×

Hybrid coupling of a one-dimensional energy-transport Schrödinger system. (English) Zbl 1382.65209

This paper refers to the problem of energy transport in quantum physics. It considers the domain \([0,L]\) of the one-dimensional case. The quantum zone \(Q=[x_{1},x_{2}]\) is described by the Schrödinger equation \[ -\frac{1}{2m}\partial_{xx}\psi_{k}+V(x)= e(x_{1},k)\psi_{k},\qquad k>0, \]
\[ -\frac{1}{2m}\partial_{xx}\psi_{k}+V(x)= e(x_{2},k)\psi_{k},\qquad k<0, \] where \(m\) is the mass and \(e\) is the total particle energy of an electron. This system is complemented with the boundary conditions at the points \(x_{1}\) and \(x_{2}\). The classical zone \(C=[0,x_{1}]\bigcup[x_{2},L]\) is modeled by the Boltzmann equation, complemented with the boundary conditions at points \( x=0\) and \(x=L \). The numerical simulation of these problems is given using the Crank-Nicolson scheme in the quantum zone and the finite element method in the classical zone.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
65L12 Finite difference and finite volume methods for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19, 7-32 (1985) · Zbl 0567.65078 · doi:10.1051/m2an/1985190100071
[2] Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284, 617-649 (1984) · Zbl 0508.60067 · doi:10.1090/S0002-9947-1984-0743736-0
[3] Baro, M., Ben Abdallah, N., Degond, P., El Ayyadi, A.: A 1D coupled Schrödinger drift-diffusion model including collisions. J. Comput. Phys 203, 129-153 (2005) · Zbl 1067.82060 · doi:10.1016/j.jcp.2004.08.009
[4] Ben Abdallah, N.: A hybrid kinetic-quantum model for stationary electron transport. J. Stat. Phys. 90(3-4), 627-662 (1998) · Zbl 0949.76075 · doi:10.1023/A:1023216701688
[5] Ben Abdallah, N., Cáceres, J.M., Carrillo, J.A., Vecil, F.: A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs. J. Comput. Phys. 228(17), 6553-6571 (2009) · Zbl 1175.82072 · doi:10.1016/j.jcp.2009.06.001
[6] Ben Abdallah, N., Degond, P.: On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37, 3306-3333 (1996) · Zbl 0868.45006 · doi:10.1063/1.531567
[7] Ben Abdallah, N., Desvillettes, L., Génieys, S.: On the convergence of the Boltzmann equation for semiconductors towards the energy transport model. J. Stat. Phys. 98(3-4), 835-870 (2000) · Zbl 0991.82027 · doi:10.1023/A:1018635827617
[8] Ben Abdallah, N., Jourdana, C., Pietra, P.: An effective mass model for the simulation of ultra-scaled confined devices. Math. Models Methods Appl. Sci. 22(12), 1250039 (2012) · Zbl 1256.35096 · doi:10.1142/S021820251250039X
[9] Ben Abdallah, N., Méhats, F.: Semiclassical analysis of the Schrödinger equation with a partially confining potential. J. Math. Pures Appl. 84, 580-614 (2005) · Zbl 1162.35343 · doi:10.1016/j.matpur.2004.10.004
[10] Ben Abdallah, N., Méhats, F., Negulescu, C.: Adiabatic quantum-fluid transport models. Commun. Math. Sci. 4(3), 621-650 (2006) · Zbl 1296.82064 · doi:10.4310/CMS.2006.v4.n3.a8
[11] Ben Abdallah, N., Méhats, F., Vauchelet, N.: Diffusive transport of partially quantized particles: existence uniqueness and long time behaviour. Proc. Edinb. Math. Soc. 49, 513-549 (2006) · Zbl 1126.35051 · doi:10.1017/S0013091504000987
[12] Ben Abdallah, N., Tang, S.: On hybrid quantum-classical transport models. Math. Methods. Appl. Sci. 27, 643-667 (2004) · Zbl 1144.81521 · doi:10.1002/mma.494
[13] Camiola, V.D., Mascali, G., Romano, V.: Simulation of a double-gate MOSFET by a non-parabolic energy-transport model for semiconductors based on the maximum entropy principle. Math. Comput. Model. 58, 321-343 (2013) · Zbl 1297.81176 · doi:10.1016/j.mcm.2012.11.007
[14] Chen, D., Kan, E., Ravaioli, U., Shu, C., Dutton, R.: An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects. IEEE Electr. Device Lett. 13, 26-28 (1992) · doi:10.1109/55.144940
[15] Degond, P., El Ayyadi, A.: A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations. J. Comput. Phys. 181, 222-259 (2002) · Zbl 1008.82033 · doi:10.1006/jcph.2002.7122
[16] Degond, P., Jüngel, A., Pietra, P.: Numerical discretization of energy-transport models for semiconductors with non-parabolic band structure. SIAM J. Sci. Comput. 22, 986-1007 (2000) · Zbl 1049.82074 · doi:10.1137/S1064827599360972
