He, Mingyan; Tian, Jia; Sun, Pengtao; Zhang, Zhengfang An energy-conserving finite element method for nonlinear fourth-order wave equations. (English) Zbl 1498.65158 Appl. Numer. Math. 183, 333-354 (2023). MSC: 65M60 65M06 65N30 65M12 35G20 PDF BibTeX XML Cite \textit{M. He} et al., Appl. Numer. Math. 183, 333--354 (2023; Zbl 1498.65158) Full Text: DOI OpenURL
Yang, Huaijun Unconditionally optimal error estimate of mass- and energy-stable Galerkin method for Schrödinger equation with cubic nonlinearity. (English) Zbl 1500.65074 Appl. Numer. Math. 183, 39-55 (2023). MSC: 65M60 65M06 65N30 65M15 35Q55 35Q41 PDF BibTeX XML Cite \textit{H. Yang}, Appl. Numer. Math. 183, 39--55 (2023; Zbl 1500.65074) Full Text: DOI OpenURL
Abidi, Mariem; Goubet, Olivier; Martin, Véronique Crank-Nicolson scheme for a logarithmic Schrödinger equation. (English) Zbl 07647203 North-West. Eur. J. Math. 8, 167-187 (2022). MSC: 35Q55 35Q41 65M06 65M22 PDF BibTeX XML Cite \textit{M. Abidi} et al., North-West. Eur. J. Math. 8, 167--187 (2022; Zbl 07647203) Full Text: Link OpenURL
Neena, A. S.; Mkhope, Dominic P. Clemence; Awasthi, Ashish Some computational methods for the Fokker-Planck equation. (English) Zbl 07626569 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 261, 17 p. (2022). MSC: 65M06 65N06 60J65 60H40 82C31 35B09 35Q84 35R60 PDF BibTeX XML Cite \textit{A. S. Neena} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 261, 17 p. (2022; Zbl 07626569) Full Text: DOI OpenURL
Saeed, Ihsan Lateef; Javidi, Mohammad; Heris, Mahdi Saedshoar On numerical methods for solving Riesz space fractional advection-dispersion equations based on spline interpolants. (English) Zbl 07601607 Comput. Appl. Math. 41, No. 7, Paper No. 314, 31 p. (2022). MSC: 35R11 65L20 65N06 65N22 PDF BibTeX XML Cite \textit{I. L. Saeed} et al., Comput. Appl. Math. 41, No. 7, Paper No. 314, 31 p. (2022; Zbl 07601607) Full Text: DOI OpenURL
Zhu, Xiaohan; Liao, Hong-lin Asymptotically compatible energy law of the Crank-Nicolson type schemes for time-fractional MBE models. (English) Zbl 07590674 Appl. Math. Lett. 134, Article ID 108337, 7 p. (2022). MSC: 65M06 65N35 35S05 82D37 26A33 35R11 PDF BibTeX XML Cite \textit{X. Zhu} and \textit{H.-l. Liao}, Appl. Math. Lett. 134, Article ID 108337, 7 p. (2022; Zbl 07590674) Full Text: DOI OpenURL
Patra, S.; Shit, G. C.; Das, B. Computational model on magnetothermoelastic analysis of a rotating cylinder using finite difference method. (English) Zbl 1498.74021 Waves Random Complex Media 32, No. 4, 1654-1671 (2022). MSC: 74F15 74F05 74S20 PDF BibTeX XML Cite \textit{S. Patra} et al., Waves Random Complex Media 32, No. 4, 1654--1671 (2022; Zbl 1498.74021) Full Text: DOI OpenURL
Qi, Longzhao; Hou, Yanren An unconditionally energy-stable linear Crank-Nicolson scheme for the Swift-Hohenberg equation. (English) Zbl 07574190 Appl. Numer. Math. 181, 46-58 (2022). MSC: 65M60 65M06 65N30 65M12 65M15 76R10 35Q35 PDF BibTeX XML Cite \textit{L. Qi} and \textit{Y. Hou}, Appl. Numer. Math. 181, 46--58 (2022; Zbl 07574190) Full Text: DOI OpenURL
Li, Huanrong; Wang, Dongmei Numerical analysis of energy-stable Crank-Nicolson finite difference schemes for the phase-field equation. (English) Zbl 07545044 J. Math. Anal. Appl. 514, No. 2, Article ID 126169, 20 p. (2022). MSC: 65Mxx 35Qxx 65Nxx PDF BibTeX XML Cite \textit{H. Li} and \textit{D. Wang}, J. Math. Anal. Appl. 514, No. 2, Article ID 126169, 20 p. (2022; Zbl 07545044) Full Text: DOI OpenURL
Akhtar, M. Wasy; Ostilla-Mónico, Rodolfo The effect of modulated driving on non-rotating and rotating turbulent plane Couette flow. (English) Zbl 07544866 J. Fluid Mech. 943, Paper No. A40, 22 p. (2022). MSC: 76F10 76F40 76U05 76M20 76F65 PDF BibTeX XML Cite \textit{M. W. Akhtar} and \textit{R. Ostilla-Mónico}, J. Fluid Mech. 943, Paper No. A40, 22 p. (2022; Zbl 07544866) Full Text: DOI arXiv OpenURL
Zhang, Fan; Li, Dongfang; Sun, Hai-Wei; Zhang, Jia-Li A stabilized fully-discrete scheme for phase field crystal equation. (English) Zbl 07533832 Appl. Numer. Math. 178, 337-355 (2022). MSC: 65M06 65M12 65M15 74E15 82C21 PDF BibTeX XML Cite \textit{F. Zhang} et al., Appl. Numer. Math. 178, 337--355 (2022; Zbl 07533832) Full Text: DOI OpenURL
Jang, Yongseok; Shaw, Simon Finite element approximation and analysis of a viscoelastic scalar wave equation with internal variable formulations. (English) Zbl 1489.74056 J. Comput. Appl. Math. 412, Article ID 114340, 16 p. (2022). MSC: 74S05 74S20 74J05 74D05 65M15 65M12 PDF BibTeX XML Cite \textit{Y. Jang} and \textit{S. Shaw}, J. Comput. Appl. Math. 412, Article ID 114340, 16 p. (2022; Zbl 1489.74056) Full Text: DOI arXiv OpenURL
Kumari, Archna; Kukreja, V. K. Robust septic Hermite collocation technique for singularly perturbed generalized Hodgkin-Huxley equation. (English) Zbl 1499.65562 Int. J. Comput. Math. 99, No. 5, 909-923 (2022). MSC: 65M70 65M06 65N35 33C45 92C20 35Q92 92-08 PDF BibTeX XML Cite \textit{A. Kumari} and \textit{V. K. Kukreja}, Int. J. Comput. Math. 99, No. 5, 909--923 (2022; Zbl 1499.65562) Full Text: DOI OpenURL
