Liu, Jianfeng; Wang, Tingchun; Zhang, Teng A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrödinger equation. (English) Zbl 07646072 Numer. Algorithms 92, No. 2, 1153-1182 (2023). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{J. Liu} et al., Numer. Algorithms 92, No. 2, 1153--1182 (2023; Zbl 07646072) Full Text: DOI OpenURL
Halder, Joydev; Tumuluri, Suman Kumar Numerical solution to a nonlinear McKendrick-Von Foerster equation with diffusion. (English) Zbl 07646066 Numer. Algorithms 92, No. 2, 1007-1039 (2023). MSC: 65-XX PDF BibTeX XML Cite \textit{J. Halder} and \textit{S. K. Tumuluri}, Numer. Algorithms 92, No. 2, 1007--1039 (2023; Zbl 07646066) Full Text: DOI OpenURL
Lyu, Pin; Zhou, Linghui; Vong, Seakweng Second-order nonuniform time-stepping schemes for time-fractional evolution equations with general elliptic operator. (English) Zbl 07644565 Appl. Math. Lett. 139, Article ID 108541, 8 p. (2023). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{P. Lyu} et al., Appl. Math. Lett. 139, Article ID 108541, 8 p. (2023; Zbl 07644565) Full Text: DOI OpenURL
Alzabut, J.; Grace, S. R.; Jonnalagadda, J. M.; Thandapani, E. Bounded non-oscillatory solutions of nabla forced fractional difference equations with positive and negative terms. (English) Zbl 07644521 Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 28, 16 p. (2023). MSC: 26A33 39A12 39A21 PDF BibTeX XML Cite \textit{J. Alzabut} et al., Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 28, 16 p. (2023; Zbl 07644521) Full Text: DOI OpenURL
Chaudet-Dumas, Bastien; Gander, Martin J. Cross-points in the Dirichlet-Neumann method. I: Well-posedness and convergence issues. (English) Zbl 07644393 Numer. Algorithms 92, No. 1, 301-334 (2023). MSC: 65-XX 35J05 35D35 65N55 65N06 PDF BibTeX XML Cite \textit{B. Chaudet-Dumas} and \textit{M. J. Gander}, Numer. Algorithms 92, No. 1, 301--334 (2023; Zbl 07644393) Full Text: DOI OpenURL
Hu, Shuanggui; Pan, Kejia; Wu, Xiaoxin; Ge, Yongbin; Li, Zhilin An efficient extrapolation multigrid method based on a HOC scheme on nonuniform rectilinear grids for solving 3D anisotropic convection-diffusion problems. (English) Zbl 07644186 Comput. Methods Appl. Mech. Eng. 403, Part A, Article ID 115724, 24 p. (2023). MSC: 65N06 65N55 PDF BibTeX XML Cite \textit{S. Hu} et al., Comput. Methods Appl. Mech. Eng. 403, Part A, Article ID 115724, 24 p. (2023; Zbl 07644186) Full Text: DOI OpenURL
Saffarian, Marziyeh; Mohebbi, Akbar Solution of space-time tempered fractional diffusion-wave equation using a high-order numerical method. (English) Zbl 07640802 J. Comput. Appl. Math. 423, Article ID 114935, 18 p. (2023). MSC: 65M70 65M60 65M06 65N35 65N30 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{M. Saffarian} and \textit{A. Mohebbi}, J. Comput. Appl. Math. 423, Article ID 114935, 18 p. (2023; Zbl 07640802) Full Text: DOI OpenURL
Zhang, Wei; Liu, Chunxia; Jiang, Chaolong; Zheng, Chenxuan Arbitrary high-order linearly implicit energy-conserving schemes for the Rosenau-type equation. (English) Zbl 07639202 Appl. Math. Lett. 138, Article ID 108530, 7 p. (2023). MSC: 65M06 65M12 35Q53 37K05 65-02 PDF BibTeX XML Cite \textit{W. Zhang} et al., Appl. Math. Lett. 138, Article ID 108530, 7 p. (2023; Zbl 07639202) Full Text: DOI OpenURL
Huang, Juntao; Cheng, Yingda; Christlieb, Andrew J.; Roberts, Luke F. Machine learning moment closure models for the radiative transfer equation. III: enforcing hyperbolicity and physical characteristic speeds. (English) Zbl 07637448 J. Sci. Comput. 94, No. 1, Paper No. 7, 27 p. (2023). MSC: 65N06 65L06 68T07 80A21 42C10 15A18 65H04 35Q20 PDF BibTeX XML Cite \textit{J. Huang} et al., J. Sci. Comput. 94, No. 1, Paper No. 7, 27 p. (2023; Zbl 07637448) Full Text: DOI arXiv OpenURL