[17] Degond, P., Liu, J.-G., Mieussens, L.: Macroscopic fluid models with localized kinetic upscaling effects. Multiscale Model. Simul. 5(3), 940-979 (2006) · Zbl 1147.82331 · doi:10.1137/060651574
[18] Degond, P., Méhats, F., Ringhofer, C.: Quantum energy-transport and drift-diffusion models. J. Stat. Phys. 118(3-4), 625-665 (2005) · Zbl 1126.82314 · doi:10.1007/s10955-004-8823-3
[19] Degond, P., Schmeiser, C.: Macroscopic models for semiconductor heterostructures. J. Math. Phys. 39(9), 4634-4663 (1998) · Zbl 0938.82049 · doi:10.1063/1.532528
[20] Degond, P., Schmeiser, C.: Kinetic boundary layers and fluid-kinetic coupling in semiconductors. Trans. Theory Stat. Phys. 28, 31-55 (1999) · Zbl 0942.35162 · doi:10.1080/00411459908214514
[21] El Ayyadi, A., Jüngel, A.: Semiconductor simulations using a coupled quantum drift-diffusion Schrödinger-Poisson model. SIAM J. Appl. Math. 66, 554-572 (2005) · Zbl 1099.82022 · doi:10.1137/040610805
[22] Gadau, S., Jüngel, A.: A three-dimensional mixed finite-element approximation of the semiconductor energy-transport equations. SIAM J. Sci. Comput. 31(2), 1120-1140 (2008/09) · Zbl 1191.82115
[23] Gadau, S., Jüngel, A., Pietra, P.: A Mixed Finite-Element Scheme of a Semiconductor Energy-Transport Model Using Dual Entropy Variables. Hyperbolic Problems: Theory, Numerics and Applications. I, 139-146, Yokohama Publ., Yokohama (2006) · Zbl 1154.82300
[24] Gallego, S., Méhats, F.: Numerical approximation of a quantum drift-diffusion model. C. R. Acad. Sci. Paris Ser. I 339, 519-524 (2004) · Zbl 1058.65089 · doi:10.1016/j.crma.2004.07.022
[25] Golse, F.: Knudsen layers from a computational viewpoint. Trans. Theory Stat. Phys. 21, 211-236 (1992) · Zbl 0754.76066 · doi:10.1080/00411459208203921
[26] Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron. Dev. 11(10), 455-465 (1964) · doi:10.1109/T-ED.1964.15364
[27] Jourdana, C., Pietra, P.: A hybrid classical-quantum transport model for the simulation of carbon nanotube transistors. SIAM J. Sci. Comput. 36(3), B486-B507 (2014) · Zbl 1306.82021 · doi:10.1137/130926353
[28] Jourdana, C., Vauchelet, N.: Analysis of a diffusive effective mass model for nanowires. Kin. Relat. Model 4(4), 1121-1142 (2011) · Zbl 1242.82053 · doi:10.3934/krm.2011.4.1121
[29] Jüngel, A.: Transport Equations in Semiconductors. Lecture Note in Physics. Springer, New York (2009) · doi:10.1007/978-3-540-89526-8
[30] Jüngel, A., Matthes, D.: A derivation of the isothermal quantum hydrodynamic equations using entropy minimization. ZAMM Z. Angew. Math. Mech. 85(11), 806-814 (2005) · Zbl 1077.76074 · doi:10.1002/zamm.200510232
[31] Lyumkis, E., Polsky, B., Shur, A., Visocky, P.: Transient semiconductor device simulation including energy balance equation. Compel 11, 311-325 (1992) · Zbl 0756.65144 · doi:10.1108/eb010094
[32] Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Vienna (1990) · Zbl 0765.35001 · doi:10.1007/978-3-7091-6961-2
[33] Mascali, G., Romano, V.: A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle. Math. Comput. Model. 55, 10031020 (2012) · Zbl 1255.82064 · doi:10.1016/j.mcm.2011.09.026
[34] Pietra, P., Vauchelet, N.: Numerical simulations of an energy-transport model for partially quantized particles. Commun. Math. Sci. 12(1), 99-123 (2014) · Zbl 1294.82037 · doi:10.4310/CMS.2014.v12.n1.a5
[35] Pinaud, O.: Transient simulations of a resonant tunneling diode. J. Appl. Phys. 92(4), 1987-1994 (2002) · doi:10.1063/1.1494127
[36] Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126, 2002-2014 (1962) · doi:10.1103/PhysRev.126.2002
[37] Stratton, R.: Semiconductor current flow equations (diffusion and degeneracy). IEEE Trans. Electron. Dev. 19, 1288-1292 (1972) · doi:10.1109/T-ED.1972.17592
[38] Tang, S.Q., Zhang, D.P.: Pseudo-Hydrodynamic approximation for transient computaton of energy-transport models in semiconductors. Chin. Phys. Lett. 22(10), 2633 (2005) · doi:10.1088/0256-307X/22/10/049
[39] Tayeb, M.L.: From Boltzmann equation to spherical harmonics expansion model: diffusion limit and Poisson coupling. Commun. Math. Sci. 9(1), 255-275 (2011) · Zbl 1280.35083 · doi:10.4310/CMS.2011.v9.n1.a12
[40] Yamnahaki, A.: Second order boundary conditions for the drift-diffusion equations of semiconductors. Math. Method Appl. Sci. 5, 429-456 (1995) · Zbl 0830.65117 · doi:10.1142/S0218202595000267
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.