×

Study on S-wave propagation through parallel rock joints under in situ stress. (English) Zbl 1491.74072

Summary: In situ stress is an important feature of underground rock masses. This paper extends the time-domain recursive method to the study of S-wave propagation through in situ stressed rock masses containing parallel joints. A linear elastic model and hyperbolic nonlinear slip model (HNSM) are first used to establish equations for wave propagation across jointed rock masses under a combination of gravitational and tectonic stress. Then, a comparison is made of the waveforms generated using the HNSM and Mohr-Coulomb slip model. Their differences are investigated and the wave propagation equation verified. Finally, parametric studies are conducted to investigate the effect of joint angle, joint number, in situ stress, and lateral pressure coefficient. The results show that the HNSM can describe the dynamic changes in the stress and their effect on the deformation behavior of the joint during the propagation of the S-wave. The effect of in situ stress on wave propagation is related to the joint angle and lateral pressure coefficient, which determine the initial stress state and contact state of the joint.

MSC:

74L10 Soil and rock mechanics
74J20 Wave scattering in solid mechanics
74B05 Classical linear elasticity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hoek, E., Strength of jointed rock masses, Géotechnique, 33, 3, 187-223 (1983) · doi:10.1680/geot.1983.33.3.187
[2] Korinets, A.; Alehossein, H., Technical note on the initial non-linearity of compressive stress-strain curves for intact rock, Rock Mech Rock Eng, 35, 4, 319-328 (2002) · doi:10.1007/s00603-002-0030-4
[3] Yi, C.; Johansson, D.; Greberg, J., Effects of in-situ stresses on the fracturing of rock by blasting, Comput Geotech, 104, 321-330 (2018) · doi:10.1016/j.compgeo.2017.12.004
[4] Utagawa, M.; Seto, M.; Katsuyama, K., Estimation of initial stress by deformation rate analysis (DRA), Int J Rock Mech Min Sci, 34, 3-4, 501-501 (1997) · doi:10.1016/S1365-1609(97)00249-9
[5] Kahraman, S., Evaluation of simple methods for assessing the uniaxial compressive strength of rock, Int J Rock Mech Min Sci, 38, 7, 981-994 (2001) · doi:10.1016/S1365-1609(01)00039-9
[6] Yasar, E.; Erdogan, Y., Correlating sound velocity with the density, compressive strength and young’s modulus of carbonate rocks, Int J Rock Mech Min Sci, 41, 5, 871-875 (2004) · doi:10.1016/j.ijrmms.2004.01.012
[7] Chen, X.; Xu, Z., The ultrasonic p-wave velocity-stress relationship of rocks and its application, Bull Eng Geol Environ, 76, 2, 1-9 (2016)
[8] Mohd-Nordin, MM; Song, KI; Cho, GC, Long-wavelength elastic wave propagation across naturally fractured rock masses, Rock Mech Rock Eng, 47, 2, 561-573 (2014) · doi:10.1007/s00603-013-0448-x
[9] Tolstoy, I., On elastic waves in prestressed solids, J Geophys Res Solid Earth, 87, B8, 6823-6827 (1982) · doi:10.1029/JB087iB08p06823
[10] Ömer, A.; Ohta, Y.; Geniş, M., Response and stability of underground structures in rock mass during earthquakes, Rock Mech Rock Eng, 43, 6, 857-875 (2010) · doi:10.1007/s00603-010-0105-6
[11] Selim, MM; Ahmed, MK., Propagation and attenuation of seismic body waves in dissipative medium under initial and couple stresses, Appl Math Comput, 182, 2, 1064-1074 (2006) · Zbl 1152.86308
[12] Guz, AN., Elastic waves in bodies with initial (residual) stresses, Int Appl Mech, 38, 1, 23-59s (2002) · Zbl 1094.74522 · doi:10.1023/A:1015379824503
[13] Biot, MA., Theory of stability and consolidation of a porous medium under initial stress, J Math Mech, 12, 2, 521-541 (1963) · Zbl 0118.43301
[14] Sharma, MD., Effect of initial stress on the propagation of plane waves in a general anisotropic poroelastic medium, J Geophys Res Solid Earth, 110, 1-14 (2005) · doi:10.1029/2005JB003779
[15] Singh, AK; Das, A.; Chattopadhyay, A., Dispersion of shear wave propagating in vertically heterogeneous double layers overlying an initially stressed isotropic half-space, Soil Dyn Earthq Eng, 69, 16-27 (2015) · doi:10.1016/j.soildyn.2014.10.021
[16] Cook, NGW., Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress, Int J Rock Mech Min Sci Geomechanics Abstracts, 29, 3, 198-223 (1992) · doi:10.1016/0148-9062(92)93656-5
[17] Liu, E.; Hudson, JA; Pointer, T., Equivalent medium representation of fractured rock, J Geophys Res, 105, B2, 2981 (2000) · doi:10.1029/1999JB900306
[18] Li, J.; Ma, G.; Huang, X., Analysis of wave propagation through a filled rock joint, Rock Mech Rock Eng, 43, 6, 789-798 (2010) · doi:10.1007/s00603-009-0033-5
[19] Misra, A.; Marangos, O., Rock-joint micromechanics: relationship of roughness to closure and wave propagation, Int J Geomech, 11, 6, 431-439 (2010) · doi:10.1061/(ASCE)GM.1943-5622.0000021