Mekonnen, Tariku Birabasa; Duressa, Gemechis File A fitted mesh cubic spline in tension method for singularly perturbed problems with two parameters. (English) Zbl 1486.65120 Int. J. Math. Math. Sci. 2022, Article ID 5410754, 11 p. (2022). MSC: 65M06 65M12 65M15 65M50 PDF BibTeX XML Cite \textit{T. B. Mekonnen} and \textit{G. F. Duressa}, Int. J. Math. Math. Sci. 2022, Article ID 5410754, 11 p. (2022; Zbl 1486.65120) Full Text: DOI OpenURL
Zhai, Liangliang; Wang, Junjie High-order conservative scheme for the coupled space fractional nonlinear Schrödinger equations. (English) Zbl 1499.65451 Int. J. Comput. Math. 99, No. 3, 607-628 (2022). MSC: 65M06 65N06 65M12 35A01 35A02 35Q55 35Q41 26A33 35R11 PDF BibTeX XML Cite \textit{L. Zhai} and \textit{J. Wang}, Int. J. Comput. Math. 99, No. 3, 607--628 (2022; Zbl 1499.65451) Full Text: DOI OpenURL
Kumar, Devendra; Deswal, Komal; Singh, Satpal A highly accurate algorithm for retrieving the predicted behavior of problems with piecewise-smooth initial data. (English) Zbl 1484.65260 Appl. Numer. Math. 173, 279-294 (2022). MSC: 65M70 65M06 65N35 65D07 65M12 65M15 35K10 PDF BibTeX XML Cite \textit{D. Kumar} et al., Appl. Numer. Math. 173, 279--294 (2022; Zbl 1484.65260) Full Text: DOI OpenURL
Wang, Yuan-Ming; Zhang, Yu-Jia A Crank-Nicolson-type compact difference method with the uniform time step for a class of weakly singular parabolic integro-differential equations. (English) Zbl 1484.65346 Appl. Numer. Math. 172, 566-590 (2022). MSC: 65R20 45K05 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{Y.-M. Wang} and \textit{Y.-J. Zhang}, Appl. Numer. Math. 172, 566--590 (2022; Zbl 1484.65346) Full Text: DOI OpenURL
Chu, Qianqian; Jin, Guanghui; Shen, Jihong; Jin, Yuanfeng Numerical analysis of Crank-Nicolson scheme for the Allen-Cahn equation. (English) Zbl 1499.65381 J. Comput. Math. 39, No. 5, 655-665 (2021). MSC: 65M06 65N06 65M12 35A01 PDF BibTeX XML Cite \textit{Q. Chu} et al., J. Comput. Math. 39, No. 5, 655--665 (2021; Zbl 1499.65381) Full Text: DOI OpenURL
Bokanowski, Olivier; Debrabant, Kristian Backward differentiation formula finite difference schemes for diffusion equations with an obstacle term. (English) Zbl 07528266 IMA J. Numer. Anal. 41, No. 2, 900-934 (2021). MSC: 65M06 65N06 65M12 65M15 35D40 PDF BibTeX XML Cite \textit{O. Bokanowski} and \textit{K. Debrabant}, IMA J. Numer. Anal. 41, No. 2, 900--934 (2021; Zbl 07528266) Full Text: DOI arXiv OpenURL
Hussain, Manzoor; Haq, Sirajul Numerical solutions of strongly non-linear generalized Burgers-Fisher equation via meshfree spectral technique. (English) Zbl 1480.65282 Int. J. Comput. Math. 98, No. 9, 1727-1748 (2021). MSC: 65M70 65M06 35K20 35Q92 PDF BibTeX XML Cite \textit{M. Hussain} and \textit{S. Haq}, Int. J. Comput. Math. 98, No. 9, 1727--1748 (2021; Zbl 1480.65282) Full Text: DOI OpenURL
Handlovičová, Angela; Mikula, Karol Finite volume schemes for the affine morphological scale space (AMSS) model. (English) Zbl 1482.65163 Tatra Mt. Math. Publ. 80, 53-70 (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65N08 65M12 65M15 35K20 PDF BibTeX XML Cite \textit{A. Handlovičová} and \textit{K. Mikula}, Tatra Mt. Math. Publ. 80, 53--70 (2021; Zbl 1482.65163) Full Text: DOI OpenURL
Destyl, Edès; Laminie, Jacques; Nuiro, Paul; Poullet, Pascal Numerical simulations of parity-time symmetric nonlinear Schrödinger equations in critical case. (English) Zbl 07451795 Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2805-2821 (2021). MSC: 65-XX 35B40 35B44 35J10 35Q41 65M06 68N15 PDF BibTeX XML Cite \textit{E. Destyl} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2805--2821 (2021; Zbl 07451795) Full Text: DOI OpenURL
Zhang, Xin; Jin, Yuanfeng; Qiao, Hanyue; Li, Chunhua Crank-Nicolson difference scheme for two dimensional Allen-Cahn equation. (Chinese. English summary) Zbl 1488.65317 Acta Math. Appl. Sin. 44, No. 2, 238-250 (2021). MSC: 65M06 65M12 65M15 35B45 80A22 35Q79 47H10 PDF BibTeX XML Cite \textit{X. Zhang} et al., Acta Math. Appl. Sin. 44, No. 2, 238--250 (2021; Zbl 1488.65317) OpenURL
Joglekar, Saurabh; Li, Xiaolin Numerical study of crystal growth in reaction-diffusion systems using front tracking. (English) Zbl 1487.76102 Wood, David R. (ed.) et al., 2019–20 MATRIX annals. Cham: Springer. MATRIX Book Ser. 4, 461-471 (2021). MSC: 76T99 76V05 76R50 76M20 80A22 PDF BibTeX XML Cite \textit{S. Joglekar} and \textit{X. Li}, MATRIX Book Ser. 4, 461--471 (2021; Zbl 1487.76102) Full Text: DOI OpenURL
Alikhanov, Anatoly; Beshtokov, Murat; Mehra, Mani The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation. (English) Zbl 1498.65133 Fract. Calc. Appl. Anal. 24, No. 4, 1231-1256 (2021). MSC: 65M06 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{A. Alikhanov} et al., Fract. Calc. Appl. Anal. 24, No. 4, 1231--1256 (2021; Zbl 1498.65133) Full Text: DOI arXiv OpenURL
Tewes, Walter; Hack, Michiel A.; Datt, Charu; Peng, Gunnar G.; Snoeijer, Jacco H. Theory for the coalescence of viscous lenses. (English) Zbl 1496.76022 J. Fluid Mech. 928, Paper No. A11, 15 p. (2021). MSC: 76A20 76D45 76M20 PDF BibTeX XML Cite \textit{W. Tewes} et al., J. Fluid Mech. 928, Paper No. A11, 15 p. (2021; Zbl 1496.76022) Full Text: DOI arXiv OpenURL
