01 PDF BibTeX XML Cite \textit{M. Yu} and \textit{H. Chen}, J. Math. Anal. Appl. 514, No. 2, Article ID 126332, 21 p. (2022; Zbl 07545069) Full Text: DOI OpenURL
Luo, Xiaorong; Mao, Anmin Sign-changing solutions to the critical Choquard equation. (English) Zbl 07540985 Appl. Math. Lett. 132, Article ID 108213, 8 p. (2022). MSC: 35J91 35J05 35J25 35A01 35A15 PDF BibTeX XML Cite \textit{X. Luo} and \textit{A. Mao}, Appl. Math. Lett. 132, Article ID 108213, 8 p. (2022; Zbl 07540985) Full Text: DOI OpenURL
Chen, Fulai; Liao, Fangfang; Geng, Shifeng Ground state solution for a class of Choquard equation with indefinite periodic potential. (English) Zbl 07540981 Appl. Math. Lett. 132, Article ID 108205, 8 p. (2022). MSC: 35J91 35J05 35A01 35A15 PDF BibTeX XML Cite \textit{F. Chen} et al., Appl. Math. Lett. 132, Article ID 108205, 8 p. (2022; Zbl 07540981) Full Text: DOI OpenURL
Wen, Lixi; Rădulescu, Vicenţiu D. Groundstates for magnetic Choquard equations with critical exponential growth. (English) Zbl 07540959 Appl. Math. Lett. 132, Article ID 108153, 8 p. (2022). Reviewer: Anouar Bahrouni (Monastir) MSC: 35J61 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{L. Wen} and \textit{V. D. Rădulescu}, Appl. Math. Lett. 132, Article ID 108153, 8 p. (2022; Zbl 07540959) Full Text: DOI OpenURL
Yuan, Shuai; Chen, Sitong Symmetric ground state solutions for the Choquard Logarithmic equation with exponential growth. (English) Zbl 07540950 Appl. Math. Lett. 132, Article ID 108135, 7 p. (2022). MSC: 34A08 34A34 58J50 PDF BibTeX XML Cite \textit{S. Yuan} and \textit{S. Chen}, Appl. Math. Lett. 132, Article ID 108135, 7 p. (2022; Zbl 07540950) Full Text: DOI OpenURL
Ledesma, César E. Torres Existence of positive solutions for a class of fractional Choquard equation in exterior domain. (English) Zbl 07535660 Discrete Contin. Dyn. Syst. 42, No. 7, 3301-3328 (2022). MSC: 35J61 35R11 35J67 35A01 35A15 PDF BibTeX XML Cite \textit{C. E. T. Ledesma}, Discrete Contin. Dyn. Syst. 42, No. 7, 3301--3328 (2022; Zbl 07535660) Full Text: DOI OpenURL
Shen, Liejun; Rădulescu, Vicenţiu D.; Yang, Minbo Planar Schrödinger-Choquard equations with potentials vanishing at infinity: the critical case. (English) Zbl 07531824 J. Differ. Equations 329, 206-254 (2022). MSC: 35J10 35J61 35A01 PDF BibTeX XML Cite \textit{L. Shen} et al., J. Differ. Equations 329, 206--254 (2022; Zbl 07531824) Full Text: DOI OpenURL
Zhao, Shunneng; Yu, Yuanyang Sign-changing solutions for a fractional Choquard equation with power nonlinearity. (English) Zbl 07531088 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112917, 18 p. (2022). MSC: 35R11 35A15 35J61 35R09 PDF BibTeX XML Cite \textit{S. Zhao} and \textit{Y. Yu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112917, 18 p. (2022; Zbl 07531088) Full Text: DOI OpenURL
Melgaard, M.; Zongo, F. D. Y. Solitary waves and excited states for Boson stars. (English) Zbl 07528663 Anal. Appl., Singap. 20, No. 2, 285-302 (2022). MSC: 35Q40 35Q75 35Q51 81Q80 83C20 85A15 35A01 35B38 PDF BibTeX XML Cite \textit{M. Melgaard} and \textit{F. D. Y. Zongo}, Anal. Appl., Singap. 20, No. 2, 285--302 (2022; Zbl 07528663) Full Text: DOI OpenURL
Deng, Shengbing; Luo, Wenshan On a Kirchhoff Choquard type equation with magnetic field involving exponential critical growth in \(\mathbb{R}^2\). (English) Zbl 07523656 Appl. Math. Lett. 131, Article ID 108030, 7 p. (2022). MSC: 35J62 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{S. Deng} and \textit{W. Luo}, Appl. Math. Lett. 131, Article ID 108030, 7 p. (2022; Zbl 07523656) Full Text: DOI OpenURL
Rani, Anu; Goyal, Sarika Multiple solutions for biharmonic critical Choquard equation involving sign-changing weight functions. (English) Zbl 07522891 Topol. Methods Nonlinear Anal. 59, No. 1, 221-260 (2022). MSC: 35J40 35J91 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{A. Rani} and \textit{S. Goyal}, Topol. Methods Nonlinear Anal. 59, No. 1, 221--260 (2022; Zbl 07522891) Full Text: DOI OpenURL
Su, Yu; Feng, Zhaosheng Ground state solutions for the fractional problems with dipole-type potential and critical exponent. (English) Zbl 1487.35051 Commun. Pure Appl. Anal. 21, No. 6, 1953-1968 (2022). MSC: 35B33 35R11 35J20 35J61 PDF BibTeX XML Cite \textit{Y. Su} and \textit{Z. Feng}, Commun. Pure Appl. Anal. 21, No. 6, 1953--1968 (2022; Zbl 1487.35051) Full Text: DOI OpenURL
