Baral, Abhishek; Sepehri, Mehrdad; Nec, Yana Effects of turbulence at the ingress into landfill gas wells. (English) Zbl 07569644 J. Eng. Math. 135, Paper No. 7, 20 p. (2022). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{A. Baral} et al., J. Eng. Math. 135, Paper No. 7, 20 p. (2022; Zbl 07569644) Full Text: DOI OpenURL
Jepson, Jacob M.; Fadai, Nabil T.; O’Dea, Reuben D. Travelling-wave and asymptotic analysis of a multiphase moving boundary model for engineered tissue growth. (English) Zbl 07559978 Bull. Math. Biol. 84, No. 8, Paper No. 87, 19 p. (2022). MSC: 92-XX PDF BibTeX XML Cite \textit{J. M. Jepson} et al., Bull. Math. Biol. 84, No. 8, Paper No. 87, 19 p. (2022; Zbl 07559978) Full Text: DOI OpenURL
Zheng, Xiaoming; Zhao, Kun; Jackson, Trachette; Lowengrub, John Tumor growth towards lower extracellular matrix conductivity regions under Darcy’s law and steady morphology. (English) Zbl 07556017 J. Math. Biol. 85, No. 1, Paper No. 5, 23 p. (2022). MSC: 92C10 92C17 PDF BibTeX XML Cite \textit{X. Zheng} et al., J. Math. Biol. 85, No. 1, Paper No. 5, 23 p. (2022; Zbl 07556017) Full Text: DOI OpenURL
Jaramillo, Alfredo; Guiraldello, Rafael T.; Paz, Stevens; Ausas, Roberto F.; Sousa, Fabricio S.; Pereira, Felipe; Buscaglia, Gustavo C. Towards HPC simulations of billion-cell reservoirs by multiscale mixed methods. (English) Zbl 07544728 Comput. Geosci. 26, No. 3, 481-501 (2022). MSC: 86-08 76S05 PDF BibTeX XML Cite \textit{A. Jaramillo} et al., Comput. Geosci. 26, No. 3, 481--501 (2022; Zbl 07544728) Full Text: DOI OpenURL
Venetis, J. Analytic evaluation of piezometric head for a creeping flow past a fully constrained obstacle. (English) Zbl 07540746 Adv. Differ. Equ. Control Process. 27, 163-179 (2022). MSC: 35-XX PDF BibTeX XML Cite \textit{J. Venetis}, Adv. Differ. Equ. Control Process. 27, 163--179 (2022; Zbl 07540746) Full Text: DOI OpenURL
Shen, Zhongwei Sharp convergence rates for Darcy’s law. (English) Zbl 07538435 Commun. Partial Differ. Equations 47, No. 6, 1098-1123 (2022). MSC: 35Q35 35B27 76D07 76S05 74F10 35C20 PDF BibTeX XML Cite \textit{Z. Shen}, Commun. Partial Differ. Equations 47, No. 6, 1098--1123 (2022; Zbl 07538435) Full Text: DOI OpenURL
Eggenweiler, Elissa; Discacciati, Marco; Rybak, Iryna Analysis of the Stokes-Darcy problem with generalised interface conditions. (English) Zbl 07523201 ESAIM, Math. Model. Numer. Anal. 56, No. 2, 727-742 (2022). MSC: 35Q35 76D03 76D07 76S05 65N30 76M10 35D30 35R35 PDF BibTeX XML Cite \textit{E. Eggenweiler} et al., ESAIM, Math. Model. Numer. Anal. 56, No. 2, 727--742 (2022; Zbl 07523201) Full Text: DOI OpenURL
Zhang, Nangao Optimal convergence rates to diffusion waves for solutions of \(p\)-system with damping on quadrant. (English) Zbl 1485.35066 J. Math. Anal. Appl. 512, No. 1, Article ID 126118, 10 p. (2022). MSC: 35B40 35C06 35L50 35L60 PDF BibTeX XML Cite \textit{N. Zhang}, J. Math. Anal. Appl. 512, No. 1, Article ID 126118, 10 p. (2022; Zbl 1485.35066) Full Text: DOI OpenURL
Alazard, Thomas; Nguyen, Quoc-Hung Quasilinearization of the 3D Muskat equation, and applications to the critical Cauchy problem. (English) Zbl 07496429 Adv. Math. 399, Article ID 108278, 52 p. (2022). MSC: 35Q35 76S05 76D27 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{T. Alazard} and \textit{Q.-H. Nguyen}, Adv. Math. 399, Article ID 108278, 52 p. (2022; Zbl 07496429) Full Text: DOI OpenURL
Zhang, Nangao; Zhu, Changjiang Convergence to nonlinear diffusion waves for solutions of \(M_1\) model. (English) Zbl 1487.85025 J. Differ. Equations 320, 1-48 (2022). MSC: 85A25 35L65 35B40 82B24 35J05 35P15 35P30 26B20 PDF BibTeX XML Cite \textit{N. Zhang} and \textit{C. Zhu}, J. Differ. Equations 320, 1--48 (2022; Zbl 1487.85025) Full Text: DOI OpenURL
Liu, Qingqing; Peng, Hongyun; Wang, Zhi-An Asymptotic stability of diffusion waves of a quasi-linear hyperbolic-parabolic model for vasculogenesis. (English) Zbl 1484.35057 SIAM J. Math. Anal. 54, No. 1, 1313-1346 (2022). MSC: 35B40 35G55 35L60 35L04 92C17 92C37 PDF BibTeX XML Cite \textit{Q. Liu} et al., SIAM J. Math. Anal. 54, No. 1, 1313--1346 (2022; Zbl 1484.35057) Full Text: DOI arXiv OpenURL
Knopf, Patrik; Signori, Andrea Existence of weak solutions to multiphase Cahn-Hilliard-Darcy and Cahn-Hilliard-Brinkman models for stratified tumor growth with chemotaxis and general source terms. (English) Zbl 1484.35148 Commun. Partial Differ. Equations 47, No. 2, 233-278 (2022). MSC: 35D30 35K35 35K86 76D07 92C17 92C50 PDF BibTeX XML Cite \textit{P. Knopf} and \textit{A. Signori}, Commun. Partial Differ. Equations 47, No. 2, 233--278 (2022; Zbl 1484.35148) Full Text: DOI arXiv OpenURL