Garralón-López, Rubén; Rus, Francisco; Villatoro, Francisco R. Compacton-anticompacton collisions in the Rosenau-Hyman \(K(p,p)\) equation by numerical simulations with hyperviscosity. (English) Zbl 07634566 Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106927, 16 p. (2023). MSC: 35Q53 35Q51 35C08 35D35 35B44 65M60 65D07 65M06 65L05 65N30 PDF BibTeX XML Cite \textit{R. Garralón-López} et al., Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106927, 16 p. (2023; Zbl 07634566) Full Text: DOI OpenURL
Deng, Dingwen; Wang, Qihong A class of weighted energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon-type equations. (English) Zbl 07634555 Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106916, 30 p. (2023). MSC: 65M06 65N06 65M12 65M15 35L05 35Q53 PDF BibTeX XML Cite \textit{D. Deng} and \textit{Q. Wang}, Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106916, 30 p. (2023; Zbl 07634555) Full Text: DOI OpenURL
Domínguez, Óscar; Seeger, Andreas; Street, Brian; Van Schaftingen, Jean; Yung, Po-Lam Spaces of Besov-Sobolev type and a problem on nonlinear approximation. (English) Zbl 07633996 J. Funct. Anal. 284, No. 4, Article ID 109775, 50 p. (2023). MSC: 46E35 26A33 26D10 35J05 35K05 39B22 42B35 46B70 46E30 PDF BibTeX XML Cite \textit{Ó. Domínguez} et al., J. Funct. Anal. 284, No. 4, Article ID 109775, 50 p. (2023; Zbl 07633996) Full Text: DOI arXiv OpenURL
Roul, Pradip; Prasad Goura, V. M. K. An efficient numerical scheme and its stability analysis for a time-fractional reaction diffusion model. (English) Zbl 07630799 J. Comput. Appl. Math. 422, Article ID 114918, 21 p. (2023). MSC: 65M70 65M06 65N35 65D07 26A33 35R11 PDF BibTeX XML Cite \textit{P. Roul} and \textit{V. M. K. Prasad Goura}, J. Comput. Appl. Math. 422, Article ID 114918, 21 p. (2023; Zbl 07630799) Full Text: DOI OpenURL
Nabubie, Bashiruddin; Wang, Song Numerical techniques for determining implied volatility in option pricing. (English) Zbl 07630794 J. Comput. Appl. Math. 422, Article ID 114913, 12 p. (2023). MSC: 91G60 65M06 91G20 PDF BibTeX XML Cite \textit{B. Nabubie} and \textit{S. Wang}, J. Comput. Appl. Math. 422, Article ID 114913, 12 p. (2023; Zbl 07630794) Full Text: DOI OpenURL
Leonenko, G.; Phillips, T. N. Transient numerical approximation of hyperbolic diffusions and beyond. (English) Zbl 07630785 J. Comput. Appl. Math. 422, Article ID 114893, 13 p. (2023). MSC: 65M70 65M06 65N35 65F20 60J20 60J65 60H35 35Q84 35R60 PDF BibTeX XML Cite \textit{G. Leonenko} and \textit{T. N. Phillips}, J. Comput. Appl. Math. 422, Article ID 114893, 13 p. (2023; Zbl 07630785) Full Text: DOI OpenURL
Labidi, Samira; Omrani, Khaled A new approach for numerical solution of Kuramoto-Tsuzuki equation. (English) Zbl 07630349 Appl. Numer. Math. 184, 527-541 (2023). MSC: 65M06 65N06 65M12 65M15 35Q56 PDF BibTeX XML Cite \textit{S. Labidi} and \textit{K. Omrani}, Appl. Numer. Math. 184, 527--541 (2023; Zbl 07630349) Full Text: DOI OpenURL
Li, Yibao; Qin, Kang; Xia, Qing; Kim, Junseok A second-order unconditionally stable method for the anisotropic dendritic crystal growth model with an orientation-field. (English) Zbl 07630348 Appl. Numer. Math. 184, 512-526 (2023). MSC: 65M55 65M06 65N06 80A22 35K05 35Q79 PDF BibTeX XML Cite \textit{Y. Li} et al., Appl. Numer. Math. 184, 512--526 (2023; Zbl 07630348) Full Text: DOI OpenURL
Du, Shaohong; Cheng, Yongping; Li, Mingjun High order spline finite element method for the fourth-order parabolic equations. (English) Zbl 07630347 Appl. Numer. Math. 184, 496-511 (2023). MSC: 65M60 65M06 65N30 65L06 65D07 65M12 65M15 33C45 35A15 35B35 35B65 35K35 74K10 74H45 35Q74 PDF BibTeX XML Cite \textit{S. Du} et al., Appl. Numer. Math. 184, 496--511 (2023; Zbl 07630347) Full Text: DOI OpenURL