Wang, Xiaoshan; Yang, Zuodong Symmetry and monotonicity of positive solutions for a Choquard equation with the fractional Laplacian. (English) Zbl 1487.35422 Complex Var. Elliptic Equ. 67, No. 5, 1211-1228 (2022). MSC: 35R11 35B06 35J20 35J25 35J61 35J70 PDF BibTeX XML Cite \textit{X. Wang} and \textit{Z. Yang}, Complex Var. Elliptic Equ. 67, No. 5, 1211--1228 (2022; Zbl 1487.35422) Full Text: DOI OpenURL
Li, Quanqing; Zhang, Jian; Wang, Wenbo; Teng, Kaimin Existence of nontrivial solutions for fractional Choquard equations with critical or supercritical growth. (English) Zbl 1486.35195 Appl. Anal. 101, No. 3, 849-857 (2022). MSC: 35J61 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{Q. Li} et al., Appl. Anal. 101, No. 3, 849--857 (2022; Zbl 1486.35195) Full Text: DOI OpenURL
Qin, Dongdong; Lai, Lizhen; Tang, Xianhua; Wu, Qingfang Existence and asymptotic behavior of ground states for Choquard-Pekar equations with Hardy potential and critical reaction. (English) Zbl 1485.35345 J. Geom. Anal. 32, No. 5, Paper No. 158, 44 p. (2022). Reviewer: Marius Ghergu (Dublin) MSC: 35Q55 35Q40 35J20 35J60 46N50 PDF BibTeX XML Cite \textit{D. Qin} et al., J. Geom. Anal. 32, No. 5, Paper No. 158, 44 p. (2022; Zbl 1485.35345) Full Text: DOI OpenURL
Li, Xinfu Standing waves to upper critical Choquard equation with a local perturbation: multiplicity, qualitative properties and stability. (English) Zbl 1485.35236 Adv. Nonlinear Anal. 11, 1134-1164 (2022). MSC: 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{X. Li}, Adv. Nonlinear Anal. 11, 1134--1164 (2022; Zbl 1485.35236) Full Text: DOI arXiv OpenURL
Gao, Fashun; Yang, Minbo Infinitely many non-radial solutions for a Choquard equation. (English) Zbl 1485.35232 Adv. Nonlinear Anal. 11, 1085-1096 (2022). MSC: 35J91 35J05 35A01 35A15 PDF BibTeX XML Cite \textit{F. Gao} and \textit{M. Yang}, Adv. Nonlinear Anal. 11, 1085--1096 (2022; Zbl 1485.35232) Full Text: DOI OpenURL
Cui, Ying-Xin; Xia, Jiankang Saddle solutions for the fractional Choquard equation. (English) Zbl 1485.35378 Z. Angew. Math. Phys. 73, No. 2, Paper No. 59, 25 p. (2022). MSC: 35R11 35A15 35J20 35J61 PDF BibTeX XML Cite \textit{Y.-X. Cui} and \textit{J. Xia}, Z. Angew. Math. Phys. 73, No. 2, Paper No. 59, 25 p. (2022; Zbl 1485.35378) Full Text: DOI arXiv OpenURL
Pan, Hui-Lan; Liu, Jiu; Tang, Chun-Lei Existence of a positive solution for a class of Choquard equation with upper critical exponent. (English) Zbl 1485.35239 Differ. Equ. Dyn. Syst. 30, No. 1, 51-59 (2022). MSC: 35J91 35B33 35A01 PDF BibTeX XML Cite \textit{H.-L. Pan} et al., Differ. Equ. Dyn. Syst. 30, No. 1, 51--59 (2022; Zbl 1485.35239) Full Text: DOI OpenURL
Cingolani, Silvia; Gallo, Marco; Tanaka, Kazunaga Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities. (English) Zbl 1485.35229 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 68, 34 p. (2022). MSC: 35J91 35J05 35A01 PDF BibTeX XML Cite \textit{S. Cingolani} et al., Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 68, 34 p. (2022; Zbl 1485.35229) Full Text: DOI OpenURL
Maia, Liliane; Pellacci, Benedetta; Schiera, Delia Symmetric positive solutions to nonlinear Choquard equations with potentials. (English) Zbl 1485.35238 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 61, 34 p. (2022). MSC: 35J91 35J15 35A01 PDF BibTeX XML Cite \textit{L. Maia} et al., Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 61, 34 p. (2022; Zbl 1485.35238) Full Text: DOI arXiv OpenURL
Yu, Shengbin; Chen, Jianqing Multiple and asymptotical behavior of solutions to a Choquard equation with singularity. (English) Zbl 1485.35207 J. Math. Anal. Appl. 511, No. 1, Article ID 126047, 18 p. (2022). MSC: 35J61 35A01 35A15 PDF BibTeX XML Cite \textit{S. Yu} and \textit{J. Chen}, J. Math. Anal. Appl. 511, No. 1, Article ID 126047, 18 p. (2022; Zbl 1485.35207) Full Text: DOI OpenURL
Liu, Senli; Yang, Jie; Chen, Haibo Infinitely many sign-changing solutions for Choquard equation with doubly critical exponents. (English) Zbl 1485.35203 Complex Var. Elliptic Equ. 67, No. 2, 315-337 (2022). MSC: 35J61 35A01 PDF BibTeX XML Cite \textit{S. Liu} et al., Complex Var. Elliptic Equ. 67, No. 2, 315--337 (2022; Zbl 1485.35203) Full Text: DOI OpenURL