Cavaterra, Cecilia; Frigeri, Sergio; Grasselli, Maurizio Nonlocal Cahn-Hilliard-Hele-Shaw systems with singular potential and degenerate mobility. (English) Zbl 1482.35167 J. Math. Fluid Mech. 24, No. 1, Paper No. 13, 49 p. (2022). MSC: 35Q35 76D27 76T06 76S05 76V05 35D30 35D35 35B65 35A02 PDF BibTeX XML Cite \textit{C. Cavaterra} et al., J. Math. Fluid Mech. 24, No. 1, Paper No. 13, 49 p. (2022; Zbl 1482.35167) Full Text: DOI arXiv OpenURL
Calvo-Jurado, Carmen; Casado-Díaz, Juan; Luna-Laynez, Manuel A justification of the Darcy law for a suspension of not self-similar solid particles non-periodically distributed. (English) Zbl 1479.35057 J. Comput. Appl. Math. 404, Article ID 113415, 21 p. (2022). MSC: 35B27 35Q30 35Q35 PDF BibTeX XML Cite \textit{C. Calvo-Jurado} et al., J. Comput. Appl. Math. 404, Article ID 113415, 21 p. (2022; Zbl 1479.35057) Full Text: DOI OpenURL
Suárez-Grau, Francisco J. Mathematical modeling of micropolar fluid flows through a thin porous medium. (English) Zbl 07443342 J. Eng. Math. 126, Paper No. 7, 26 p. (2021). MSC: 35Qxx 76-XX 78-XX PDF BibTeX XML Cite \textit{F. J. Suárez-Grau}, J. Eng. Math. 126, Paper No. 7, 26 p. (2021; Zbl 07443342) Full Text: DOI arXiv OpenURL
Giunti, A. Derivation of Darcy’s law in randomly perforated domains. (English) Zbl 1473.35029 Calc. Var. Partial Differ. Equ. 60, No. 5, Paper No. 172, 30 p. (2021). Reviewer: Vivek Tewary (Bangalore) MSC: 35B27 35J57 35Q35 60K35 35R60 PDF BibTeX XML Cite \textit{A. Giunti}, Calc. Var. Partial Differ. Equ. 60, No. 5, Paper No. 172, 30 p. (2021; Zbl 1473.35029) Full Text: DOI arXiv OpenURL
Bousselsal, Mahmoud; Zaouche, Elmehdi The evolution dam problem for a compressible fluid with nonlinear Darcy’s law and Dirichlet boundary condition. (English) Zbl 1475.35260 Math. Methods Appl. Sci. 44, No. 1, 66-90 (2021). MSC: 35Q35 35B35 76S05 76D05 76N10 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{M. Bousselsal} and \textit{E. Zaouche}, Math. Methods Appl. Sci. 44, No. 1, 66--90 (2021; Zbl 1475.35260) Full Text: DOI OpenURL
Alazard, Thomas; Nguyen, Quoc-Hung On the Cauchy problem for the Muskat equation. II: Critical initial data. (English) Zbl 1473.35430 Ann. PDE 7, No. 1, Paper No. 7, 25 p. (2021). MSC: 35Q35 76S05 76T06 35A01 35A02 PDF BibTeX XML Cite \textit{T. Alazard} and \textit{Q.-H. Nguyen}, Ann. PDE 7, No. 1, Paper No. 7, 25 p. (2021; Zbl 1473.35430) Full Text: DOI arXiv OpenURL
Rybak, Iryna; Schwarzmeier, Christoph; Eggenweiler, Elissa; Rüde, Ulrich Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models. (English) Zbl 1461.76442 Comput. Geosci. 25, No. 2, 621-635 (2021). MSC: 76S05 76D07 76M28 PDF BibTeX XML Cite \textit{I. Rybak} et al., Comput. Geosci. 25, No. 2, 621--635 (2021; Zbl 1461.76442) Full Text: DOI arXiv OpenURL
Du, Guangzhi; Zuo, Liyun A two-grid method with backtracking for the mixed Stokes/Darcy model. (English) Zbl 1471.65194 J. Numer. Math. 29, No. 1, 39-46 (2021). MSC: 65N30 65N55 65N15 76D07 76S05 PDF BibTeX XML Cite \textit{G. Du} and \textit{L. Zuo}, J. Numer. Math. 29, No. 1, 39--46 (2021; Zbl 1471.65194) Full Text: DOI OpenURL
Vijay, K. G.; Nishad, Chandra Shekhar; Neelamani, S.; Sahoo, T. Wave interaction with multiple wavy porous barriers using dual boundary element method. (English) Zbl 1464.76114 Eng. Anal. Bound. Elem. 122, 176-189 (2021). MSC: 76M15 65N38 76B07 PDF BibTeX XML Cite \textit{K. G. Vijay} et al., Eng. Anal. Bound. Elem. 122, 176--189 (2021; Zbl 1464.76114) Full Text: DOI OpenURL
Ebenbeck, Matthias; Lam, Kei Fong Weak and stationary solutions to a Cahn-Hilliard-Brinkman model with singular potentials and source terms. (English) Zbl 1440.35190 Adv. Nonlinear Anal. 10, 24-65 (2021). MSC: 35K35 35D30 35J61 35Q92 92C50 76D07 PDF BibTeX XML Cite \textit{M. Ebenbeck} and \textit{K. F. Lam}, Adv. Nonlinear Anal. 10, 24--65 (2021; Zbl 1440.35190) Full Text: DOI arXiv OpenURL
Muthu, P.; Pujitha, V. Effect of magnetic field and non-uniform surface on squeeze film lubrication. (English) Zbl 1487.78005 J. Appl. Nonlinear Dyn. 9, No. 2, 223-230 (2020). MSC: 78A25 76D08 76A20 76S05 74L15 74A55 92C10 PDF BibTeX XML Cite \textit{P. Muthu} and \textit{V. Pujitha}, J. Appl. Nonlinear Dyn. 9, No. 2, 223--230 (2020; Zbl 1487.78005) Full Text: DOI OpenURL
Reuter, Balthasar; Rupp, Andreas; Aizinger, Vadym; Frank, Florian; Knabner, Peter FESTUNG: a MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. IV: Generic problem framework and model-coupling interface. (English) Zbl 07419117 Commun. Comput. Phys. 28, No. 2, 827-876 (2020). MSC: 65-XX 35L20 65M60 68N30 76B07 76S05 97P30 PDF BibTeX XML Cite \textit{B. Reuter} et al., Commun. Comput. Phys. 28, No. 2, 827--876 (2020; Zbl 07419117) Full Text: DOI arXiv OpenURL