Tahir, Shko Ali; Sari, Murat A new approach for the coupled advection-diffusion processes including source effects. (English) Zbl 07630341 Appl. Numer. Math. 184, 391-405 (2023). MSC: 65M06 65D07 65L05 65H10 65F05 41A15 35Q53 PDF BibTeX XML Cite \textit{S. A. Tahir} and \textit{M. Sari}, Appl. Numer. Math. 184, 391--405 (2023; Zbl 07630341) Full Text: DOI OpenURL
Jiang, Yi; Liu, Jun Fast parallel-in-time quasi-boundary value methods for backward heat conduction problems. (English) Zbl 07630337 Appl. Numer. Math. 184, 325-339 (2023). MSC: 65M32 65M32 65M06 65N06 65T50 65F50 65F05 60H50 35K05 35Q79 35R30 35R25 35R60 PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{J. Liu}, Appl. Numer. Math. 184, 325--339 (2023; Zbl 07630337) Full Text: DOI arXiv OpenURL
Zhang, Jiyuan; Qin, Yifan; Zhang, Qifeng Maximum error estimates of two linearized compact difference schemes for two-dimensional nonlinear Sobolev equations. (English) Zbl 07630333 Appl. Numer. Math. 184, 253-272 (2023). MSC: 65M06 65N06 65M15 76A05 76M20 35Q35 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Numer. Math. 184, 253--272 (2023; Zbl 07630333) Full Text: DOI OpenURL
Simonis, Stephan; Frank, Martin; Krause, Mathias J. Constructing relaxation systems for lattice Boltzmann methods. (English) Zbl 07630030 Appl. Math. Lett. 137, Article ID 108484, 9 p. (2023). MSC: 76M28 65M06 76Mxx 76P05 68-XX PDF BibTeX XML Cite \textit{S. Simonis} et al., Appl. Math. Lett. 137, Article ID 108484, 9 p. (2023; Zbl 07630030) Full Text: DOI arXiv OpenURL
Ju, Bingrui; Qu, Wenzhen Three-dimensional application of the meshless generalized finite difference method for solving the extended Fisher-Kolmogorov equation. (English) Zbl 07630009 Appl. Math. Lett. 136, Article ID 108458, 8 p. (2023). MSC: 65M06 35K57 65M60 PDF BibTeX XML Cite \textit{B. Ju} and \textit{W. Qu}, Appl. Math. Lett. 136, Article ID 108458, 8 p. (2023; Zbl 07630009) Full Text: DOI OpenURL
Xu, Xionghui; Sun, Jijiang Ground state solutions for periodic discrete Schrödinger equations with local super-quadratic conditions. (English) Zbl 07628889 Z. Angew. Math. Phys. 74, No. 1, Paper No. 5, 22 p. (2023). MSC: 35Q55 35Q51 39A12 39A70 35A01 PDF BibTeX XML Cite \textit{X. Xu} and \textit{J. Sun}, Z. Angew. Math. Phys. 74, No. 1, Paper No. 5, 22 p. (2023; Zbl 07628889) Full Text: DOI OpenURL
Nguyen, Lu Trong Khiem; Smyth, Noel Frederick Modulation theory for radially symmetric kink waves governed by a multi-dimensional sine-Gordon equation. (English) Zbl 07628872 J. Nonlinear Sci. 33, No. 1, Paper No. 11, 25 p. (2023). MSC: 35Q53 35Q51 35C08 65M60 65M06 65L06 65N30 PDF BibTeX XML Cite \textit{L. T. K. Nguyen} and \textit{N. F. Smyth}, J. Nonlinear Sci. 33, No. 1, Paper No. 11, 25 p. (2023; Zbl 07628872) Full Text: DOI OpenURL
Srivastava, Nikhil; Singh, Vineet Kumar L3 approximation of Caputo derivative and its application to time-fractional wave equation. I. (English) Zbl 07628007 Math. Comput. Simul. 205, 532-557 (2023). MSC: 65-XX 41-XX PDF BibTeX XML Cite \textit{N. Srivastava} and \textit{V. K. Singh}, Math. Comput. Simul. 205, 532--557 (2023; Zbl 07628007) Full Text: DOI OpenURL
Qiao, Leijie; Qiu, Wenlin; Xu, Da Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions. (English) Zbl 07627993 Math. Comput. Simul. 205, 205-231 (2023). MSC: 65-XX 39-XX PDF BibTeX XML Cite \textit{L. Qiao} et al., Math. Comput. Simul. 205, 205--231 (2023; Zbl 07627993) Full Text: DOI OpenURL