[20] Zhou, X.; Zhou, X.; Fan, L., Effects of microfracture on wave propagation through rock mass, Int J Geomech, 17, 9, 04017072 (2017) · doi:10.1061/(ASCE)GM.1943-5622.0000947
[21] Zhao, J.; Cai, JG., Transmission of elastic p-waves across single fractures with a nonlinear normal deformational behavior, Rock Mech Rock Eng, 34, 1, 3-22 (2001) · doi:10.1007/s006030170023
[22] Perino, A.; Orta, R.; Barla, G., Wave propagation in discontinuous media by the scattering matrix method, Rock Mech Rock Eng, 45, 5, 901-918 (2012) · doi:10.1007/s00603-012-0286-2
[23] Zhao, XB; Zhao, J.; Hefny, AM, Normal transmission of S-wave across parallel fractures with Coulomb slip behavior, J Eng Mech, 132, 6, 641-650 (2006) · doi:10.1061/(ASCE)0733-9399(2006)132:6(641)
[24] Li, JC., Wave propagation across non-linear rock joints based on time-domain recursive method, Geophys J Int, 193, 2, 970-985 (2013) · doi:10.1093/gji/ggt020
[25] Zhu, JB; Perino, A.; Zhao, GF, Seismic response of a single and a set of filled joints of viscoelastic deformational behaviour, Geophys J Int, 186, 1315-1330 (2011) · doi:10.1111/j.1365-246X.2011.05110.x
[26] Li, Z.; Li, J.; Li, H., Effects of a set of parallel joints with unequal close-open behavior on stress wave energy attenuation, Waves Random Complex Media, 2, 1-25 (2020)
[27] Fan, LF; Sun, HY., Seismic wave propagation through an in situ stressed rock mass, J Appl Geophy, 121, 13-20 (2015) · doi:10.1016/j.jappgeo.2015.07.002
[28] Cui, Z.; Sheng, Q.; Leng, X., Analysis of S wave propagation through a nonlinear joint with the continuously yielding model, Rock Mech Rock Eng, 50, 1, 113-123 (2017) · doi:10.1007/s00603-016-1108-8
[29] Zheng, Y.; Chen, C.; Meng, F., Assessing the stability of rock slopes with respect to flexural toppling failure using a limit equilibrium model and genetic algorithm, Comput Geotech, 124, 103619 (2020) · doi:10.1016/j.compgeo.2020.103619
[30] Zheng, Y.; Chen, C.; Liu, T., Stability analysis of anti-dip bedding rock slopes locally reinforced by rock bolts, Eng Geol, 251, 228-240 (2019) · doi:10.1016/j.enggeo.2019.02.002
[31] Li, JC; Li, HB; Ma, GW, A time-domain recursive method to analyse transient wave propagation across rock joints, Geophys J Int, 188, 2, 631-644 (2012) · doi:10.1111/j.1365-246X.2011.05286.x
[32] Zhu, JB; Zhao, G.; Zhao, XB, Validation study of the distinct lattice spring model (DLSM) on P-wave propagation across multiple parallel joints, Comput Geotech, 38, 2, 298-304 (2011) · doi:10.1016/j.compgeo.2010.12.002
[33] Kurtulu, C.; ükarde, M.; Sar, U., Experimental studies in wave propagation across a jointed rock mass, Bull Eng Geol Environ, 71, 2, 231-234 (2012) · doi:10.1007/s10064-011-0392-5
[34] Zeng, S.; Wang, S.; Sun, B., Propagation characteristics of blasting stress waves in layered and jointed rock caverns, Geotech Geol Eng, 36, 3, 1559-1573 (2018) · doi:10.1007/s10706-017-0410-x
[35] Zhao, J.; Cai, JG; Zhao, XB, Experimental study of ultrasonic wave attenuation across parallel fractures, Geomechanics Geoengineering, 1, 2, 87-103 (2006) · doi:10.1080/17486020600834613
[36] Fuchs, K.; Müller, B., World stress map of the earth: a key to tectonic processes and technological applications, Naturwissenschaften, 88, 9, 357-371 (2001) · doi:10.1007/s001140100253
[37] Brown, ET; Hoek, E., Technical note trends in relationships between measured in situ stress and depth, Int J Rock Mech Min Sci Geomechanics Abstracts, 15, 4, 211-215 (1978) · doi:10.1016/0148-9062(78)91227-5
[38] Kulhawy, FH., Stress deformation properties of rock and rock discontinuities, Eng Geol, 9, 4, 327-350 (1975) · doi:10.1016/0013-7952(75)90014-9
[39] Bandis, SC; Lumsden, AC; Barton, NR., Fundamentals of rock joint deformation, Int J Rock Mech Min Sci Geomechanics Abstracts, 20, 6, 249-268 (1983) · doi:10.1016/0148-9062(83)90595-8
[40] Saeb, S.; Amadei, B., Modelling rock joints under shear and normal loading, Int J Rock Mech Min Sci Geomech Abstr, 29, 3, 267-278 (1992) · doi:10.1016/0148-9062(92)93660-C
[41] Cook, NGW., Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress, Int J Rock Mech Min Sci Geomechanics Abstracts, 29, 3, 198-223 (1992) · doi:10.1016/0148-9062(92)93656-5
[42] Pappalardo, G., Correlation between p-wave velocity and physical-mechanical properties of intensely jointed dolostones, peloritani mounts, ne sicily, Rock Mech Rock Eng, 48, 4, 1711-1721 (2015) · doi:10.1007/s00603-014-0607-8
[43] Liu, T.; Li, J.; Li, H., Experimental study of S-wave propagation through a filled rock joint, Rock Mech Rock Eng, 50, 10, 2645-2657 (2017) · doi:10.1007/s00603-017-1250-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.