Liu, Zezhou; Bouklas, Nikolaos; Hui, Chung-Yuen Coupled flow and deformation fields due to a line load on a poroelastic half space: effect of surface stress and surface bending. (English) Zbl 1472.74024 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2233, Article ID 20190761, 15 p. (2020). MSC: 74B20 PDF BibTeX XML Cite \textit{Z. Liu} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2233, Article ID 20190761, 15 p. (2020; Zbl 1472.74024) Full Text: DOI Link OpenURL
Papin, Alexander A.; Tokareva, Margarita A.; Virts, Rudolf A. Filtration of liquid in a non-isothermal viscous porous medium. (English) Zbl 07334133 J. Sib. Fed. Univ., Math. Phys. 13, No. 6, 763-773 (2020). MSC: 86Axx 86-XX PDF BibTeX XML Cite \textit{A. A. Papin} et al., J. Sib. Fed. Univ., Math. Phys. 13, No. 6, 763--773 (2020; Zbl 07334133) Full Text: DOI MNR OpenURL
Zhao, Lina; Park, Eun-Jae A lowest-order staggered DG method for the coupled Stokes-Darcy problem. (English) Zbl 1466.65209 IMA J. Numer. Anal. 40, No. 4, 2871-2897 (2020). MSC: 65N30 65N12 65N15 76D07 76S05 35B65 35Q35 PDF BibTeX XML Cite \textit{L. Zhao} and \textit{E.-J. Park}, IMA J. Numer. Anal. 40, No. 4, 2871--2897 (2020; Zbl 1466.65209) Full Text: DOI OpenURL
Yadav, P. K.; Tiwari, A.; Singh, P. Motion through spherical droplet with non-homogenous porous layer in spherical container. (English) Zbl 1457.76171 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 7, 1069-1082 (2020). MSC: 76S05 76D05 76D07 PDF BibTeX XML Cite \textit{P. K. Yadav} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 7, 1069--1082 (2020; Zbl 1457.76171) Full Text: DOI OpenURL
Bublik, S. A.; Semin, M. A. Study on the formation of Saffman-Taylor instability in oil reservoir in two-dimensional formulation. (Russian. English summary) Zbl 1452.76069 Mat. Model. 32, No. 7, 127-142 (2020). MSC: 76E17 76S05 76T30 76M12 86A05 PDF BibTeX XML Cite \textit{S. A. Bublik} and \textit{M. A. Semin}, Mat. Model. 32, No. 7, 127--142 (2020; Zbl 1452.76069) Full Text: DOI MNR OpenURL
Rybak, Iryna; Metzger, Stefan A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media. (English) Zbl 1474.35539 Appl. Math. Comput. 384, Article ID 125260, 14 p. (2020). MSC: 35Q35 76B03 76D07 76S05 PDF BibTeX XML Cite \textit{I. Rybak} and \textit{S. Metzger}, Appl. Math. Comput. 384, Article ID 125260, 14 p. (2020; Zbl 1474.35539) Full Text: DOI OpenURL
Lu, Min-Jhe; Liu, Chun; Lowengrub, John; Li, Shuwang Complex far-field geometries determine the stability of solid tumor growth with chemotaxis. (English) Zbl 1439.92044 Bull. Math. Biol. 82, No. 3, Paper No. 39, 41 p. (2020). MSC: 92C17 92C32 35Q92 PDF BibTeX XML Cite \textit{M.-J. Lu} et al., Bull. Math. Biol. 82, No. 3, Paper No. 39, 41 p. (2020; Zbl 1439.92044) Full Text: DOI arXiv OpenURL
Conti, Monica; Giorgini, Andrea Well-posedness for the Brinkman-Cahn-Hilliard system with unmatched viscosities. (English) Zbl 1434.35087 J. Differ. Equations 268, No. 10, 6350-6384 (2020). MSC: 35Q35 76D03 76D45 76S05 76T99 35D35 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{M. Conti} and \textit{A. Giorgini}, J. Differ. Equations 268, No. 10, 6350--6384 (2020; Zbl 1434.35087) Full Text: DOI OpenURL
Xue, Dandan; Hou, Yanren Numerical analysis of a second order algorithm for a non-stationary Navier-Stokes/Darcy model. (English) Zbl 1440.65236 J. Comput. Appl. Math. 369, Article ID 112579, 26 p. (2020). MSC: 65N30 65M70 65N15 65M12 76D05 76S05 76M10 65B05 PDF BibTeX XML Cite \textit{D. Xue} and \textit{Y. Hou}, J. Comput. Appl. Math. 369, Article ID 112579, 26 p. (2020; Zbl 1440.65236) Full Text: DOI OpenURL
Giorgini, Andrea Well-posedness of a diffuse interface model for Hele-Shaw flows. (English) Zbl 1435.35297 J. Math. Fluid Mech. 22, No. 1, Paper No. 5, 36 p. (2020). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q35 35D35 35K61 76D27 76S05 76D05 35B65 35D30 35A01 35A02 76D45 PDF BibTeX XML Cite \textit{A. Giorgini}, J. Math. Fluid Mech. 22, No. 1, Paper No. 5, 36 p. (2020; Zbl 1435.35297) Full Text: DOI arXiv OpenURL
Khademi, Ramin; Razminia, Abolhassan; Shiryaev, Vladimir I. Conjugate-mixed convection of nanofluid flow over an inclined flat plate in porous media. (English) Zbl 1433.76157 Appl. Math. Comput. 366, Article ID 124761, 14 p. (2020). MSC: 76R10 76S05 PDF BibTeX XML Cite \textit{R. Khademi} et al., Appl. Math. Comput. 366, Article ID 124761, 14 p. (2020; Zbl 1433.76157) Full Text: DOI OpenURL
Chang, Ailian; Sun, HongGuang; Zhang, Yong; Zheng, Chunmiao; Min, Fanlu Spatial fractional Darcy’s law to quantify fluid flow in natural reservoirs. (English) Zbl 07559843 Physica A 519, 119-126 (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{A. Chang} et al., Physica A 519, 119--126 (2019; Zbl 07559843) Full Text: DOI OpenURL