Lou, Yuzhi; Chen, Chuanjun; Xue, Guanyu Two-grid finite volume element method combined with Crank-Nicolson scheme for semilinear parabolic equations. (English) Zbl 1488.65351 Adv. Appl. Math. Mech. 13, No. 4, 892-913 (2021). MSC: 65M08 65M06 65N08 65M55 65M12 35K91 PDF BibTeX XML Cite \textit{Y. Lou} et al., Adv. Appl. Math. Mech. 13, No. 4, 892--913 (2021; Zbl 1488.65351) Full Text: DOI OpenURL
Reutskiy, Sergiy; Lin, Ji; Zheng, Bin; Tong, Jiyou A novel B-spline method for modeling transport problems in anisotropic inhomogeneous media. (English) Zbl 1499.65577 Adv. Appl. Math. Mech. 13, No. 3, 590-618 (2021). MSC: 65M70 65M06 65N35 65D07 76S05 35Q35 PDF BibTeX XML Cite \textit{S. Reutskiy} et al., Adv. Appl. Math. Mech. 13, No. 3, 590--618 (2021; Zbl 1499.65577) Full Text: DOI OpenURL
Morse, Nicholas; Mahesh, Krishnan Large-eddy simulation and streamline coordinate analysis of flow over an axisymmetric hull. (English) Zbl 1487.76048 J. Fluid Mech. 926, Paper No. A18, 41 p. (2021). MSC: 76F65 76F40 76M20 PDF BibTeX XML Cite \textit{N. Morse} and \textit{K. Mahesh}, J. Fluid Mech. 926, Paper No. A18, 41 p. (2021; Zbl 1487.76048) Full Text: DOI OpenURL
Wu, Lifei; Pan, Yueyue; Yang, Xiaozhong An efficient alternating segment parallel finite difference method for multi-term time fractional diffusion-wave equation. (English) Zbl 1476.65195 Comput. Appl. Math. 40, No. 2, Paper No. 67, 20 p. (2021). MSC: 65M06 65M12 65Y05 PDF BibTeX XML Cite \textit{L. Wu} et al., Comput. Appl. Math. 40, No. 2, Paper No. 67, 20 p. (2021; Zbl 1476.65195) Full Text: DOI OpenURL
Abdi, N.; Aminikhah, H.; Sheikhani, A. H. Refahi High-order rotated grid point iterative method for solving 2D time fractional telegraph equation and its convergence analysis. (English) Zbl 1476.34157 Comput. Appl. Math. 40, No. 2, Paper No. 54, 26 p. (2021). MSC: 34K37 65M06 65D07 PDF BibTeX XML Cite \textit{N. Abdi} et al., Comput. Appl. Math. 40, No. 2, Paper No. 54, 26 p. (2021; Zbl 1476.34157) Full Text: DOI OpenURL
Arosemena, Arturo A.; Andersson, Ronnie; Andersson, Helge I.; Solsvik, Jannike Effects of shear-thinning rheology on near-wall turbulent structures. (English) Zbl 1486.76051 J. Fluid Mech. 925, Paper No. A37, 32 p. (2021). MSC: 76F40 76A05 76M20 PDF BibTeX XML Cite \textit{A. A. Arosemena} et al., J. Fluid Mech. 925, Paper No. A37, 32 p. (2021; Zbl 1486.76051) Full Text: DOI OpenURL
Bertoli, Guillaume; Besse, Christophe; Vilmart, Gilles Superconvergence of the Strang splitting when using the Crank-Nicolson scheme for parabolic PDEs with Dirichlet and oblique boundary conditions. (English) Zbl 1500.65059 Math. Comput. 90, No. 332, 2705-2729 (2021). Reviewer: Michael Plum (Karlsruhe) MSC: 65M60 65M06 65N30 65M12 65L04 65L06 PDF BibTeX XML Cite \textit{G. Bertoli} et al., Math. Comput. 90, No. 332, 2705--2729 (2021; Zbl 1500.65059) Full Text: DOI arXiv Link OpenURL
Kumar, Gaurav; Rizvi, S. M. K. Casson fluid flow past on vertical cylinder in the presence of chemical reaction and magnetic field. (English) Zbl 1477.76105 Appl. Appl. Math. 16, No. 1, 524-537 (2021). Reviewer: K. N. Shukla (Gurgaon) MSC: 76V05 76A05 76W05 76M20 80A19 PDF BibTeX XML Cite \textit{G. Kumar} and \textit{S. M. K. Rizvi}, Appl. Appl. Math. 16, No. 1, 524--537 (2021; Zbl 1477.76105) Full Text: Link OpenURL
Margenberg, Nils; Richter, Thomas Parallel time-stepping for fluid-structure interactions. (English) Zbl 1469.76075 Math. Model. Nat. Phenom. 16, Paper No. 20, 19 p. (2021). MSC: 76M20 74S05 74F10 76D05 74B20 PDF BibTeX XML Cite \textit{N. Margenberg} and \textit{T. Richter}, Math. Model. Nat. Phenom. 16, Paper No. 20, 19 p. (2021; Zbl 1469.76075) Full Text: DOI arXiv OpenURL
Gan, Xiaoting; Zhang, Xiaole; Zheng, Wei A Crank-Nicolson fitted finite volume method for pricing European options under regime switching. (English) Zbl 1474.65312 Numer. Math., Nanjing 43, No. 1, 59-82 (2021). MSC: 65M08 91G20 91G10 65M06 65N08 PDF BibTeX XML Cite \textit{X. Gan} et al., Numer. Math., Nanjing 43, No. 1, 59--82 (2021; Zbl 1474.65312) OpenURL
Gan, Xiaoting; Jiang, Zhongdong; Li, Baorong A modified Crank-Nicolson fitted finite volume method for American options under regime-switching jump-diffusion processes. (Chinese. English summary) Zbl 1474.65311 J. Syst. Sci. Math. Sci. 41, No. 1, 178-196 (2021). MSC: 65M08 91G20 91G10 65M06 65H10 PDF BibTeX XML Cite \textit{X. Gan} et al., J. Syst. Sci. Math. Sci. 41, No. 1, 178--196 (2021; Zbl 1474.65311) OpenURL
Ortiz-Tarin, J. L.; Nidhan, S.; Sarkar, S. High-Reynolds-number wake of a slender body. (English) Zbl 1487.76030 J. Fluid Mech. 918, Paper No. A30, 18 p. (2021). MSC: 76D25 76F40 76M20 76M99 PDF BibTeX XML Cite \textit{J. L. Ortiz-Tarin} et al., J. Fluid Mech. 918, Paper No. A30, 18 p. (2021; Zbl 1487.76030) Full Text: DOI OpenURL