Sun, Ruixue; Xu, Yufeng Numerical solutions of Gelfand equation in steady combustion process. (English) Zbl 07627667 Appl. Math. Comput. 441, Article ID 127674, 12 p. (2023). MSC: 65N06 65N55 PDF BibTeX XML Cite \textit{R. Sun} and \textit{Y. Xu}, Appl. Math. Comput. 441, Article ID 127674, 12 p. (2023; Zbl 07627667) Full Text: DOI OpenURL
Luo, Ye; Zhao, Hou Yu A pexiderization of Whitehead’s equation. (English) Zbl 07625272 Result. Math. 78, No. 1, Paper No. 23, 11 p. (2023). MSC: 39B52 39A70 PDF BibTeX XML Cite \textit{Y. Luo} and \textit{H. Y. Zhao}, Result. Math. 78, No. 1, Paper No. 23, 11 p. (2023; Zbl 07625272) Full Text: DOI OpenURL
Bak, Soyoon; Jeon, Yonghyeon; Park, Sangbeom A novel decomposition as a fast finite difference method for second derivatives. (English) Zbl 07625271 Result. Math. 78, No. 1, Paper No. 22, 14 p. (2023). MSC: 65N06 35J05 65F15 65F35 PDF BibTeX XML Cite \textit{S. Bak} et al., Result. Math. 78, No. 1, Paper No. 22, 14 p. (2023; Zbl 07625271) Full Text: DOI OpenURL
Barreira, Luís; Valls, Claudia Characterizations of hyperbolicity in difference equations with delay. (English) Zbl 07625268 Result. Math. 78, No. 1, Paper No. 19, 22 p. (2023). MSC: 37D99 PDF BibTeX XML Cite \textit{L. Barreira} and \textit{C. Valls}, Result. Math. 78, No. 1, Paper No. 19, 22 p. (2023; Zbl 07625268) Full Text: DOI OpenURL
Bora, Swaroop Nandan; Shankar, Matap Ulam-Hyers stability of second-order convergent finite difference scheme for first- and second-order nonhomogeneous linear differential equations with constant coefficients. (English) Zbl 07625266 Result. Math. 78, No. 1, Paper No. 17, 18 p. (2023). MSC: 65Lxx PDF BibTeX XML Cite \textit{S. N. Bora} and \textit{M. Shankar}, Result. Math. 78, No. 1, Paper No. 17, 18 p. (2023; Zbl 07625266) Full Text: DOI OpenURL
Melchiorre, J.; Manuello, A.; Marmo, F.; Adriaenssens, S.; Marano, G. C. Differential formulation and numerical solution for elastic arches with variable curvature and tapered cross-sections. (English) Zbl 07624576 Eur. J. Mech., A, Solids 97, Article ID 104757, 14 p. (2023). MSC: 74-XX PDF BibTeX XML Cite \textit{J. Melchiorre} et al., Eur. J. Mech., A, Solids 97, Article ID 104757, 14 p. (2023; Zbl 07624576) Full Text: DOI OpenURL
Shahane, Shantanu; Vanka, Surya Pratap A semi-implicit meshless method for incompressible flows in complex geometries. (English) Zbl 07620379 J. Comput. Phys. 472, Article ID 111715, 24 p. (2023). MSC: 76Mxx 76Dxx 65Nxx PDF BibTeX XML Cite \textit{S. Shahane} and \textit{S. P. Vanka}, J. Comput. Phys. 472, Article ID 111715, 24 p. (2023; Zbl 07620379) Full Text: DOI arXiv OpenURL
Vabishchevich, P. N. Subdomain solution decomposition method for nonstationary problems. (English) Zbl 07620363 J. Comput. Phys. 472, Article ID 111679, 20 p. (2023). MSC: 65Mxx 35Kxx 65Yxx PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, J. Comput. Phys. 472, Article ID 111679, 20 p. (2023; Zbl 07620363) Full Text: DOI arXiv OpenURL
Ri, Jinmyong; Ra, Sungjin; Mun, Kilsong A solution to the simplified multi-dimensional energy-transport model with a general conductivity for semiconductors. (English) Zbl 07614829 Nonlinear Anal., Real World Appl. 69, Article ID 103748, 18 p. (2023). MSC: 35Q81 35Q60 35Q79 35Q82 82D37 35K05 78A35 35D30 35B65 35A01 35A02 65M06 PDF BibTeX XML Cite \textit{J. Ri} et al., Nonlinear Anal., Real World Appl. 69, Article ID 103748, 18 p. (2023; Zbl 07614829) Full Text: DOI OpenURL
Patra, Asim An epidemiology model involving high-order linear Fredholm integro-differential-difference equations via a novel balancing collocation technique. (English) Zbl 07614143 J. Comput. Appl. Math. 421, Article ID 114851, 26 p. (2023). MSC: 65R20 45J05 45B05 30D15 65L10 PDF BibTeX XML Cite \textit{A. Patra}, J. Comput. Appl. Math. 421, Article ID 114851, 26 p. (2023; Zbl 07614143) Full Text: DOI OpenURL