Risebro, Nils Henrik Three models for two phase flow in porous media. (English) Zbl 1430.76447 Vietnam J. Math. 47, No. 4, 835-849 (2019). MSC: 76S05 65M06 76M20 35L65 35Q35 76T99 PDF BibTeX XML Cite \textit{N. H. Risebro}, Vietnam J. Math. 47, No. 4, 835--849 (2019; Zbl 1430.76447) Full Text: DOI Link OpenURL
Anguiano, María; Suárez-Grau, Francisco Javier Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. (English) Zbl 1423.76045 Netw. Heterog. Media 14, No. 2, 289-316 (2019). MSC: 76A20 76M50 35B27 76S05 35Q35 PDF BibTeX XML Cite \textit{M. Anguiano} and \textit{F. J. Suárez-Grau}, Netw. Heterog. Media 14, No. 2, 289--316 (2019; Zbl 1423.76045) Full Text: DOI arXiv OpenURL
Zhang, Yinghui Initial boundary value problem for the 3D quasilinear hyperbolic equations with nonlinear damping. (English) Zbl 1437.35096 Appl. Anal. 98, No. 11, 2048-2063 (2019). MSC: 35B40 35L50 35L60 74D10 PDF BibTeX XML Cite \textit{Y. Zhang}, Appl. Anal. 98, No. 11, 2048--2063 (2019; Zbl 1437.35096) Full Text: DOI OpenURL
Prüss, Jan; Simonett, Gieri; Wilke, Mathias The Rayleigh-Taylor instability for the verigin problem with and without phase transition. (English) Zbl 1418.35310 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 3, Paper No. 18, 35 p. (2019). MSC: 35Q35 76D27 76E17 35R37 35K59 PDF BibTeX XML Cite \textit{J. Prüss} et al., NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 3, Paper No. 18, 35 p. (2019; Zbl 1418.35310) Full Text: DOI arXiv OpenURL
Ngo, Cuong; Huang, Weizhang Adaptive finite element solution of the porous medium equation in pressure formulation. (English) Zbl 1418.65135 Numer. Methods Partial Differ. Equations 35, No. 3, 1224-1242 (2019). MSC: 65M60 35Q35 76S05 65M50 35R35 65M06 PDF BibTeX XML Cite \textit{C. Ngo} and \textit{W. Huang}, Numer. Methods Partial Differ. Equations 35, No. 3, 1224--1242 (2019; Zbl 1418.65135) Full Text: DOI arXiv OpenURL
Prasad, Madasu Krishna; Bucha, Tina Effect of magnetic field on the steady viscous fluid flow around a semipermeable spherical particle. (English) Zbl 1441.76039 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 98, 10 p. (2019). MSC: 76D07 76S05 76W05 PDF BibTeX XML Cite \textit{M. K. Prasad} and \textit{T. Bucha}, Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 98, 10 p. (2019; Zbl 1441.76039) Full Text: DOI OpenURL
Madasu, Krishna Prasad Slow steady flow past a porous cylinder with radially varying permeability using cell models. (English) Zbl 1441.76038 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 92, 9 p. (2019). MSC: 76D07 76S05 PDF BibTeX XML Cite \textit{K. P. Madasu}, Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 92, 9 p. (2019; Zbl 1441.76038) Full Text: DOI OpenURL
Chen, Jie; Sun, Shuyu; Wang, Xiaoping Homogenization of two-phase fluid flow in porous media via volume averaging. (English) Zbl 1432.76252 J. Comput. Appl. Math. 353, 265-282 (2019). MSC: 76S05 76T10 35B27 35Q35 76M50 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Comput. Appl. Math. 353, 265--282 (2019; Zbl 1432.76252) Full Text: DOI Link OpenURL
Chen, Wenbin; Feng, Wenqiang; Liu, Yuan; Wang, Cheng; Wise, Steven M. A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equations. (English) Zbl 1407.65097 Discrete Contin. Dyn. Syst., Ser. B 24, No. 1, 149-182 (2019). MSC: 65M06 65M12 35K55 76D05 35Q35 76D27 76S05 65N55 65L06 PDF BibTeX XML Cite \textit{W. Chen} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 1, 149--182 (2019; Zbl 1407.65097) Full Text: DOI arXiv OpenURL
Chen, Shuangshuang; Rui, Hongxing A two-grid decoupled algorithm for fracture models. (English) Zbl 1427.65354 Comput. Math. Appl. 76, No. 5, 1161-1173 (2018). MSC: 65N30 74R10 35Q35 65N15 76S05 65N55 76M10 PDF BibTeX XML Cite \textit{S. Chen} and \textit{H. Rui}, Comput. Math. Appl. 76, No. 5, 1161--1173 (2018; Zbl 1427.65354) Full Text: DOI OpenURL
Qin, Yi; Hou, Yanren Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Navier-Stokes/Darcy model. (English) Zbl 1438.65276 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 4, 1361-1369 (2018). MSC: 65N15 65N30 76D07 76S05 65N55 PDF BibTeX XML Cite \textit{Y. Qin} and \textit{Y. Hou}, Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 4, 1361--1369 (2018; Zbl 1438.65276) Full Text: DOI OpenURL
Zuo, Liyun; Du, Guangzhi A multi-grid technique for coupling fluid flow with porous media flow. (English) Zbl 1416.76136 Comput. Math. Appl. 75, No. 11, 4012-4021 (2018). MSC: 76M10 76S05 65N30 65N55 PDF BibTeX XML Cite \textit{L. Zuo} and \textit{G. Du}, Comput. Math. Appl. 75, No. 11, 4012--4021 (2018; Zbl 1416.76136) Full Text: DOI OpenURL
Della Porta, Francesco; Giorgini, Andrea; Grasselli, Maurizio The nonlocal Cahn-Hilliard-Hele-Shaw system with logarithmic potential. (English) Zbl 1395.35163 Nonlinearity 31, No. 10, 4851-4881 (2018). MSC: 35Q35 35B40 35B65 35D35 PDF BibTeX XML Cite \textit{F. Della Porta} et al., Nonlinearity 31, No. 10, 4851--4881 (2018; Zbl 1395.35163) Full Text: DOI OpenURL