Lu, Xiaoli; Huang, Pengzhan; He, Yinnian Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. (English) Zbl 1465.65102 Discrete Contin. Dyn. Syst., Ser. B 26, No. 2, 815-845 (2021). MSC: 65M60 65N30 65M06 65M12 65M15 76W05 35B65 76M10 76M20 PDF BibTeX XML Cite \textit{X. Lu} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 2, 815--845 (2021; Zbl 1465.65102) Full Text: DOI OpenURL
Zhou, Yanjiao; Wang, Quanxiang; Zhang, Zhiyue Physical properties preserving numerical simulation of stochastic fractional nonlinear wave equation. (English) Zbl 1481.60125 Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105832, 20 p. (2021). MSC: 60H15 65M06 65C30 35R60 35R11 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105832, 20 p. (2021; Zbl 1481.60125) Full Text: DOI OpenURL
Fan, Huijun; Zhao, Yanmin; Wang, Fenling; Shi, Yanhua; Tang, Yifa A superconvergent nonconforming mixed FEM for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficients. (English) Zbl 1468.65140 East Asian J. Appl. Math. 11, No. 1, 63-92 (2021). MSC: 65M60 65M06 65N30 65M12 35R11 PDF BibTeX XML Cite \textit{H. Fan} et al., East Asian J. Appl. Math. 11, No. 1, 63--92 (2021; Zbl 1468.65140) Full Text: DOI OpenURL
Wang, Jilu; Wang, Jungang; Yin, Lihong A single-step correction scheme of Crank-Nicolson convolution quadrature for the subdiffusion equation. (English) Zbl 1466.65149 J. Sci. Comput. 87, No. 1, Paper No. 26, 18 p. (2021). MSC: 65M60 65M06 65N30 65M15 65D30 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Sci. Comput. 87, No. 1, Paper No. 26, 18 p. (2021; Zbl 1466.65149) Full Text: DOI OpenURL
Gao, Xinghua; Yin, Baoli; Li, Hong; Liu, Yang TT-M FE method for a 2D nonlinear time distributed-order and space fractional diffusion equation. (English) Zbl 07318214 Math. Comput. Simul. 181, 117-137 (2021). MSC: 39Axx 65Mxx 35Rxx PDF BibTeX XML Cite \textit{X. Gao} et al., Math. Comput. Simul. 181, 117--137 (2021; Zbl 07318214) Full Text: DOI OpenURL
Zaky, Mahmoud A.; Hendy, Ahmed S. An efficient dissipation-preserving Legendre-Galerkin spectral method for the Higgs boson equation in the de Sitter spacetime universe. (English) Zbl 1458.35411 Appl. Numer. Math. 160, 281-295 (2021). MSC: 35Q75 83C10 83C15 83C40 65M06 65M70 65N30 65M12 65M15 42C10 65P10 PDF BibTeX XML Cite \textit{M. A. Zaky} and \textit{A. S. Hendy}, Appl. Numer. Math. 160, 281--295 (2021; Zbl 1458.35411) Full Text: DOI OpenURL
Zhang, Qifeng; Zhang, Lu; Sun, Hai-wei A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. (English) Zbl 1462.65119 J. Comput. Appl. Math. 389, Article ID 113355, 20 p. (2021). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65M06 65N06 65M12 65T50 65F08 65F10 15B05 35R11 35Q56 PDF BibTeX XML Cite \textit{Q. Zhang} et al., J. Comput. Appl. Math. 389, Article ID 113355, 20 p. (2021; Zbl 1462.65119) Full Text: DOI OpenURL
Wang, Liupeng; Huang, Yunqing Error estimates for second-order SAV finite element method to phase field crystal model. (English) Zbl 1456.65126 Electron Res. Arch. 29, No. 1, 1735-1752 (2021). MSC: 65M60 65M06 65M12 35R09 45K05 74E15 74N05 35Q74 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Y. Huang}, Electron Res. Arch. 29, No. 1, 1735--1752 (2021; Zbl 1456.65126) Full Text: DOI OpenURL
Xiao, Zhicheng; Yu, Peixiang; Ouyang, Hua; Zhang, Jiajing A parallel high-order compact scheme for the pure streamfunction formulation of the 3D unsteady incompressible Navier-Stokes equation. (English) Zbl 1455.76137 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105631, 21 p. (2021). MSC: 76M20 76D05 65M12 65Y05 PDF BibTeX XML Cite \textit{Z. Xiao} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105631, 21 p. (2021; Zbl 1455.76137) Full Text: DOI OpenURL
Khan, Muhammad Asim; Ali, Norhashidah Hj. Mohd High-order compact scheme for the two-dimensional fractional Rayleigh-Stokes problem for a heated generalized second-grade fluid. (English) Zbl 1482.76086 Adv. Difference Equ. 2020, Paper No. 233, 21 p. (2020). MSC: 76M20 65M06 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{M. A. Khan} and \textit{N. Hj. M. Ali}, Adv. Difference Equ. 2020, Paper No. 233, 21 p. (2020; Zbl 1482.76086) Full Text: DOI OpenURL
Yang, Jinting; Liang, Hongxia; Zhang, Tong The Crank-Nicolson/explicit scheme for the natural convection equations with nonsmooth initial data. (English) Zbl 1488.65476 Adv. Appl. Math. Mech. 12, No. 6, 1481-1519 (2020). MSC: 65M60 65N30 65M06 65K05 65M12 76R10 76M10 76M20 PDF BibTeX XML Cite \textit{J. Yang} et al., Adv. Appl. Math. Mech. 12, No. 6, 1481--1519 (2020; Zbl 1488.65476) Full Text: DOI OpenURL
An, Rong; Zhou, Can; Su, Jian A new higher order fractional-step method for the incompressible Navier-Stokes equations. (English) Zbl 1488.65217 Adv. Appl. Math. Mech. 12, No. 2, 362-385 (2020). MSC: 65M06 65N06 65M12 65M15 76D05 35Q30 PDF BibTeX XML Cite \textit{R. An} et al., Adv. Appl. Math. Mech. 12, No. 2, 362--385 (2020; Zbl 1488.65217) Full Text: DOI OpenURL
Webber, Joseph J.; Huppert, Herbert E. Time to approach similarity. (English) Zbl 1478.76027 Q. J. Mech. Appl. Math. 73, No. 1, 1-23 (2020). MSC: 76D50 76M55 76S05 76M20 PDF BibTeX XML Cite \textit{J. J. Webber} and \textit{H. E. Huppert}, Q. J. Mech. Appl. Math. 73, No. 1, 1--23 (2020; Zbl 1478.76027) Full Text: DOI OpenURL