Chen, Xiaowei; Qian, Xu; Song, Songhe Fourth-order structure-preserving method for the conservative Allen-Cahn equation. (English) Zbl 07612912 Adv. Appl. Math. Mech. 15, No. 1, 159-181 (2023). MSC: 65N06 65N12 PDF BibTeX XML Cite \textit{X. Chen} et al., Adv. Appl. Math. Mech. 15, No. 1, 159--181 (2023; Zbl 07612912) Full Text: DOI OpenURL
Wang, Chao; Wang, Jie Global behaviour of quaternion Riccati rational difference equation. (English) Zbl 07610093 J. Math. Anal. Appl. 518, No. 2, Article ID 126779, 28 p. (2023). MSC: 39A30 39A22 39A20 39A10 PDF BibTeX XML Cite \textit{C. Wang} and \textit{J. Wang}, J. Math. Anal. Appl. 518, No. 2, Article ID 126779, 28 p. (2023; Zbl 07610093) Full Text: DOI OpenURL
Cuchta, Tom; Grow, David; Wintz, Nick Discrete matrix hypergeometric functions. (English) Zbl 07610080 J. Math. Anal. Appl. 518, No. 2, Article ID 126716, 14 p. (2023). MSC: 33C20 15A16 PDF BibTeX XML Cite \textit{T. Cuchta} et al., J. Math. Anal. Appl. 518, No. 2, Article ID 126716, 14 p. (2023; Zbl 07610080) Full Text: DOI OpenURL
Qiu, Wenlin; Xiao, Xu; Li, Kexin Second-order accurate numerical scheme with graded meshes for the nonlinear partial integrodifferential equation arising from viscoelasticity. (English) Zbl 07609335 Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106804, 19 p. (2023). MSC: 26A33 45K05 65M12 65M22 65M60 PDF BibTeX XML Cite \textit{W. Qiu} et al., Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106804, 19 p. (2023; Zbl 07609335) Full Text: DOI arXiv OpenURL
Serna-Reyes, Adán J.; Macías-Díaz, J. E.; Reguera-López, Nuria Analysis of a scheme which preserves the dissipation and positivity of Gibbs’ energy for a nonlinear parabolic equation with variable diffusion. (English) Zbl 1498.65139 Appl. Numer. Math. 183, 355-368 (2023). MSC: 65M06 65N06 65M12 65M15 35B09 35B65 35K55 PDF BibTeX XML Cite \textit{A. J. Serna-Reyes} et al., Appl. Numer. Math. 183, 355--368 (2023; Zbl 1498.65139) Full Text: DOI OpenURL
Zhang, Min; Yan, Wenjing; Jing, Feifei; Zhao, Haixia Discontinuous Galerkin method for the diffusive-viscous wave equation. (English) Zbl 1500.65077 Appl. Numer. Math. 183, 118-139 (2023). MSC: 65M60 65M06 65N30 65M15 65M12 76U60 86A15 35Q86 PDF BibTeX XML Cite \textit{M. Zhang} et al., Appl. Numer. Math. 183, 118--139 (2023; Zbl 1500.65077) Full Text: DOI OpenURL
Yang, Huaijun Unconditionally optimal error estimate of mass- and energy-stable Galerkin method for Schrödinger equation with cubic nonlinearity. (English) Zbl 1500.65074 Appl. Numer. Math. 183, 39-55 (2023). MSC: 65M60 65M06 65N30 65M15 35Q55 35Q41 PDF BibTeX XML Cite \textit{H. Yang}, Appl. Numer. Math. 183, 39--55 (2023; Zbl 1500.65074) Full Text: DOI OpenURL
Zhao, Zhongliu; Zhang, Wensheng Stability of a coefficient inverse problem for the discrete Schrödinger equation and a convergence result. (English) Zbl 1500.65050 J. Math. Anal. Appl. 518, No. 1, Article ID 126665, 25 p. (2023). MSC: 65M06 35Q55 35Q41 35B35 65M12 PDF BibTeX XML Cite \textit{Z. Zhao} and \textit{W. Zhang}, J. Math. Anal. Appl. 518, No. 1, Article ID 126665, 25 p. (2023; Zbl 1500.65050) Full Text: DOI OpenURL
Tela, Guesh Yfter; Zhang, Da-jun Integrability and solutions for a fourth-order lattice Gel’fand-Dikii equation. (English) Zbl 07599822 Appl. Math. Lett. 135, Article ID 108424, 8 p. (2023). MSC: 37K60 39A36 39A14 PDF BibTeX XML Cite \textit{G. Y. Tela} and \textit{D.-j. Zhang}, Appl. Math. Lett. 135, Article ID 108424, 8 p. (2023; Zbl 07599822) Full Text: DOI OpenURL