Zhang, Youpei; Tang, Xianhua; Rădulescu, Vicenţiu D. High and low perturbations of Choquard equations with critical reaction and variable growth. (English) Zbl 07481828 Discrete Contin. Dyn. Syst. 42, No. 4, 1971-2003 (2022). MSC: 47G20 35B38 58E50 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Discrete Contin. Dyn. Syst. 42, No. 4, 1971--2003 (2022; Zbl 07481828) Full Text: DOI OpenURL
Bernini, Federico; Bieganowski, Bartosz; Secchi, Simone Semirelativistic Choquard equations with singular potentials and general nonlinearities arising from Hartree-Fock theory. (English) Zbl 1484.35344 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112738, 26 p. (2022). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q40 35A15 35B40 35J20 58E05 26A33 35R11 PDF BibTeX XML Cite \textit{F. Bernini} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112738, 26 p. (2022; Zbl 1484.35344) Full Text: DOI arXiv OpenURL
Saanouni, Tarek; Peng, Congming Scattering for a radial defocusing inhomogeneous Choquard equation. (English) Zbl 1483.35224 Acta Appl. Math. 177, Paper No. 6, 14 p. (2022). MSC: 35Q55 35Q40 35P25 PDF BibTeX XML Cite \textit{T. Saanouni} and \textit{C. Peng}, Acta Appl. Math. 177, Paper No. 6, 14 p. (2022; Zbl 1483.35224) Full Text: DOI OpenURL
Deng, Shengbing; Xiong, Sihui Existence of ground state solutions for fractional Kirchhoff Choquard problems with critical Trudinger-Moser nonlinearity. (English) Zbl 07453283 Comput. Appl. Math. 41, No. 1, Paper No. 21, 18 p. (2022). MSC: 35J62 35J92 35R11 PDF BibTeX XML Cite \textit{S. Deng} and \textit{S. Xiong}, Comput. Appl. Math. 41, No. 1, Paper No. 21, 18 p. (2022; Zbl 07453283) Full Text: DOI OpenURL
Su, Yu; Shi, Hongxia Quasilinear Choquard equation with critical exponent. (English) Zbl 1479.35434 J. Math. Anal. Appl. 508, No. 1, Article ID 125826, 18 p. (2022). MSC: 35J62 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Su} and \textit{H. Shi}, J. Math. Anal. Appl. 508, No. 1, Article ID 125826, 18 p. (2022; Zbl 1479.35434) Full Text: DOI OpenURL
Liang, Sihua; Zhang, Binlin Soliton solutions for quasilinear Schrödinger equations involving convolution and critical Nonlinearities. (English) Zbl 1480.35219 J. Geom. Anal. 32, No. 1, Paper No. 9, 48 p. (2022). MSC: 35J62 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{S. Liang} and \textit{B. Zhang}, J. Geom. Anal. 32, No. 1, Paper No. 9, 48 p. (2022; Zbl 1480.35219) Full Text: DOI OpenURL
Lei, Chun-Yu; Zhang, Binlin Ground state solutions for nonlinear Choquard equations with doubly critical exponents. (English) Zbl 1480.35218 Appl. Math. Lett. 125, Article ID 107715, 7 p. (2022). MSC: 35J62 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{C.-Y. Lei} and \textit{B. Zhang}, Appl. Math. Lett. 125, Article ID 107715, 7 p. (2022; Zbl 1480.35218) Full Text: DOI OpenURL
Liu, Senli; Chen, Haibo Ground state solutions for nonlinear Choquard equation with singular potential and critical exponents. (English) Zbl 1480.35223 J. Math. Anal. Appl. 507, No. 2, Article ID 125799, 30 p. (2022). MSC: 35J62 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{S. Liu} and \textit{H. Chen}, J. Math. Anal. Appl. 507, No. 2, Article ID 125799, 30 p. (2022; Zbl 1480.35223) Full Text: DOI OpenURL
Ji, Chao; Rădulescu, Vicenţiu D. Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well. (English) Zbl 1480.35190 J. Differ. Equations 306, 251-279 (2022). Reviewer: Patrick Winkert (Berlin) MSC: 35J60 35J20 PDF BibTeX XML Cite \textit{C. Ji} and \textit{V. D. Rădulescu}, J. Differ. Equations 306, 251--279 (2022; Zbl 1480.35190) Full Text: DOI OpenURL
Yang, Jianfu; Zhu, Liping Multiple solutions to Choquard equation in exterior domain. (English) Zbl 1480.35265 J. Math. Anal. Appl. 507, No. 1, Article ID 125726, 15 p. (2022). MSC: 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{J. Yang} and \textit{L. Zhu}, J. Math. Anal. Appl. 507, No. 1, Article ID 125726, 15 p. (2022; Zbl 1480.35265) Full Text: DOI OpenURL