Zheng, Xuan; Chen, Hongbin; Qiu, Wenlin A Crank-Nicolson-type finite-difference scheme and its algorithm implementation for a nonlinear partial integro-differential equation arising from viscoelasticity. (English) Zbl 1476.65352 Comput. Appl. Math. 39, No. 4, Paper No. 295, 23 p. (2020). MSC: 65R20 45K05 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{X. Zheng} et al., Comput. Appl. Math. 39, No. 4, Paper No. 295, 23 p. (2020; Zbl 1476.65352) Full Text: DOI OpenURL
Debnath, S.; Saha, A. K.; Mazumder, B. S.; Roy, A. K. Dispersion of reactive species in Casson fluid flow. (English) Zbl 1464.76207 Indian J. Pure Appl. Math. 51, No. 4, 1451-1469 (2020). MSC: 76V05 76A05 76M20 PDF BibTeX XML Cite \textit{S. Debnath} et al., Indian J. Pure Appl. Math. 51, No. 4, 1451--1469 (2020; Zbl 1464.76207) Full Text: DOI OpenURL
Tan, Zhijun; Li, Kang; Chen, Yanping Two-grid finite element methods of Crank-Nicolson Galerkin approximation for a nonlinear parabolic equation. (English) Zbl 1468.65131 East Asian J. Appl. Math. 10, No. 4, 800-817 (2020). MSC: 65M55 65M60 65M06 65N30 65N15 65M12 35K55 PDF BibTeX XML Cite \textit{Z. Tan} et al., East Asian J. Appl. Math. 10, No. 4, 800--817 (2020; Zbl 1468.65131) Full Text: DOI OpenURL
Wang, Jianyun; Jin, Jicheng; Tian, Zhikun Two-grid finite element method with Crank-Nicolson fully discrete scheme for the time-dependent Schrödinger equation. (English) Zbl 1463.65281 Numer. Math., Theory Methods Appl. 13, No. 2, 334-352 (2020). MSC: 65M55 65M60 65M15 65M12 65M06 65N30 35J05 PDF BibTeX XML Cite \textit{J. Wang} et al., Numer. Math., Theory Methods Appl. 13, No. 2, 334--352 (2020; Zbl 1463.65281) Full Text: DOI OpenURL
Zhang, Feiran; Zhu, Yan Nonconforming finite element method for the nonlinear Klein-Gordon equation with moving grids. (English) Zbl 1463.65384 J. Math., Wuhan Univ. 40, No. 4, 421-430 (2020). MSC: 65N30 65N12 65N15 65M06 65M60 PDF BibTeX XML Cite \textit{F. Zhang} and \textit{Y. Zhu}, J. Math., Wuhan Univ. 40, No. 4, 421--430 (2020; Zbl 1463.65384) Full Text: DOI OpenURL
Yang, Caijie; Sun, Tongjun Crank-Nicolson finite difference method for parabolic optimal control problem. (Chinese. English summary) Zbl 1463.65255 J. Shandong Univ., Nat. Sci. 55, No. 6, 115-121 (2020). MSC: 65M06 49J20 65M15 35R50 PDF BibTeX XML Cite \textit{C. Yang} and \textit{T. Sun}, J. Shandong Univ., Nat. Sci. 55, No. 6, 115--121 (2020; Zbl 1463.65255) Full Text: DOI OpenURL
Ravindran, S. S. Analysis of stabilized Crank-Nicolson time-stepping scheme for the evolutionary Peterlin viscoelastic model. (English) Zbl 1447.65089 Numer. Funct. Anal. Optim. 41, No. 13, 1611-1641 (2020). MSC: 65M60 65M06 65N30 76M10 65M12 65N15 76A10 PDF BibTeX XML Cite \textit{S. S. Ravindran}, Numer. Funct. Anal. Optim. 41, No. 13, 1611--1641 (2020; Zbl 1447.65089) Full Text: DOI OpenURL
Qiao, Leijie; Xu, Da; Yan, Yubin High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. (English) Zbl 1446.65131 Math. Methods Appl. Sci. 43, No. 8, 5162-5178 (2020). MSC: 65M70 65M06 65M12 65M15 65D07 35R11 26A33 45E10 35R09 45K05 PDF BibTeX XML Cite \textit{L. Qiao} et al., Math. Methods Appl. Sci. 43, No. 8, 5162--5178 (2020; Zbl 1446.65131) Full Text: DOI OpenURL
Muyassar, Ahmat; Abdurishit, Abduwali; Abdugeni, Abduxkur The modified local Crank-Nicolson schemes for Rosenau-Burgers equation. (English) Zbl 1449.65196 Chin. J. Eng. Math. 37, No. 2, 231-244 (2020). MSC: 65M06 65M12 65M15 65N06 35Q53 PDF BibTeX XML Cite \textit{A. Muyassar} et al., Chin. J. Eng. Math. 37, No. 2, 231--244 (2020; Zbl 1449.65196) Full Text: DOI OpenURL
Qian, Lingzhi; Feng, Xinlong; He, Yinnian Crank-Nicolson leap-frog time stepping decoupled scheme for the fluid-fluid interaction problems. (English) Zbl 1447.65088 J. Sci. Comput. 84, No. 1, Paper No. 4, 20 p. (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65N30 65M15 65M06 65N12 35Q35 86A05 PDF BibTeX XML Cite \textit{L. Qian} et al., J. Sci. Comput. 84, No. 1, Paper No. 4, 20 p. (2020; Zbl 1447.65088) Full Text: DOI OpenURL
Mogilevich, Lev I.; Ivanov, Sergeĭ V.; Blinkov, Yuriĭ A. Modeling of nonlinear waves in two coaxial physically nonlinear shells with a viscous incompressible fluid between them, taking into account the inertia of its motion. (English) Zbl 1445.74037 Russ. J. Nonlinear Dyn. 16, No. 2, 275-290 (2020). MSC: 74J30 74J35 74K25 74F10 74S20 PDF BibTeX XML Cite \textit{L. I. Mogilevich} et al., Russ. J. Nonlinear Dyn. 16, No. 2, 275--290 (2020; Zbl 1445.74037) Full Text: DOI MNR OpenURL
Cao, Rongjun; Chen, Minghua; Ng, Michael K.; Wu, Yu-Jiang Fast and high-order accuracy numerical methods for time-dependent nonlocal problems in \(\mathbb{R}^2\). (English) Zbl 1445.74054 J. Sci. Comput. 84, No. 1, Paper No. 8, 31 p. (2020). MSC: 74S99 74S20 65M12 PDF BibTeX XML Cite \textit{R. Cao} et al., J. Sci. Comput. 84, No. 1, Paper No. 8, 31 p. (2020; Zbl 1445.74054) Full Text: DOI arXiv OpenURL