Paraschis, Panagiotis; Zouraris, Georgios E. On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation. (English) Zbl 07599014 Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 245-261 (2023). MSC: 65M60 65M06 65N30 65M12 65M15 35Q55 35Q41 PDF BibTeX XML Cite \textit{P. Paraschis} and \textit{G. E. Zouraris}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 245--261 (2023; Zbl 07599014) Full Text: DOI OpenURL
Lee, Seunggyu; Yoon, Sungha; Kim, Junseok Effective time step analysis of convex splitting schemes for the Swift-Hohenberg equation. (English) Zbl 07596886 J. Comput. Appl. Math. 419, Article ID 114713, 14 p. (2023). MSC: 65M06 65M12 76R10 35Q35 PDF BibTeX XML Cite \textit{S. Lee} et al., J. Comput. Appl. Math. 419, Article ID 114713, 14 p. (2023; Zbl 07596886) Full Text: DOI OpenURL
Kazmi, Kamran A second order numerical method for the time-fractional Black-Scholes European option pricing model. (English) Zbl 07596850 J. Comput. Appl. Math. 418, Article ID 114647, 17 p. (2023). MSC: 65N06 65D25 65D30 65B05 35R09 45K05 65R20 65M12 91G20 91G60 26A33 35R11 35Q91 PDF BibTeX XML Cite \textit{K. Kazmi}, J. Comput. Appl. Math. 418, Article ID 114647, 17 p. (2023; Zbl 07596850) Full Text: DOI OpenURL
Alama, Yvonne Bronsard Error analysis of a class of semi-discrete schemes for solving the Gross-Pitaevskii equation at low regularity. (English) Zbl 07596849 J. Comput. Appl. Math. 418, Article ID 114632, 19 p. (2023). MSC: 65M60 65M06 65N30 65M12 65M15 35Q55 35Q41 PDF BibTeX XML Cite \textit{Y. B. Alama}, J. Comput. Appl. Math. 418, Article ID 114632, 19 p. (2023; Zbl 07596849) Full Text: DOI OpenURL
Qi, Longzhao; Hou, Yanren Error estimates for the scalar auxiliary variable (SAV) schemes to the modified phase field crystal equation. (English) Zbl 07596829 J. Comput. Appl. Math. 417, Article ID 114579, 24 p. (2023). MSC: 65M06 65N06 65M12 65M15 74N05 PDF BibTeX XML Cite \textit{L. Qi} and \textit{Y. Hou}, J. Comput. Appl. Math. 417, Article ID 114579, 24 p. (2023; Zbl 07596829) Full Text: DOI OpenURL
Elango, Sekar Second order singularly perturbed delay differential equations with non-local boundary condition. (English) Zbl 07596818 J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023). MSC: 65L03 65L11 PDF BibTeX XML Cite \textit{S. Elango}, J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023; Zbl 07596818) Full Text: DOI OpenURL
Niu, Yuxuan; Liu, Yang; Li, Hong; Liu, Fawang Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media. (English) Zbl 07594640 Math. Comput. Simul. 203, 387-407 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{Y. Niu} et al., Math. Comput. Simul. 203, 387--407 (2023; Zbl 07594640) Full Text: DOI OpenURL
Abidi, Mariem; Goubet, Olivier; Martin, Véronique Crank-Nicolson scheme for a logarithmic Schrödinger equation. (English) Zbl 07647203 North-West. Eur. J. Math. 8, 167-187 (2022). MSC: 35Q55 35Q41 65M06 65M22 PDF BibTeX XML Cite \textit{M. Abidi} et al., North-West. Eur. J. Math. 8, 167--187 (2022; Zbl 07647203) Full Text: Link OpenURL
Wang, Xiaofeng; Cheng, Hong Two structure-preserving schemes with fourth-order accuracy for the modified Kawahara equation. (English) Zbl 07645480 Comput. Appl. Math. 41, No. 8, Paper No. 401, 20 p. (2022). MSC: 65M12 65N06 PDF BibTeX XML Cite \textit{X. Wang} and \textit{H. Cheng}, Comput. Appl. Math. 41, No. 8, Paper No. 401, 20 p. (2022; Zbl 07645480) Full Text: DOI OpenURL
Wu, L. L.; Hu, P. C. Entire solutions on a system of Fermat type q-difference-differential equations. (English) Zbl 07644658 Anal. Math. 48, No. 4, 1257-1280 (2022). MSC: 30D35 30D20 30D30 PDF BibTeX XML Cite \textit{L. L. Wu} and \textit{P. C. Hu}, Anal. Math. 48, No. 4, 1257--1280 (2022; Zbl 07644658) Full Text: DOI OpenURL