Zhou, Shuai; Liu, Zhisu; Zhang, Jianjun Groundstates for Choquard type equations with weighted potentials and Hardy-Littlewood-Sobolev lower critical exponent. (English) Zbl 1473.35249 Adv. Nonlinear Anal. 11, 141-158 (2022). MSC: 35J61 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{S. Zhou} et al., Adv. Nonlinear Anal. 11, 141--158 (2022; Zbl 1473.35249) Full Text: DOI OpenURL
Chergui, Lassaad A note on a damped focusing inhomogeneous Choquard equation. (English) Zbl 07552149 J. Math. Phys. Anal. Geom. 17, No. 3, 295-325 (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{L. Chergui}, J. Math. Phys. Anal. Geom. 17, No. 3, 295--325 (2021; Zbl 07552149) Full Text: DOI OpenURL
Yang, Xianyong; Miao, Qing Asymptotic behavior of ground states for a fractional Choquard equation with critical growth. (English) Zbl 07543302 AIMS Math. 6, No. 4, 3838-3856 (2021). MSC: 35J50 35Q40 58E05 PDF BibTeX XML Cite \textit{X. Yang} and \textit{Q. Miao}, AIMS Math. 6, No. 4, 3838--3856 (2021; Zbl 07543302) Full Text: DOI OpenURL
Li, Yong-Yong; Li, Gui-Dong; Tang, Chun-Lei Existence and concentration of solutions for Choquard equations with steep potential Well and doubly critical exponents. (English) Zbl 1487.35202 Adv. Nonlinear Stud. 21, No. 1, 135-154 (2021). MSC: 35J15 35B33 35J20 35D30 35B09 35K10 35K57 PDF BibTeX XML Cite \textit{Y.-Y. Li} et al., Adv. Nonlinear Stud. 21, No. 1, 135--154 (2021; Zbl 1487.35202) Full Text: DOI OpenURL
Li, Rui; Song, Yueqiang Multiple solutions for a quasilinear Choquard equation with critical nonlinearity. (English) Zbl 07517522 Open Math. 19, 1684-1698 (2021). MSC: 35J62 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{R. Li} and \textit{Y. Song}, Open Math. 19, 1684--1698 (2021; Zbl 07517522) Full Text: DOI OpenURL
Li, Xiaowei; Wang, Feizhi Existence of groundstates for Choquard type equations with Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 07509946 Bound. Value Probl. 2021, Paper No. 102, 20 p. (2021). MSC: 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{X. Li} and \textit{F. Wang}, Bound. Value Probl. 2021, Paper No. 102, 20 p. (2021; Zbl 07509946) Full Text: DOI OpenURL
Zhang, Jing; Zhang, Qiongfen Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential. (English) Zbl 07509945 Bound. Value Probl. 2021, Paper No. 101, 20 p. (2021). MSC: 35J61 35A01 35A15 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{Q. Zhang}, Bound. Value Probl. 2021, Paper No. 101, 20 p. (2021; Zbl 07509945) Full Text: DOI OpenURL
Wang, Tianfang; Zhang, Wen Ground state solutions and infinitely many solutions for a nonlinear Choquard equation. (English) Zbl 07509937 Bound. Value Probl. 2021, Paper No. 93, 15 p. (2021). MSC: 35J61 35A01 35J20 PDF BibTeX XML Cite \textit{T. Wang} and \textit{W. Zhang}, Bound. Value Probl. 2021, Paper No. 93, 15 p. (2021; Zbl 07509937) Full Text: DOI OpenURL
Yang, Heng Singularly perturbed quasilinear Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions. (English) Zbl 07509930 Bound. Value Probl. 2021, Paper No. 86, 18 p. (2021). MSC: 35J62 35A01 35J20 PDF BibTeX XML Cite \textit{H. Yang}, Bound. Value Probl. 2021, Paper No. 86, 18 p. (2021; Zbl 07509930) Full Text: DOI OpenURL
Biswas, Reshmi; Tiwari, Sweta On a class of Kirchhoff-Choquard equations involving variable-order fractional \(p(\cdot)\)-Laplacian and without Ambrosetti-Rabinowitz type condition. (English) Zbl 1484.35194 Topol. Methods Nonlinear Anal. 58, No. 2, 403-439 (2021). MSC: 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{R. Biswas} and \textit{S. Tiwari}, Topol. Methods Nonlinear Anal. 58, No. 2, 403--439 (2021; Zbl 1484.35194) Full Text: DOI arXiv OpenURL
Panda, Akasmika; Choudhuri, Debajyoti; Saoudi, Kamel A critical fractional Choquard problem involving a singular nonlinearity and a Radon measure. (English) Zbl 1481.35199 J. Pseudo-Differ. Oper. Appl. 12, No. 1, Paper No. 22, 19 p. (2021). MSC: 35J61 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{A. Panda} et al., J. Pseudo-Differ. Oper. Appl. 12, No. 1, Paper No. 22, 19 p. (2021; Zbl 1481.35199) Full Text: DOI OpenURL
Dinh, Van Duong; Keraani, Sahbi The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data. (English) Zbl 1477.35238 Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2837-2876 (2021). MSC: 35Q55 35P25 PDF BibTeX XML Cite \textit{V. D. Dinh} and \textit{S. Keraani}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2837--2876 (2021; Zbl 1477.35238) Full Text: DOI OpenURL