Kong, Wang; Huang, Zhongyi Transparent boundary conditions and numerical computation for singularly perturbed telegraph equation on unbounded domain. (English) Zbl 1450.65124 Numer. Math. 145, No. 2, 345-382 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65M12 35B25 35B40 35C20 35M13 PDF BibTeX XML Cite \textit{W. Kong} and \textit{Z. Huang}, Numer. Math. 145, No. 2, 345--382 (2020; Zbl 1450.65124) Full Text: DOI OpenURL
Wang, Xiaoping; Xu, Huanying; Qi, Haitao Numerical analysis for rotating electro-osmotic flow of fractional Maxwell fluids. (English) Zbl 1450.76039 Appl. Math. Lett. 103, Article ID 106179, 8 p. (2020). MSC: 76U05 76W05 76A10 76M20 26A33 PDF BibTeX XML Cite \textit{X. Wang} et al., Appl. Math. Lett. 103, Article ID 106179, 8 p. (2020; Zbl 1450.76039) Full Text: DOI OpenURL
Hou, Tianliang; Leng, Haitao Numerical analysis of a stabilized Crank-Nicolson/Adams-Bashforth finite difference scheme for Allen-Cahn equations. (English) Zbl 07206970 Appl. Math. Lett. 102, Article ID 106150, 9 p. (2020). MSC: 65M06 65M12 65M15 35Q35 65M20 PDF BibTeX XML Cite \textit{T. Hou} and \textit{H. Leng}, Appl. Math. Lett. 102, Article ID 106150, 9 p. (2020; Zbl 07206970) Full Text: DOI OpenURL
Li, Meng; Shi, Dongyang; Wang, Junjun Unconditional superconvergence analysis of a linearized Crank-Nicolson Galerkin FEM for generalized Ginzburg-Landau equation. (English) Zbl 1437.65197 Comput. Math. Appl. 79, No. 8, 2411-2425 (2020). MSC: 65N30 65M06 65M12 65M15 35Q56 PDF BibTeX XML Cite \textit{M. Li} et al., Comput. Math. Appl. 79, No. 8, 2411--2425 (2020; Zbl 1437.65197) Full Text: DOI arXiv OpenURL
Wang, Lin; Yu, Haijun An energy stable linear diffusive Crank-Nicolson scheme for the Cahn-Hilliard gradient flow. (English) Zbl 1437.65113 J. Comput. Appl. Math. 377, Article ID 112880, 25 p. (2020). MSC: 65M06 65M12 65M15 35Q35 PDF BibTeX XML Cite \textit{L. Wang} and \textit{H. Yu}, J. Comput. Appl. Math. 377, Article ID 112880, 25 p. (2020; Zbl 1437.65113) Full Text: DOI arXiv OpenURL
Jiang, Chaolong; Gong, Yuezheng; Cai, Wenjun; Wang, Yushun A linearly implicit structure-preserving scheme for the Camassa-Holm equation based on multiple scalar auxiliary variables approach. (English) Zbl 1436.65104 J. Sci. Comput. 83, No. 1, Paper No. 20, 20 p. (2020). MSC: 65M06 65M70 35Q53 PDF BibTeX XML Cite \textit{C. Jiang} et al., J. Sci. Comput. 83, No. 1, Paper No. 20, 20 p. (2020; Zbl 1436.65104) Full Text: DOI arXiv OpenURL
Hou, Tianliang; Chen, Luoping; Yang, Yueting; Yang, Yin Two-grid Raviart-Thomas mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations. (English) Zbl 1436.65183 Adv. Comput. Math. 46, No. 2, Paper No. 24, 24 p. (2020). MSC: 65N30 65N55 65M06 65M12 65M15 35B45 35K55 PDF BibTeX XML Cite \textit{T. Hou} et al., Adv. Comput. Math. 46, No. 2, Paper No. 24, 24 p. (2020; Zbl 1436.65183) Full Text: DOI OpenURL
Yan, Jingye; Zhang, Hong; Liu, Ziyuan; Song, Songhe Two novel linear-implicit momentum-conserving schemes for the fractional Korteweg-de Vries equation. (English) Zbl 1433.65246 Appl. Math. Comput. 367, Article ID 124745, 14 p. (2020). MSC: 65M70 65M06 35R11 35Q53 PDF BibTeX XML Cite \textit{J. Yan} et al., Appl. Math. Comput. 367, Article ID 124745, 14 p. (2020; Zbl 1433.65246) Full Text: DOI OpenURL
Lu, Xiaoli; Zhang, Lei; Huang, Pengzhan A fully discrete finite element scheme for the Kelvin-Voigt model. (English) Zbl 1499.65509 Filomat 33, No. 18, 5813-5827 (2019). MSC: 65M60 65M12 65M15 65M06 65N30 76A10 35Q35 PDF BibTeX XML Cite \textit{X. Lu} et al., Filomat 33, No. 18, 5813--5827 (2019; Zbl 1499.65509) Full Text: DOI OpenURL
Flores, Salvador; Macías-Díaz, Jorge E.; Hendy, Ahmed S. Discrete monotone method for space-fractional nonlinear reaction-diffusion equations. (English) Zbl 1485.65093 Adv. Difference Equ. 2019, Paper No. 317, 23 p. (2019). MSC: 65M06 35K57 26A33 PDF BibTeX XML Cite \textit{S. Flores} et al., Adv. Difference Equ. 2019, Paper No. 317, 23 p. (2019; Zbl 1485.65093) Full Text: DOI OpenURL
Zhang, Tong; Jin, JiaoJiao Decoupled Crank-Nicolson/Adams-Bashforth scheme for the Boussinesq equations with smooth initial data. (English) Zbl 1499.65548 Int. J. Comput. Math. 96, No. 3, 594-621 (2019). MSC: 65M60 65M06 65L06 65N30 65M12 65M15 76D05 76D07 76M10 35Q30 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{J. Jin}, Int. J. Comput. Math. 96, No. 3, 594--621 (2019; Zbl 1499.65548) Full Text: DOI OpenURL
Wang, Fenling; Zhao, Yanmin; Shi, Zhengguang; Shi, Yanhua; Tang, Yifa High accuracy analysis of an anisotropic nonconforming finite element method for two-dimensional time fractional wave equation. (English) Zbl 1462.65157 East Asian J. Appl. Math. 9, No. 4, 797-817 (2019). MSC: 65M60 65M06 65N30 65N12 65M15 35R11 PDF BibTeX XML Cite \textit{F. Wang} et al., East Asian J. Appl. Math. 9, No. 4, 797--817 (2019; Zbl 1462.65157) Full Text: DOI OpenURL
Adhikari, S. K. Phase-separated vortex-lattice in a rotating binary Bose-Einstein condensate. (English) Zbl 1464.82007 Commun. Nonlinear Sci. Numer. Simul. 71, 212-219 (2019). MSC: 82C10 65M06 76Y05 PDF BibTeX XML Cite \textit{S. K. Adhikari}, Commun. Nonlinear Sci. Numer. Simul. 71, 212--219 (2019; Zbl 1464.82007) Full Text: DOI arXiv OpenURL