Zuo, Liyun; Du, Guangzhi A multi-grid decoupling method for the coupled fluid flow with the porous media flow. (English) Zbl 1448.76170 J. Math. Fluid Mech. 20, No. 2, 683-695 (2018). MSC: 76S05 65M55 76M10 35Q30 PDF BibTeX XML Cite \textit{L. Zuo} and \textit{G. Du}, J. Math. Fluid Mech. 20, No. 2, 683--695 (2018; Zbl 1448.76170) Full Text: DOI OpenURL
Prüss, Jan; Simonett, Gieri The Verigin problem with and without phase transition. (English) Zbl 1393.35179 Interfaces Free Bound. 20, No. 1, 107-128 (2018). MSC: 35Q35 76E17 35R37 35K59 76S05 35A15 35A01 35B40 PDF BibTeX XML Cite \textit{J. Prüss} and \textit{G. Simonett}, Interfaces Free Bound. 20, No. 1, 107--128 (2018; Zbl 1393.35179) Full Text: DOI arXiv OpenURL
Belyaev, A. Yu. Proof of Dupuit’s assumption for the free boundary problem in an inhomogeneous porous medium. (English. Russian original) Zbl 1444.76102 Math. Notes 103, No. 1, 42-53 (2018); translation from Mat. Zametki 103, No. 1, 49-64 (2018). MSC: 76S05 76M30 PDF BibTeX XML Cite \textit{A. Yu. Belyaev}, Math. Notes 103, No. 1, 42--53 (2018; Zbl 1444.76102); translation from Mat. Zametki 103, No. 1, 49--64 (2018) Full Text: DOI OpenURL
Anguiano, María; Suárez-Grau, Francisco Javier The transition between the Navier-Stokes equations to the Darcy equation in a thin porous medium. (English) Zbl 1388.76026 Mediterr. J. Math. 15, No. 2, Paper No. 45, 21 p. (2018). MSC: 76A20 76M50 35B27 35Q30 PDF BibTeX XML Cite \textit{M. Anguiano} and \textit{F. J. Suárez-Grau}, Mediterr. J. Math. 15, No. 2, Paper No. 45, 21 p. (2018; Zbl 1388.76026) Full Text: DOI OpenURL
Anguiano, María; Suárez-Grau, Francisco Javier Analysis of the effects of a fissure for a non-Newtonian fluid flow in a porous medium. (English) Zbl 1383.76015 Commun. Math. Sci. 16, No. 1, 273-292 (2018). MSC: 76A05 76S05 76M50 35B27 PDF BibTeX XML Cite \textit{M. Anguiano} and \textit{F. J. Suárez-Grau}, Commun. Math. Sci. 16, No. 1, 273--292 (2018; Zbl 1383.76015) Full Text: DOI OpenURL
Zuo, Liyun; Du, Guangzhi A parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem. (English) Zbl 1395.76042 Numer. Algorithms 77, No. 1, 151-165 (2018). MSC: 76M10 65N30 65N15 65Y05 76S05 PDF BibTeX XML Cite \textit{L. Zuo} and \textit{G. Du}, Numer. Algorithms 77, No. 1, 151--165 (2018; Zbl 1395.76042) Full Text: DOI OpenURL
Fabricius, John; Miroshnikova, Elena; Wall, Peter Homogenization of the Stokes equation with mixed boundary condition in a porous medium. (English) Zbl 1438.76042 Cogent Math. 4, Article ID 1327502, 13 p. (2017). MSC: 76S05 35B27 35Q30 76D07 PDF BibTeX XML Cite \textit{J. Fabricius} et al., Cogent Math. 4, Article ID 1327502, 13 p. (2017; Zbl 1438.76042) Full Text: DOI OpenURL
Obembe, Abiola D.; Hossain, M. Enamul; Mustapha, Kassem; Abu-Khamsin, Sidqi A. A modified memory-based mathematical model describing fluid flow in porous media. (English) Zbl 1409.76141 Comput. Math. Appl. 73, No. 6, 1385-1402 (2017). MSC: 76S05 35Q35 PDF BibTeX XML Cite \textit{A. D. Obembe} et al., Comput. Math. Appl. 73, No. 6, 1385--1402 (2017; Zbl 1409.76141) Full Text: DOI OpenURL
Zhang, Tong; Jin, Jiaojiao Stability and convergence of some novel decoupled schemes for the non-stationary Stokes-Darcy model. (English) Zbl 1422.65421 Adv. Difference Equ. 2017, Paper No. 42, 23 p. (2017). MSC: 65N30 65N12 65N15 76D07 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{J. Jin}, Adv. Difference Equ. 2017, Paper No. 42, 23 p. (2017; Zbl 1422.65421) Full Text: DOI OpenURL
Du, Guangzhi; Zuo, Liyun Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions. (English) Zbl 1399.65324 Acta Math. Sci., Ser. B, Engl. Ed. 37, No. 5, 1331-1347 (2017). MSC: 65N30 35M30 76D05 76S05 35Q35 65K05 PDF BibTeX XML Cite \textit{G. Du} and \textit{L. Zuo}, Acta Math. Sci., Ser. B, Engl. Ed. 37, No. 5, 1331--1347 (2017; Zbl 1399.65324) Full Text: DOI OpenURL
Gancedo, Francisco A survey for the Muskat problem and a new estimate. (English) Zbl 1384.35084 S\(\vec{\text{e}}\)MA J. 74, No. 1, 21-35 (2017). MSC: 35Q35 76S05 35B65 76D45 35A01 35B50 PDF BibTeX XML Cite \textit{F. Gancedo}, S\(\vec{\text{e}}\)MA J. 74, No. 1, 21--35 (2017; Zbl 1384.35084) Full Text: DOI Link OpenURL
Grillo, Alfio; Carfagna, Melania; Federico, Salvatore Non-Darcian flow in fibre-reinforced biological tissues. (English) Zbl 1394.76161 Meccanica 52, No. 14, 3299-3320 (2017). MSC: 76Z05 74L15 74F10 76S05 PDF BibTeX XML Cite \textit{A. Grillo} et al., Meccanica 52, No. 14, 3299--3320 (2017; Zbl 1394.76161) Full Text: DOI OpenURL