Sun, Xueqi; Song, Yueqiang Existence of nontrivial solutions for a class of quasilinear Choquard equations. (Chinese. English summary) Zbl 07448467 J. Jilin Univ., Sci. 59, No. 4, 863-866 (2021). MSC: 35J62 PDF BibTeX XML Cite \textit{X. Sun} and \textit{Y. Song}, J. Jilin Univ., Sci. 59, No. 4, 863--866 (2021; Zbl 07448467) Full Text: DOI OpenURL
Wu, Huiling Existence and concentration of ground states to a critical Choquard-type equation involving steep potential well. (English) Zbl 1480.35264 Math. Methods Appl. Sci. 44, No. 18, 14606-14618 (2021). MSC: 35J91 35A01 35J20 PDF BibTeX XML Cite \textit{H. Wu}, Math. Methods Appl. Sci. 44, No. 18, 14606--14618 (2021; Zbl 1480.35264) Full Text: DOI OpenURL
Carvalho, M. L. M.; Silva, Edcarlos D.; Goulart, C. Choquard equations via nonlinear Rayleigh quotient for concave-convex nonlinearities. (English) Zbl 1480.35197 Commun. Pure Appl. Anal. 20, No. 10, 3445-3479 (2021). MSC: 35J61 35A01 35A15 PDF BibTeX XML Cite \textit{M. L. M. Carvalho} et al., Commun. Pure Appl. Anal. 20, No. 10, 3445--3479 (2021; Zbl 1480.35197) Full Text: DOI arXiv OpenURL
Shao, Liuyang; Wang, Yingmin Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity. (English) Zbl 1480.35230 Open Math. 19, 259-267 (2021). MSC: 35J62 35B09 35A01 35B40 35J20 PDF BibTeX XML Cite \textit{L. Shao} and \textit{Y. Wang}, Open Math. 19, 259--267 (2021; Zbl 1480.35230) Full Text: DOI OpenURL
Wang, Pengyan; Chen, Li; Niu, Pengcheng Symmetric properties for Choquard equations involving fully nonlinear nonlocal operators. (English) Zbl 1479.35930 Bull. Braz. Math. Soc. (N.S.) 52, No. 4, 841-862 (2021). MSC: 35R11 35A09 35B06 35B09 35R09 PDF BibTeX XML Cite \textit{P. Wang} et al., Bull. Braz. Math. Soc. (N.S.) 52, No. 4, 841--862 (2021; Zbl 1479.35930) Full Text: DOI arXiv OpenURL
Chen, Peng; Liu, Xiaochun Positive solutions for Choquard equation in exterior domains. (English) Zbl 1480.35257 Commun. Pure Appl. Anal. 20, No. 6, 2237-2256 (2021). MSC: 35J91 35A01 35J20 35A16 PDF BibTeX XML Cite \textit{P. Chen} and \textit{X. Liu}, Commun. Pure Appl. Anal. 20, No. 6, 2237--2256 (2021; Zbl 1480.35257) Full Text: DOI OpenURL
Yang, Xiaolong Bound state solutions of fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1476.35009 Comput. Appl. Math. 40, No. 5, Paper No. 171, 25 p. (2021). MSC: 35A01 35R11 35A15 PDF BibTeX XML Cite \textit{X. Yang}, Comput. Appl. Math. 40, No. 5, Paper No. 171, 25 p. (2021; Zbl 1476.35009) Full Text: DOI OpenURL
Maia, B. B. V. On a class of \(p(x)\)-Choquard equations with sign-changing potential and upper critical growth. (English) Zbl 1479.35485 Rend. Circ. Mat. Palermo (2) 70, No. 3, 1175-1199 (2021). MSC: 35J92 35A01 35A15 PDF BibTeX XML Cite \textit{B. B. V. Maia}, Rend. Circ. Mat. Palermo (2) 70, No. 3, 1175--1199 (2021; Zbl 1479.35485) Full Text: DOI OpenURL
Li, Yong-yong; Li, Gui-dong; Tang, Chun-lei Ground state solutions for a class of Choquard equations involving doubly critical exponents. (English) Zbl 1479.35484 Acta Math. Appl. Sin., Engl. Ser. 37, No. 4, 820-840 (2021). MSC: 35J92 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{Y.-y. Li} et al., Acta Math. Appl. Sin., Engl. Ser. 37, No. 4, 820--840 (2021; Zbl 1479.35484) Full Text: DOI OpenURL
Carvalho, J.; Medeiros, E.; Ribeiro, B. On a planar Choquard equation involving exponential critical growth. (English) Zbl 1479.35404 Z. Angew. Math. Phys. 72, No. 6, Paper No. 188, 19 p. (2021). MSC: 35J61 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{J. Carvalho} et al., Z. Angew. Math. Phys. 72, No. 6, Paper No. 188, 19 p. (2021; Zbl 1479.35404) Full Text: DOI OpenURL
Chergui, Lassaad Remarks on damped Schrödinger equation of Choquard type. (English) Zbl 1478.35189 Opusc. Math. 41, No. 4, 465-488 (2021). MSC: 35Q55 35A01 35A02 PDF BibTeX XML Cite \textit{L. Chergui}, Opusc. Math. 41, No. 4, 465--488 (2021; Zbl 1478.35189) Full Text: DOI OpenURL