Zhu, Wanwan; Shen, Ruigang; Yang, Ying The optimal error estimate of finite element method with Crank-Nicolson scheme for Poisson-Nernst-Planck equations. (Chinese. English summary) Zbl 1449.65269 Numer. Math., Nanjing 41, No. 3, 265-276 (2019). MSC: 65M60 65N15 65N30 65M06 35Q60 35Q82 78A57 PDF BibTeX XML Cite \textit{W. Zhu} et al., Numer. Math., Nanjing 41, No. 3, 265--276 (2019; Zbl 1449.65269) OpenURL
Chen, Jinghua; Chen, Xuejuan; Zhang, Hongmei Numerical simulation of two-dimensional tempered fractional diffusion equation. (Chinese. English summary) Zbl 1449.65174 J. Xiamen Univ., Nat. Sci. 58, No. 6, 882-888 (2019). MSC: 65M06 65M12 35R11 26A33 65B05 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Xiamen Univ., Nat. Sci. 58, No. 6, 882--888 (2019; Zbl 1449.65174) Full Text: DOI OpenURL
Yang, Xiaozhong; Wu, Lifei An alternating band parallel difference method for time fractional diffusion equation. (Chinese. English summary) Zbl 1449.65208 Chin. J. Eng. Math. 36, No. 5, 535-550 (2019). MSC: 65M06 65M12 35R11 26A33 65Y05 PDF BibTeX XML Cite \textit{X. Yang} and \textit{L. Wu}, Chin. J. Eng. Math. 36, No. 5, 535--550 (2019; Zbl 1449.65208) Full Text: DOI OpenURL
Ghodgaonkar, Aditya A.; Christov, Ivan C. Solving nonlinear parabolic equations by a strongly implicit finite difference scheme. Applications to the finite speed spreading of non-Newtonian viscous gravity currents. (English) Zbl 1443.76162 Berezovski, Arkadi (ed.) et al., Applied wave mathematics II. Selected topics in solids, fluids, and mathematical methods and complexity. Cham: Springer. Math. Planet Earth 6, 305-342 (2019). MSC: 76M20 76A05 76A20 PDF BibTeX XML Cite \textit{A. A. Ghodgaonkar} and \textit{I. C. Christov}, Math. Planet Earth 6, 305--342 (2019; Zbl 1443.76162) Full Text: DOI arXiv OpenURL
Vijayalakshmi, P.; Gunakala, S. Rao; Animasaun, I. L.; Sivaraj, R. Chemical reaction and nonuniform heat source/sink effects on Casson fluid flow over a vertical cone and flat plate saturated with porous medium. (English) Zbl 1450.76041 Kumar, B. Rushi (ed.) et al., Applied mathematics and scientific computing. International conference on advances in mathematical sciences, ICAMS, Vellore, India, December 1–3, 2017. Volume II. Selected papers. Cham: Birkhäuser. Trends Math., 117-127 (2019). MSC: 76V05 76S05 76A05 76W05 76M20 80A21 PDF BibTeX XML Cite \textit{P. Vijayalakshmi} et al., in: Applied mathematics and scientific computing. International conference on advances in mathematical sciences, ICAMS, Vellore, India, December 1--3, 2017. Volume II. Selected papers. Cham: Birkhäuser. 117--127 (2019; Zbl 1450.76041) Full Text: DOI OpenURL
Liang, Hongxia; Zhang, Tong Stability and convergence of two-grid Crank-Nicolson extrapolation scheme for the time-dependent natural convection equations. (English) Zbl 1434.65228 Math. Methods Appl. Sci. 42, No. 18, 6165-6191 (2019). MSC: 65N15 65N30 76D07 65M06 76R10 65L06 PDF BibTeX XML Cite \textit{H. Liang} and \textit{T. Zhang}, Math. Methods Appl. Sci. 42, No. 18, 6165--6191 (2019; Zbl 1434.65228) Full Text: DOI OpenURL
Li, Juan Error analysis of a linearized Crank-Nicolson scheme for the phase field crystal equation. (Chinese. English summary) Zbl 1449.65190 J. Shandong Univ., Nat. Sci. 54, No. 6, 118-126 (2019). MSC: 65M06 65M15 65M12 65N06 PDF BibTeX XML Cite \textit{J. Li}, J. Shandong Univ., Nat. Sci. 54, No. 6, 118--126 (2019; Zbl 1449.65190) Full Text: DOI OpenURL
Xue, Jufeng; Shang, Yueqiang A finite element variational multiscale method based on Crank-Nicolson scheme for the unsteady Navier-Stokes equations. (Chinese. English summary) Zbl 1449.65264 Chin. J. Eng. Math. 36, No. 4, 419-430 (2019). MSC: 65M60 65N30 65N55 76D05 65M06 76M10 76M20 35Q30 65M15 PDF BibTeX XML Cite \textit{J. Xue} and \textit{Y. Shang}, Chin. J. Eng. Math. 36, No. 4, 419--430 (2019; Zbl 1449.65264) Full Text: DOI OpenURL
Abazari, Reza; Yildirim, Kenan Numerical study of Sivashinsky equation using a splitting scheme based on Crank-Nicolson method. (English) Zbl 1427.65142 Math. Methods Appl. Sci. 42, No. 16, 5509-5521 (2019). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{R. Abazari} and \textit{K. Yildirim}, Math. Methods Appl. Sci. 42, No. 16, 5509--5521 (2019; Zbl 1427.65142) Full Text: DOI OpenURL
Huang, Jinrong; Hu, Jinsong; Jia, Qitao High precise nonlinear CN difference scheme for BBM equation. (Chinese. English summary) Zbl 1438.65176 J. Sichuan Univ., Nat. Sci. Ed. 56, No. 3, 387-391 (2019). MSC: 65M06 65M12 35Q53 PDF BibTeX XML Cite \textit{J. Huang} et al., J. Sichuan Univ., Nat. Sci. Ed. 56, No. 3, 387--391 (2019; Zbl 1438.65176) Full Text: DOI OpenURL
Nie, Yufeng; Hu, Jiahui; Wang, Jungang Douglas-Gunn finite difference scheme for three-dimensional space fractional advection diffusion equation. (Chinese. English summary) Zbl 1438.65185 J. Zhengzhou Univ., Nat. Sci. Ed. 51, No. 1, 44-50 (2019). MSC: 65M06 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Nie} et al., J. Zhengzhou Univ., Nat. Sci. Ed. 51, No. 1, 44--50 (2019; Zbl 1438.65185) Full Text: DOI OpenURL