Anguiano, Maria Darcy’s laws for non-stationary viscous fluid flow in a thin porous medium. (English) Zbl 1369.76056 Math. Methods Appl. Sci. 40, No. 8, 2878-2895 (2017). MSC: 76S05 76A20 76M50 35B27 35Q35 PDF BibTeX XML Cite \textit{M. Anguiano}, Math. Methods Appl. Sci. 40, No. 8, 2878--2895 (2017; Zbl 1369.76056) Full Text: DOI OpenURL
Anguiano, María Derivation of a quasi-stationary coupled Darcy-Reynolds equation for incompressible viscous fluid flow through a thin porous medium with a fissure. (English) Zbl 1368.76008 Math. Methods Appl. Sci. 40, No. 13, 4738-4757 (2017). MSC: 76A20 76M50 35B27 76A05 PDF BibTeX XML Cite \textit{M. Anguiano}, Math. Methods Appl. Sci. 40, No. 13, 4738--4757 (2017; Zbl 1368.76008) Full Text: DOI OpenURL
Anguiano, María; Suárez-Grau, Francisco Javier Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure. (English) Zbl 1365.76296 Z. Angew. Math. Phys. 68, No. 2, Paper No. 52, 20 p. (2017). MSC: 76S05 76A05 76A20 76M50 35B27 PDF BibTeX XML Cite \textit{M. Anguiano} and \textit{F. J. Suárez-Grau}, Z. Angew. Math. Phys. 68, No. 2, Paper No. 52, 20 p. (2017; Zbl 1365.76296) Full Text: DOI OpenURL
Anguiano, María; Suárez-Grau, Francisco Javier Homogenization of an incompressible non-Newtonian flow through a thin porous medium. (English) Zbl 1365.76006 Z. Angew. Math. Phys. 68, No. 2, Paper No. 45, 25 p. (2017). MSC: 76A05 76A20 76M50 35B27 PDF BibTeX XML Cite \textit{M. Anguiano} and \textit{F. J. Suárez-Grau}, Z. Angew. Math. Phys. 68, No. 2, Paper No. 45, 25 p. (2017; Zbl 1365.76006) Full Text: DOI OpenURL
Chidyagwai, Prince A multilevel decoupling method for the Navier-Stokes/Darcy model. (English) Zbl 1417.76027 J. Comput. Appl. Math. 325, 74-96 (2017). MSC: 76M10 76S05 65N30 65N15 65N22 PDF BibTeX XML Cite \textit{P. Chidyagwai}, J. Comput. Appl. Math. 325, 74--96 (2017; Zbl 1417.76027) Full Text: DOI OpenURL
Constantin, Peter; Gancedo, Francisco; Shvydkoy, Roman; Vicol, Vlad Global regularity for 2D Muskat equations with finite slope. (English) Zbl 1365.76304 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 4, 1041-1074 (2017). MSC: 76S05 35Q35 PDF BibTeX XML Cite \textit{P. Constantin} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 4, 1041--1074 (2017; Zbl 1365.76304) Full Text: DOI arXiv OpenURL
Della Porta, Francesco; Grasselli, Maurizio Erratum to: “On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems”. (English) Zbl 1472.35290 Commun. Pure Appl. Anal. 16, No. 1, 369-372 (2017). MSC: 35Q35 35D30 76D27 76D45 76S05 76T99 76D03 35B65 PDF BibTeX XML Cite \textit{F. Della Porta} and \textit{M. Grasselli}, Commun. Pure Appl. Anal. 16, No. 1, 369--372 (2017; Zbl 1472.35290) Full Text: DOI arXiv OpenURL
Isa, Zaiton M.; Fulford, G. R.; Kelson, N. A.; Farrell, T. W. Flow field and traverse times for Fan forced injection of fumigant via circular or annular inlet into stored grain. (English) Zbl 1471.76061 Appl. Math. Modelling 40, No. 15-16, 7156-7163 (2016). MSC: 76N15 76S05 PDF BibTeX XML Cite \textit{Z. M. Isa} et al., Appl. Math. Modelling 40, No. 15--16, 7156--7163 (2016; Zbl 1471.76061) Full Text: DOI OpenURL
Li, Chunrui; Zheng, Liancun; Zhang, Xinxin; Chen, Goong Flow and heat transfer of a generalized Maxwell fluid with modified fractional Fourier’s law and Darcy’s law. (English) Zbl 1390.76027 Comput. Fluids 125, 25-38 (2016). MSC: 76A10 76M20 65M06 PDF BibTeX XML Cite \textit{C. Li} et al., Comput. Fluids 125, 25--38 (2016; Zbl 1390.76027) Full Text: DOI OpenURL
Zhao, Jing; Zhang, Tong Two-grid finite element methods for the steady Navier-Stokes/Darcy model. (English) Zbl 1457.65244 East Asian J. Appl. Math. 6, No. 1, 60-79 (2016). MSC: 65N55 65N30 65N12 65N15 76S05 76D07 76M10 35Q35 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{T. Zhang}, East Asian J. Appl. Math. 6, No. 1, 60--79 (2016; Zbl 1457.65244) Full Text: DOI OpenURL
Prüss, Jan; Simonett, Gieri On the Muskat problem. (English) Zbl 1351.35271 Evol. Equ. Control Theory 5, No. 4, 631-645 (2016). MSC: 35R35 35R37 35B35 35K55 35Q35 76E17 76S05 80A22 PDF BibTeX XML Cite \textit{J. Prüss} and \textit{G. Simonett}, Evol. Equ. Control Theory 5, No. 4, 631--645 (2016; Zbl 1351.35271) Full Text: DOI arXiv OpenURL
Federico, Salvatore; Grillo, Alfio; Segev, Reuven Material description of fluxes in terms of differential forms. (English) Zbl 1348.74012 Contin. Mech. Thermodyn. 28, No. 1-2, 379-390 (2016); correction ibid. 31, No. 1, 361-362 (2019). MSC: 74A05 53A45 53Z05 PDF BibTeX XML Cite \textit{S. Federico} et al., Contin. Mech. Thermodyn. 28, No. 1--2, 379--390 (2016; Zbl 1348.74012) Full Text: DOI OpenURL
Shen, Yujing; Han, Danfu; Shao, Xinping Short finite element implementation of multi-grid method for coupled Navier-Stokes/Darcy model. (English) Zbl 1363.76018 Math. Appl. 29, No. 2, 457-468 (2016). MSC: 76D05 76S05 76M10 65N30 65N55 PDF BibTeX XML Cite \textit{Y. Shen} et al., Math. Appl. 29, No. 2, 457--468 (2016; Zbl 1363.76018) OpenURL