Chen, Wenjing; Rădulescu, Vicenţiu D.; Zhang, Binlin Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential. (English) Zbl 1479.35419 Anal. Math. Phys. 11, No. 3, Paper No. 132, 25 p. (2021). Reviewer: Leszek Gasiński (Kraków) MSC: 35J62 35R11 35A01 35J20 PDF BibTeX XML Cite \textit{W. Chen} et al., Anal. Math. Phys. 11, No. 3, Paper No. 132, 25 p. (2021; Zbl 1479.35419) Full Text: DOI OpenURL
Wang, Tao; Guo, Hui Multiple nodal solutions of quadratic Choquard equations with perturbation. (English) Zbl 1479.35398 Complex Var. Elliptic Equ. 66, No. 9, 1565-1579 (2021). MSC: 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{T. Wang} and \textit{H. Guo}, Complex Var. Elliptic Equ. 66, No. 9, 1565--1579 (2021; Zbl 1479.35398) Full Text: DOI OpenURL
Gao, Fashun; Zhou, Jiazheng Semiclassical states for critical Choquard equations with critical frequency. (English) Zbl 1479.35405 Topol. Methods Nonlinear Anal. 57, No. 1, 107-133 (2021). MSC: 35J61 35J75 35A15 PDF BibTeX XML Cite \textit{F. Gao} and \textit{J. Zhou}, Topol. Methods Nonlinear Anal. 57, No. 1, 107--133 (2021; Zbl 1479.35405) Full Text: DOI OpenURL
Li, Yong-Yong; Li, Gui-Dong; Wu, Xing-Ping Positive ground state solutions for Choquard equations with lower critical exponent and steep well potential. (English) Zbl 1479.35469 Appl. Math. Lett. 118, Article ID 107151, 7 p. (2021). MSC: 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{Y.-Y. Li} et al., Appl. Math. Lett. 118, Article ID 107151, 7 p. (2021; Zbl 1479.35469) Full Text: DOI OpenURL
Cingolani, Silvia; Tanaka, Kazunaga Ground state solutions for the nonlinear Choquard equation with prescribed mass. (English) Zbl 1475.35136 Ferone, Vincenzo (ed.) et al., Geometric properties for parabolic and elliptic PDE’s. Contributions of the 6th Italian-Japanese workshop, Cortona, Italy, May 20–24, 2019. Cham: Springer. Springer INdAM Ser. 47, 23-41 (2021). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J20 35J91 PDF BibTeX XML Cite \textit{S. Cingolani} and \textit{K. Tanaka}, Springer INdAM Ser. 47, 23--41 (2021; Zbl 1475.35136) Full Text: DOI OpenURL
Yang, Xianyong; Tang, Xianhua; Gu, Guangze Existence and multiplicity of solutions for a fractional Choquard equation with critical or supercritical growth. (Chinese. English summary) Zbl 07403556 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 3, 702-722 (2021). MSC: 35R11 PDF BibTeX XML Cite \textit{X. Yang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 3, 702--722 (2021; Zbl 07403556) OpenURL
Yang, Minbo; Zhao, Fukun; Zhao, Shunneng Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents. (English) Zbl 1473.35306 Discrete Contin. Dyn. Syst. 41, No. 11, 5209-5241 (2021). MSC: 35J91 35A01 35B65 PDF BibTeX XML Cite \textit{M. Yang} et al., Discrete Contin. Dyn. Syst. 41, No. 11, 5209--5241 (2021; Zbl 1473.35306) Full Text: DOI OpenURL
Luo, Huxiao Classification of positive solutions to the critical fractional Choquard equation in \(\mathbb{R}^N\). (English) Zbl 1473.35246 Appl. Anal. 100, No. 10, 2227-2253 (2021). MSC: 35J61 35R11 35B09 35A01 PDF BibTeX XML Cite \textit{H. Luo}, Appl. Anal. 100, No. 10, 2227--2253 (2021; Zbl 1473.35246) Full Text: DOI OpenURL
Cassani, Daniele; Tarsi, Cristina Schrödinger-Newton equations in dimension two via a Pohozaev-Trudinger log-weighted inequality. (English) Zbl 1473.35287 Calc. Var. Partial Differ. Equ. 60, No. 5, Paper No. 197, 31 p. (2021). MSC: 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{D. Cassani} and \textit{C. Tarsi}, Calc. Var. Partial Differ. Equ. 60, No. 5, Paper No. 197, 31 p. (2021; Zbl 1473.35287) Full Text: DOI arXiv OpenURL
Zhang, Jing; Ji, Chao Ground state solutions for a generalized quasilinear Choquard equation. (English) Zbl 1473.35272 Math. Methods Appl. Sci. 44, No. 7, 6048-6055 (2021). MSC: 35J62 35A01 35A15 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{C. Ji}, Math. Methods Appl. Sci. 44, No. 7, 6048--6055 (2021; Zbl 1473.35272) Full Text: DOI OpenURL
Fan, Zi-an On fractional Choquard equation with subcritical or critical nonlinearities. (English) Zbl 1471.35299 Mediterr. J. Math. 18, No. 4, Paper No. 151, 13 p. (2021). MSC: 35R11 35A15 35J20 35J61 35R09 PDF BibTeX XML Cite \textit{Z.-a. Fan}, Mediterr. J. Math. 18, No. 4, Paper No. 151, 13 p. (2021; Zbl 1471.35299) Full Text: DOI OpenURL