Feulefack, Pierre Aime; Djida, Jean Daniel; Abdon, Atangana A new model of groundwater flow within an unconfined aquifer: application of Caputo-Fabrizio fractional derivative. (English) Zbl 1416.76175 Discrete Contin. Dyn. Syst., Ser. B 24, No. 7, 3227-3247 (2019). MSC: 76M20 76S05 26A33 PDF BibTeX XML Cite \textit{P. A. Feulefack} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 7, 3227--3247 (2019; Zbl 1416.76175) Full Text: DOI OpenURL
Nair, Lakshmi Chandrasekharan; Awasthi, Ashish Quintic trigonometric spline based numerical scheme for nonlinear modified Burgers’ equation. (English) Zbl 1418.65146 Numer. Methods Partial Differ. Equations 35, No. 3, 1269-1289 (2019). MSC: 65M70 65D07 65M12 65M06 35Q53 PDF BibTeX XML Cite \textit{L. C. Nair} and \textit{A. Awasthi}, Numer. Methods Partial Differ. Equations 35, No. 3, 1269--1289 (2019; Zbl 1418.65146) Full Text: DOI OpenURL
Chen, Wenping; Lu, Shujuan; Chen, Hu; Liu, Haiyu Crank-Nicolson Legendre spectral approximation for space-fractional Allen-Cahn equation. (English) Zbl 1416.65376 Electron. J. Differ. Equ. 2019, Paper No. 76, 17 p. (2019). MSC: 65M70 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{W. Chen} et al., Electron. J. Differ. Equ. 2019, Paper No. 76, 17 p. (2019; Zbl 1416.65376) Full Text: Link OpenURL
Wang, Pengfei; Huang, Pengzhan Convergence of the Crank-Nicolson extrapolation scheme for the Korteweg-de Vries equation. (English) Zbl 1419.65074 Appl. Numer. Math. 143, 88-96 (2019). MSC: 65M60 65M06 65L06 35Q53 65M12 65M15 PDF BibTeX XML Cite \textit{P. Wang} and \textit{P. Huang}, Appl. Numer. Math. 143, 88--96 (2019; Zbl 1419.65074) Full Text: DOI OpenURL
Chen, Hongbin; Xu, Da; Zhou, Jun A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel. (English) Zbl 07069130 J. Comput. Appl. Math. 356, 152-163 (2019). MSC: 65M06 65R20 45K05 35R11 65M15 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Comput. Appl. Math. 356, 152--163 (2019; Zbl 07069130) Full Text: DOI OpenURL
Ran, Maohua; Zhang, Chengjian Linearized Crank-Nicolson scheme for the nonlinear time-space fractional Schrödinger equations. (English) Zbl 1419.65027 J. Comput. Appl. Math. 355, 218-231 (2019). MSC: 65M06 35Q41 65M12 35R11 PDF BibTeX XML Cite \textit{M. Ran} and \textit{C. Zhang}, J. Comput. Appl. Math. 355, 218--231 (2019; Zbl 1419.65027) Full Text: DOI OpenURL
Hou, Tianliang; Jiang, Wenzhu; Yang, Yueting; Leng, Haitao Two-grid \(P_0^2\)-\(P_{1}\) mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations. (English) Zbl 1412.65124 Appl. Numer. Math. 137, 136-150 (2019). MSC: 65M15 65M06 65N30 35K55 35B45 PDF BibTeX XML Cite \textit{T. Hou} et al., Appl. Numer. Math. 137, 136--150 (2019; Zbl 1412.65124) Full Text: DOI OpenURL
Gunzburger, Max; Wang, Jilu A second-order Crank-Nicolson method for time-fractional PDEs. (English) Zbl 1406.65060 Int. J. Numer. Anal. Model. 16, No. 2, 225-239 (2019). MSC: 65M06 35R11 65M15 33F05 PDF BibTeX XML Cite \textit{M. Gunzburger} and \textit{J. Wang}, Int. J. Numer. Anal. Model. 16, No. 2, 225--239 (2019; Zbl 1406.65060) Full Text: Link OpenURL
Ghattassi, Mohamed; Roche, Jean Rodolphe; Schmitt, Didier Analysis of a full discretization scheme for \(2D\) radiative-conductive heat transfer systems. (English) Zbl 1462.65142 J. Comput. Appl. Math. 346, 1-17 (2019). MSC: 65M60 65M06 65M12 65M15 80A21 45K05 35R09 35A01 35A02 35Q79 PDF BibTeX XML Cite \textit{M. Ghattassi} et al., J. Comput. Appl. Math. 346, 1--17 (2019; Zbl 1462.65142) Full Text: DOI OpenURL
Ngondiep, Eric Long time unconditional stability of a two-level hybrid method for nonstationary incompressible Navier-Stokes equations. (English) Zbl 1397.76095 J. Comput. Appl. Math. 345, 501-514 (2019). MSC: 76M20 76D05 65M06 35Q30 PDF BibTeX XML Cite \textit{E. Ngondiep}, J. Comput. Appl. Math. 345, 501--514 (2019; Zbl 1397.76095) Full Text: DOI OpenURL
Ngondiep, Eric Stability analysis of maccormack rapid solver method for evolutionary Stokes-Darcy problem. (English) Zbl 1397.76074 J. Comput. Appl. Math. 345, 269-285 (2019). MSC: 76M10 76M20 65N15 65N30 76D07 76S05 PDF BibTeX XML Cite \textit{E. Ngondiep}, J. Comput. Appl. Math. 345, 269--285 (2019; Zbl 1397.76074) Full Text: DOI OpenURL
Wang, Jialing; Wang, Yushun Numerical analysis of a new conservative scheme for the coupled nonlinear Schrödinger equations. (English) Zbl 1499.65439 Int. J. Comput. Math. 95, No. 8, 1583-1608 (2018). MSC: 65M06 65M12 65M20 65M70 65N35 65T50 35Q55 65Y05 65M15 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Y. Wang}, Int. J. Comput. Math. 95, No. 8, 1583--1608 (2018; Zbl 1499.65439) Full Text: DOI OpenURL
Li, Mingzhu; Ma, Qiang; Ding, Xiaohua A compact ADI Crank-Nicolson difference scheme for the two-dimensional time fractional subdiffusion equation. (English) Zbl 1499.65406 Int. J. Comput. Math. 95, No. 12, 2525-2538 (2018). MSC: 65M06 65N06 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{M. Li} et al., Int. J. Comput. Math. 95, No. 12, 2525--2538 (2018; Zbl 1499.65406) Full Text: DOI OpenURL