Laine, I.; Latreuch, Z. Remarks on meromorphic solutions of some delay-differential equations. (English) Zbl 07644649 Anal. Math. 48, No. 4, 1081-1104 (2022). MSC: 34K41 39A45 30D35 PDF BibTeX XML Cite \textit{I. Laine} and \textit{Z. Latreuch}, Anal. Math. 48, No. 4, 1081--1104 (2022; Zbl 07644649) Full Text: DOI OpenURL
Horodets’kyi, V. V.; Martynyuk, O. V.; Kolisnyk, R. S. On a nonlocal problem for the first-order differential-operator equations. (English) Zbl 07644468 Carpathian Math. Publ. 14, No. 2, 513-528 (2022). MSC: 35A08 35C10 47B39 PDF BibTeX XML Cite \textit{V. V. Horodets'kyi} et al., Carpathian Math. Publ. 14, No. 2, 513--528 (2022; Zbl 07644468) Full Text: DOI OpenURL
Li, Huijuan; Gao, Chenghua; Dimitrov, Nikolay D. Existence of positive solutions of discrete third-order three-point BVP with sign-changing Green’s function. (English) Zbl 07642978 Open Math. 20, 1229-1245 (2022). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{H. Li} et al., Open Math. 20, 1229--1245 (2022; Zbl 07642978) Full Text: DOI OpenURL
Chetverushkin, B. N.; Ol’khovskaya, O. G.; Gasilov, V. A. An explicit difference scheme for non-linear heat conduction equation. (Russian. English summary) Zbl 07642905 Mat. Model. 34, No. 12, 3-19 (2022). MSC: 65M06 80A22 35Q79 PDF BibTeX XML Cite \textit{B. N. Chetverushkin} et al., Mat. Model. 34, No. 12, 3--19 (2022; Zbl 07642905) Full Text: DOI MNR OpenURL
Martin-Vergara, Francisca; Rus, Francisco; Villatoro, Francisco R. Numerical search for the stationary quasi-breather of the graphene superlattice equation. (English) Zbl 07642242 Chaos Solitons Fractals 162, Article ID 112530, 11 p. (2022). MSC: 35Qxx 65Zxx 65Mxx PDF BibTeX XML Cite \textit{F. Martin-Vergara} et al., Chaos Solitons Fractals 162, Article ID 112530, 11 p. (2022; Zbl 07642242) Full Text: DOI OpenURL
Abdi, N.; Aminikhah, H.; Refahi Sheikhani, A. H. High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options. (English) Zbl 07642172 Chaos Solitons Fractals 162, Article ID 112423, 18 p. (2022). MSC: 65M06 65D07 34K37 PDF BibTeX XML Cite \textit{N. Abdi} et al., Chaos Solitons Fractals 162, Article ID 112423, 18 p. (2022; Zbl 07642172) Full Text: DOI OpenURL
Bhalekar, Sachin; Gade, Prashant M.; Joshi, Divya Stability and dynamics of complex order fractional difference equations. (English) Zbl 07641620 Chaos Solitons Fractals 158, Article ID 112063, 8 p. (2022). MSC: 26Axx 39Axx 28Axx PDF BibTeX XML Cite \textit{S. Bhalekar} et al., Chaos Solitons Fractals 158, Article ID 112063, 8 p. (2022; Zbl 07641620) Full Text: DOI arXiv OpenURL
Luo, Ziyang; Zhang, Xingdong; Wang, Shuo; Yao, Lin Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme. (English) Zbl 07641377 Chaos Solitons Fractals 161, Article ID 112395, 8 p. (2022). MSC: 65Mxx 65Rxx 65Lxx PDF BibTeX XML Cite \textit{Z. Luo} et al., Chaos Solitons Fractals 161, Article ID 112395, 8 p. (2022; Zbl 07641377) Full Text: DOI OpenURL
Beshtokov, M. Kh. The total approximation method for the Dirichlet problem for multidimensional Sobolev-type equations. (English. Russian original) Zbl 07640130 Russ. Math. 66, No. 4, 12-23 (2022); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 4, 15-26 (2022). MSC: 65M06 65M15 65M12 35R09 76A05 35Q35 PDF BibTeX XML Cite \textit{M. Kh. Beshtokov}, Russ. Math. 66, No. 4, 12--23 (2022; Zbl 07640130); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 4, 15--26 (2022) Full Text: DOI OpenURL
Xu, Hong Yan; Zhang, Keyu; Zheng, Xiumin Entire and meromorphic solutions for several Fermat type partial differential difference equations in \(\mathbb{C}^2\). (English) Zbl 07639797 Rocky Mt. J. Math. 52, No. 6, 2169-2187 (2022). MSC: 32W50 35M30 39A45 PDF BibTeX XML Cite \textit{H. Y. Xu} et al., Rocky Mt. J. Math. 52, No. 6, 2169--2187 (2022; Zbl 07639797) Full Text: DOI Link OpenURL