Zhang, Hui; Xu, Junxiang Multiple solutions of Choquard equations in \(\mathbb{R}^2\) with critical exponential growth via penalization method. (English) Zbl 1473.35248 Math. Methods Appl. Sci. 44, No. 8, 7065-7085 (2021). MSC: 35J61 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{J. Xu}, Math. Methods Appl. Sci. 44, No. 8, 7065--7085 (2021; Zbl 1473.35248) Full Text: DOI OpenURL
Saanouni, Tarek Scattering theory for a class of defocusing energy-critical Choquard equations. (English) Zbl 1476.35248 J. Evol. Equ. 21, No. 2, 1551-1571 (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{T. Saanouni}, J. Evol. Equ. 21, No. 2, 1551--1571 (2021; Zbl 1476.35248) Full Text: DOI OpenURL
Tarulli, M.; Venkov, G. Decay and scattering in energy space for the solution of weakly coupled Schrödinger-Choquard and Hartree-Fock equations. (English) Zbl 1472.35116 J. Evol. Equ. 21, No. 2, 1149-1178 (2021). MSC: 35J10 35Q55 35P25 PDF BibTeX XML Cite \textit{M. Tarulli} and \textit{G. Venkov}, J. Evol. Equ. 21, No. 2, 1149--1178 (2021; Zbl 1472.35116) Full Text: DOI arXiv OpenURL
Feng, Binhua; Saanouni, Tarek On damped non-linear Choquard equations. (English) Zbl 1475.35318 Bol. Soc. Mat. Mex., III. Ser. 27, No. 2, Paper No. 48, 34 p. (2021). MSC: 35Q55 35B44 35A01 35A02 PDF BibTeX XML Cite \textit{B. Feng} and \textit{T. Saanouni}, Bol. Soc. Mat. Mex., III. Ser. 27, No. 2, Paper No. 48, 34 p. (2021; Zbl 1475.35318) Full Text: DOI OpenURL
Guo, Lun; Li, Qi Bound state solutions of Choquard equations with a nonlocal operator. (English) Zbl 1472.35185 Math. Methods Appl. Sci. 44, No. 5, 3548-3567 (2021). MSC: 35J62 35A01 PDF BibTeX XML Cite \textit{L. Guo} and \textit{Q. Li}, Math. Methods Appl. Sci. 44, No. 5, 3548--3567 (2021; Zbl 1472.35185) Full Text: DOI OpenURL
Zhang, Youpei; Tang, Xianhua; Rădulescu, Vicenţiu D. High perturbations of Choquard equations with critical reaction and variable growth. (English) Zbl 1479.35441 Proc. Am. Math. Soc. 149, No. 9, 3819-3835 (2021). Reviewer: Leszek Gasiński (Kraków) MSC: 35J62 35A01 35B06 35A15 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Proc. Am. Math. Soc. 149, No. 9, 3819--3835 (2021; Zbl 1479.35441) Full Text: DOI OpenURL
Li, Fuyi; Long, Lei; Liang, Zhanping Choquard-type equation with competing coefficients. (English) Zbl 1471.35161 J. Math. Anal. Appl. 503, No. 2, Article ID 125341, 27 p. (2021). MSC: 35J91 35B09 35A01 PDF BibTeX XML Cite \textit{F. Li} et al., J. Math. Anal. Appl. 503, No. 2, Article ID 125341, 27 p. (2021; Zbl 1471.35161) Full Text: DOI OpenURL
Alves, Claudianor O.; Figueiredo, Giovany M.; Molle, Riccardo Multiple positive bound state solutions for a critical Choquard equation. (English) Zbl 1468.81041 Discrete Contin. Dyn. Syst. 41, No. 10, 4887-4919 (2021). MSC: 81Q05 35A15 35B33 35Q40 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Discrete Contin. Dyn. Syst. 41, No. 10, 4887--4919 (2021; Zbl 1468.81041) Full Text: DOI arXiv OpenURL
Li, Shuoshuo; Shen, Zifei Existence of a ground state solution for a nonlocal elliptic equation in \({\mathbb{R}^2}\). (English) Zbl 1474.35256 Adv. Math., Beijing 50, No. 2, 259-266 (2021). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{S. Li} and \textit{Z. Shen}, Adv. Math., Beijing 50, No. 2, 259--266 (2021; Zbl 1474.35256) Full Text: DOI OpenURL
Yang, Zhipeng; Zhao, Fukun Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth. (English) Zbl 1466.35304 Adv. Nonlinear Anal. 10, 732-774 (2021). MSC: 35Q40 35J50 35B25 35B33 58E05 35R11 PDF BibTeX XML Cite \textit{Z. Yang} and \textit{F. Zhao}, Adv. Nonlinear Anal. 10, 732--774 (2021; Zbl 1466.35304) Full Text: DOI OpenURL
Saanouni, Tarek Schrödinger equations with combined non-linearity. (English) Zbl 1471.35262 Ann. Funct. Anal. 12, No. 3, Paper No. 44, 22 p. (2021). MSC: 35Q55 35A15 35B20 35A01 PDF BibTeX XML Cite \textit{T. Saanouni}, Ann. Funct. Anal. 12, No. 3, Paper No. 44, 22 p. (2021; Zbl 1471.35262) Full Text: DOI OpenURL
Kumar, Deepak; Sreenadh, K. Unbalanced \((p,2)\)-fractional problems with critical growth. (English) Zbl 1466.35192 J. Math. Anal. Appl. 501, No. 1, Article ID 123899, 26 p. (2021). MSC: 35J62 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{K. Sreenadh}, J. Math. Anal. Appl. 501, No. 1, Article ID 123899, 26 p. (2021; Zbl 1466.35192) Full Text: DOI arXiv OpenURL