Du, Guangzhi; Hou, Yanren; Zuo, Liyun Local and parallel finite element methods for the mixed Navier-Stokes/Darcy model. (English) Zbl 1383.76335 Int. J. Comput. Math. 93, No. 7, 1155-1172 (2016). MSC: 76M10 65N30 35Q35 65N12 76D05 76S05 PDF BibTeX XML Cite \textit{G. Du} et al., Int. J. Comput. Math. 93, No. 7, 1155--1172 (2016; Zbl 1383.76335) Full Text: DOI OpenURL
Chen, Wenbin; Liu, Yuan; Wang, Cheng; Wise, Steven M. Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation. (English) Zbl 1342.65174 Math. Comput. 85, No. 301, 2231-2257 (2016). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65M12 35Q35 65M15 PDF BibTeX XML Cite \textit{W. Chen} et al., Math. Comput. 85, No. 301, 2231--2257 (2016; Zbl 1342.65174) Full Text: DOI Link OpenURL
Alyoubi, A.; Ganesh, M. Parallel mixed FEM simulation of a class of single-phase models with non-local operators. (English) Zbl 1382.76158 J. Comput. Appl. Math. 307, 106-118 (2016). MSC: 76M10 65M60 65Y05 76S05 PDF BibTeX XML Cite \textit{A. Alyoubi} and \textit{M. Ganesh}, J. Comput. Appl. Math. 307, 106--118 (2016; Zbl 1382.76158) Full Text: DOI OpenURL
Fairag, Faisal; Alshahrani, Mohammed; Tawfiq, Hattan Bramble-Pasciak-type conjugate gradient method for Darcy’s equations. (English) Zbl 1338.65074 SIAM J. Matrix Anal. Appl. 37, No. 1, 469-489 (2016). MSC: 65F08 65F10 35Q35 PDF BibTeX XML Cite \textit{F. Fairag} et al., SIAM J. Matrix Anal. Appl. 37, No. 1, 469--489 (2016; Zbl 1338.65074) Full Text: DOI OpenURL
Wu, Fuzhou Global existence and nonlinear diffusion of classical solutions to non-isentropic Euler equations with damping in bounded domain. (English) Zbl 1339.35226 J. Hyperbolic Differ. Equ. 13, No. 1, 147-179 (2016). MSC: 35Q31 76S05 35A01 76N10 PDF BibTeX XML Cite \textit{F. Wu}, J. Hyperbolic Differ. Equ. 13, No. 1, 147--179 (2016; Zbl 1339.35226) Full Text: DOI arXiv OpenURL
Hou, Yanren Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model. (English) Zbl 1408.76367 Appl. Math. Lett. 57, 90-96 (2016). MSC: 76M10 76S05 65N30 65N15 PDF BibTeX XML Cite \textit{Y. Hou}, Appl. Math. Lett. 57, 90--96 (2016; Zbl 1408.76367) Full Text: DOI arXiv OpenURL
Della Porta, Francesco; Grasselli, Maurizio On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems. (English) Zbl 1334.35226 Commun. Pure Appl. Anal. 15, No. 2, 299-317 (2016); erratum ibid. 16, No. 1, 369-372 (2017). MSC: 35Q35 35D30 76D27 76D45 76S05 76T99 76D03 35B65 PDF BibTeX XML Cite \textit{F. Della Porta} and \textit{M. Grasselli}, Commun. Pure Appl. Anal. 15, No. 2, 299--317 (2016; Zbl 1334.35226) Full Text: DOI arXiv OpenURL
Du, Guangzhi; Hou, Yanren; Zuo, Liyun A modified local and parallel finite element method for the mixed Stokes-Darcy model. (English) Zbl 1331.76067 J. Math. Anal. Appl. 435, No. 2, 1129-1145 (2016). MSC: 76M10 76D05 35Q30 65N30 76D08 65Y05 PDF BibTeX XML Cite \textit{G. Du} et al., J. Math. Anal. Appl. 435, No. 2, 1129--1145 (2016; Zbl 1331.76067) Full Text: DOI OpenURL
Tokareva, Margarita A. Localization of solutions of the equations of filtration in poroelastic medium. (English) Zbl 07325248 J. Sib. Fed. Univ., Math. Phys. 8, No. 4, 467-477 (2015). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{M. A. Tokareva}, J. Sib. Fed. Univ., Math. Phys. 8, No. 4, 467--477 (2015; Zbl 07325248) Full Text: DOI MNR OpenURL
Berrone, S.; Canuto, C.; Pieraccini, S.; Scialò, S. Uncertainty quantification in discrete fracture network models: stochastic fracture transmissivity. (English) Zbl 1443.76210 Comput. Math. Appl. 70, No. 4, 603-623 (2015). MSC: 76S05 74R20 60H35 PDF BibTeX XML Cite \textit{S. Berrone} et al., Comput. Math. Appl. 70, No. 4, 603--623 (2015; Zbl 1443.76210) Full Text: DOI OpenURL
Fusi, Lorenzo; Farina, Angiolo; Rosso, Fabio Mathematical models for fluids with pressure-dependent viscosity flowing in porous media. (English) Zbl 1423.76423 Int. J. Eng. Sci. 87, 110-118 (2015). MSC: 76S05 76D03 76D08 35Q35 PDF BibTeX XML Cite \textit{L. Fusi} et al., Int. J. Eng. Sci. 87, 110--118 (2015; Zbl 1423.76423) Full Text: DOI OpenURL
Barletta, Antonio; Tyvand, Peder A.; Nygård, Heidi S. Onset of thermal convection in a porous layer with mixed boundary conditions. (English) Zbl 1398.76212 J. Eng. Math. 91, 105-120 (2015). MSC: 76S05 76E06 74F10 PDF BibTeX XML Cite \textit{A. Barletta} et al., J. Eng. Math. 91, 105--120 (2015; Zbl 1398.76212) Full Text: DOI OpenURL
Liu, L. J.; Schlesinger, M. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors. (English) Zbl 1343.92110 J. Theor. Biol. 380, 1-8 (2015). MSC: 92C35 76Z05 92C50 PDF BibTeX XML Cite \textit{L. J. Liu} and \textit{M. Schlesinger}, J. Theor. Biol. 380, 1--8 (2015; Zbl 1343.92110) Full Text: DOI OpenURL