Giacomoni, Jacques; Goel, Divya; Sreenadh, K. Singular doubly nonlocal elliptic problems with Choquard type critical growth nonlinearities. (English) Zbl 1477.49022 J. Geom. Anal. 31, No. 5, 4492-4530 (2021). Reviewer: Ba Khiet Le (Ho Chi Minh City) MSC: 49J52 35A15 35S15 46E35 35D30 35B09 35R11 PDF BibTeX XML Cite \textit{J. Giacomoni} et al., J. Geom. Anal. 31, No. 5, 4492--4530 (2021; Zbl 1477.49022) Full Text: DOI arXiv OpenURL
Saanouni, Tarek A note on Choquard equations in two space dimensions. (English) Zbl 1464.35330 Bol. Soc. Mat. Mex., III. Ser. 27, No. 1, Paper No. 16, 29 p. (2021). MSC: 35Q55 35B44 35P25 35A01 35A02 PDF BibTeX XML Cite \textit{T. Saanouni}, Bol. Soc. Mat. Mex., III. Ser. 27, No. 1, Paper No. 16, 29 p. (2021; Zbl 1464.35330) Full Text: DOI OpenURL
Cui, Ying-Xin On nodal solutions of the fractional Choquard equation. (English) Zbl 07337434 J. Math. Anal. Appl. 500, No. 2, Article ID 125152, 36 p. (2021). MSC: 35R11 35K61 35R09 26A33 PDF BibTeX XML Cite \textit{Y.-X. Cui}, J. Math. Anal. Appl. 500, No. 2, Article ID 125152, 36 p. (2021; Zbl 07337434) Full Text: DOI OpenURL
Qin, Dongdong; Lai, Lizhen; Yuan, Shuai; Wu, Qingfang Ground states and multiple solutions for Choquard-Pekar equations with indefinite potential and general nonlinearity. (English) Zbl 1465.35248 J. Math. Anal. Appl. 500, No. 2, Article ID 125143, 29 p. (2021). MSC: 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{D. Qin} et al., J. Math. Anal. Appl. 500, No. 2, Article ID 125143, 29 p. (2021; Zbl 1465.35248) Full Text: DOI OpenURL
Qin, Dongdong; Tang, Xianhua On the planar Choquard equation with indefinite potential and critical exponential growth. (English) Zbl 1465.35249 J. Differ. Equations 285, 40-98 (2021). MSC: 35J91 35A01 PDF BibTeX XML Cite \textit{D. Qin} and \textit{X. Tang}, J. Differ. Equations 285, 40--98 (2021; Zbl 1465.35249) Full Text: DOI OpenURL
He, Xiaoming; Rădulescu, Vicenţiu D. Small linear perturbations of fractional Choquard equations with critical exponent. (English) Zbl 1464.35082 J. Differ. Equations 282, 481-540 (2021). Reviewer: Calogero Vetro (Palermo) MSC: 35J20 35A15 35B33 81Q05 PDF BibTeX XML Cite \textit{X. He} and \textit{V. D. Rădulescu}, J. Differ. Equations 282, 481--540 (2021; Zbl 1464.35082) Full Text: DOI OpenURL
Liu, Xiaonan; Ma, Shiwang; Xia, Jiankang Multiple bound states of higher topological type for semi-classical Choquard equations. (English) Zbl 1459.35178 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 329-355 (2021). MSC: 35J61 35A01 35J20 PDF BibTeX XML Cite \textit{X. Liu} et al., Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 329--355 (2021; Zbl 1459.35178) Full Text: DOI OpenURL
Le, Phuong Classification of nonnegative solutions to an equation involving the Laplacian of arbitrary order. (English) Zbl 1459.35380 Discrete Contin. Dyn. Syst. 41, No. 4, 1605-1626 (2021). MSC: 35R11 35J30 35J61 35J75 35B06 35B53 35A02 PDF BibTeX XML Cite \textit{P. Le}, Discrete Contin. Dyn. Syst. 41, No. 4, 1605--1626 (2021; Zbl 1459.35380) Full Text: DOI OpenURL
Xia, Jiankang; Zhang, Xu Saddle solutions for the critical Choquard equation. (English) Zbl 1459.35216 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 53, 30 p. (2021). MSC: 35J91 35A15 35B33 35B06 35J20 PDF BibTeX XML Cite \textit{J. Xia} and \textit{X. Zhang}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 53, 30 p. (2021; Zbl 1459.35216) Full Text: DOI OpenURL
Gui, Changfeng; Guo, Hui Nodal solutions of a nonlocal Choquard equation in a bounded domain. (English) Zbl 1464.35081 Commun. Contemp. Math. 23, No. 3, Article ID 1950067, 33 p. (2021). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 35J20 35J57 35Q35 PDF BibTeX XML Cite \textit{C. Gui} and \textit{H. Guo}, Commun. Contemp. Math. 23, No. 3, Article ID 1950067, 33 p. (2021; Zbl 1464.35081) Full Text: DOI arXiv OpenURL
Qin, Dongdong; Rădulescu, Vicenţiu D.; X. H. Tang, Xianhua Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations. (English) Zbl 1456.35187 J. Differ. Equations 275, 652-683 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q40 35J20 35J60 46N50 PDF BibTeX XML Cite \textit{D. Qin} et al., J. Differ. Equations 275, 652--683 (2021; Zbl 1456.35187) Full Text: DOI OpenURL