Stavre, R. A distributed control problem for two coupled fluids in a porous medium. (English) Zbl 1344.49005 SIAM J. Control Optim. 53, No. 1, 313-335 (2015). Reviewer: Alain Brillard (Riedisheim) MSC: 49J20 49J45 49K20 76S05 76T99 47N70 PDF BibTeX XML Cite \textit{R. Stavre}, SIAM J. Control Optim. 53, No. 1, 313--335 (2015; Zbl 1344.49005) Full Text: DOI OpenURL
Naz, R.; Alsaedi, A.; Hayat, T. Flow of fourth grade fluid in a porous medium. (English) Zbl 1335.35202 Appl. Comput. Math. 14, No. 2, 125-140 (2015). MSC: 35Q35 35Q79 76A05 76S05 74F10 PDF BibTeX XML Cite \textit{R. Naz} et al., Appl. Comput. Math. 14, No. 2, 125--140 (2015; Zbl 1335.35202) Full Text: Link OpenURL
Shen, Yujing; Han, Danfu; Shao, Xinping A modified two-grid method for solving coupled Navier-Stokes/Darcy model based on Newton iteration. (English) Zbl 1349.76071 Appl. Math., Ser. B (Engl. Ed.) 30, No. 2, 127-140 (2015). MSC: 76D06 76S05 65M55 65N55 PDF BibTeX XML Cite \textit{Y. Shen} et al., Appl. Math., Ser. B (Engl. Ed.) 30, No. 2, 127--140 (2015; Zbl 1349.76071) Full Text: DOI OpenURL
Heppell, Charles; Roose, Tiina; Richardson, Giles A model for interstitial drainage through a sliding lymphatic valve. (English) Zbl 1335.92020 Bull. Math. Biol. 77, No. 6, 1101-1131 (2015). MSC: 92C35 PDF BibTeX XML Cite \textit{C. Heppell} et al., Bull. Math. Biol. 77, No. 6, 1101--1131 (2015; Zbl 1335.92020) Full Text: DOI Link OpenURL
Zuo, Liyun; Hou, Yanren Numerical analysis for the mixed Navier-Stokes and Darcy problem with the Beavers-Joseph interface condition. (English) Zbl 1329.76194 Numer. Methods Partial Differ. Equations 31, No. 4, 1009-1030 (2015). MSC: 76M10 65N30 76D05 76S05 PDF BibTeX XML Cite \textit{L. Zuo} and \textit{Y. Hou}, Numer. Methods Partial Differ. Equations 31, No. 4, 1009--1030 (2015; Zbl 1329.76194) Full Text: DOI OpenURL
Bosia, Stefano; Conti, Monica; Grasselli, Maurizio On the Cahn-Hilliard-Brinkman system. (English) Zbl 1330.35313 Commun. Math. Sci. 13, No. 6, 1541-1567 (2015). MSC: 35Q35 35B40 35D30 37L30 76D27 76D45 76S05 76T99 35B41 PDF BibTeX XML Cite \textit{S. Bosia} et al., Commun. Math. Sci. 13, No. 6, 1541--1567 (2015; Zbl 1330.35313) Full Text: DOI arXiv OpenURL
Muntean, Adrian Continuum modeling. An approach through practical examples. (English) Zbl 1332.35005 SpringerBriefs in Applied Sciences and Technology. Mathematical Methods. Cham: Springer (ISBN 978-3-319-22131-1/pbk; 978-3-319-22132-8/ebook). xiv, 73 p. (2015). Reviewer: K. N. Shukla (Gurgaon) MSC: 35-02 00A71 35K57 76-02 92-02 35Q35 76S05 74A15 80A05 PDF BibTeX XML Cite \textit{A. Muntean}, Continuum modeling. An approach through practical examples. Cham: Springer (2015; Zbl 1332.35005) Full Text: DOI OpenURL
Abdalrahman, T.; Scheiner, S.; Hellmich, C. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory. (English) Zbl 1314.92045 J. Theor. Biol. 365, 433-444 (2015). MSC: 92C35 76S05 PDF BibTeX XML Cite \textit{T. Abdalrahman} et al., J. Theor. Biol. 365, 433--444 (2015; Zbl 1314.92045) Full Text: DOI OpenURL
Ainouz, Abdelhamid Homogenization of a dual-permeability problem in two-component media with imperfect contact. (English) Zbl 1363.35021 Appl. Math., Praha 60, No. 2, 185-196 (2015). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 76S05 PDF BibTeX XML Cite \textit{A. Ainouz}, Appl. Math., Praha 60, No. 2, 185--196 (2015; Zbl 1363.35021) Full Text: DOI Link OpenURL
Yamazaki, Kazuo Regularity criteria of the porous media equation in terms of one partial derivative or pressure field. (English) Zbl 1319.35200 Commun. Math. Sci. 13, No. 2, 461-476 (2015). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 35Q35 35Q86 35B65 76S05 PDF BibTeX XML Cite \textit{K. Yamazaki}, Commun. Math. Sci. 13, No. 2, 461--476 (2015; Zbl 1319.35200) Full Text: DOI OpenURL
Granero-Belinchón, Rafael; Navarro, Gustavo; Ortega, Alejandro On the effect of boundaries in two-phase porous flow. (English) Zbl 1309.35075 Nonlinearity 28, No. 2, 435-461 (2015). MSC: 35Q35 35B50 35B65 35Q30 76S05 35R35 PDF BibTeX XML Cite \textit{R. Granero-Belinchón} et al., Nonlinearity 28, No. 2, 435--461 (2015; Zbl 1309.35075) Full Text: DOI arXiv OpenURL
Zuo, Liyun; Hou, Yanren A two-grid decoupling method for the mixed Stokes-Darcy model. (English) Zbl 1334.76157 J. Comput. Appl. Math. 275, 139-147 (2015). MSC: 76S05 76D07 35Q35 PDF BibTeX XML Cite \textit{L. Zuo} and \textit{Y. Hou}, J. Comput. Appl. Math. 275, 139--147 (2015; Zbl 1334.76157) Full Text: DOI OpenURL
Liu, I-Shih A solid-fluid mixture theory of porous media. (English) Zbl 1423.76430 Int. J. Eng. Sci. 84, 133-146 (2014). MSC: 76S05 74F10 PDF BibTeX XML Cite \textit{I-S. Liu}, Int. J. Eng. Sci. 84, 133--146 (2014; Zbl 1423.76430) Full Text: DOI OpenURL