Withers, Christopher S.; Nadarajah, Saralees Solutions to nonlinear recurrence equations. (English) Zbl 07639796 Rocky Mt. J. Math. 52, No. 6, 2153-2168 (2022). MSC: 65Q99 PDF BibTeX XML Cite \textit{C. S. Withers} and \textit{S. Nadarajah}, Rocky Mt. J. Math. 52, No. 6, 2153--2168 (2022; Zbl 07639796) Full Text: DOI Link OpenURL
Xu, Xiaoxue; Cao, Cewen; Zhang, Da-jun Algebro-geometric solutions to the lattice potential modified Kadomtsev-Petviashvili equation. (English) Zbl 07639753 J. Phys. A, Math. Theor. 55, No. 37, Article ID 375201, 28 p. (2022). MSC: 35Q51 37K60 39A36 PDF BibTeX XML Cite \textit{X. Xu} et al., J. Phys. A, Math. Theor. 55, No. 37, Article ID 375201, 28 p. (2022; Zbl 07639753) Full Text: DOI arXiv OpenURL
Besse, Christophe; Gavrilyuk, Sergey; Kazakova, Maria; Noble, Pascal Perfectly matched layers methods for mixed hyperbolic-dispersive equations. (English) Zbl 07639236 Water Waves 4, No. 3, 313-343 (2022). MSC: 65M06 65N06 65L06 65M12 76B03 76B15 76B25 76L05 76M20 35C08 35A01 35A02 PDF BibTeX XML Cite \textit{C. Besse} et al., Water Waves 4, No. 3, 313--343 (2022; Zbl 07639236) Full Text: DOI OpenURL
Sadkane, Miloud On the stability of delayed linear discrete-time systems with periodic coefficients. (English) Zbl 07639055 J. Difference Equ. Appl. 28, No. 11-12, 1449-1457 (2022). MSC: 39A30 39A06 39A23 PDF BibTeX XML Cite \textit{M. Sadkane}, J. Difference Equ. Appl. 28, No. 11--12, 1449--1457 (2022; Zbl 07639055) Full Text: DOI OpenURL
Pablos Romo, Fernando Explicit solutions of non-homogeneous difference equations from finite potent endomorphisms. (English) Zbl 07638885 Linear Multilinear Algebra 70, No. 20, 5346-5361 (2022). Reviewer: Ioannis Dassios (Dublin) MSC: 39A06 47B39 65Q10 15A09 PDF BibTeX XML Cite \textit{F. Pablos Romo}, Linear Multilinear Algebra 70, No. 20, 5346--5361 (2022; Zbl 07638885) Full Text: DOI OpenURL
Zaitseva, N. V. Classical solutions of a multidimensional hyperbolic differential-difference equation with shifts of various directions in the potentials. (English. Russian original) Zbl 07638260 Math. Notes 112, No. 6, 872-880 (2022); translation from Mat. Zametki 112, No. 6, 810-819 (2022). MSC: 35A22 35L10 35R10 47E07 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Math. Notes 112, No. 6, 872--880 (2022; Zbl 07638260); translation from Mat. Zametki 112, No. 6, 810--819 (2022) Full Text: DOI OpenURL
Chetverushkin, B. N.; Olkhovskaya, O. G.; Gasilov, V. A. On stabilization of an explicit difference scheme for a nonlinear parabolic equation. (English. Russian original) Zbl 07637725 Dokl. Math. 106, No. 2, 326-331 (2022); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 506, 30-36 (2022). MSC: 65M06 65N06 65Y05 80A21 85A25 85A05 35K55 35B65 PDF BibTeX XML Cite \textit{B. N. Chetverushkin} et al., Dokl. Math. 106, No. 2, 326--331 (2022; Zbl 07637725); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 506, 30--36 (2022) Full Text: DOI OpenURL
Li, Meng Cut-off error splitting technique for conservative nonconforming VEM for N-coupled nonlinear Schrödinger-Boussinesq equations. (English) Zbl 07637440 J. Sci. Comput. 93, No. 3, Paper No. 86, 44 p. (2022). MSC: 65M60 65M06 65N30 65N35 65N12 65N15 76D07 35Q35 35Q55 35Q41 PDF BibTeX XML Cite \textit{M. Li}, J. Sci. Comput. 93, No. 3, Paper No. 86, 44 p. (2022; Zbl 07637440) Full Text: DOI OpenURL
Hirpho, Mohammed Numerical solution of the heat transfer equation coupled with the Darcy flow using the finite element method. (English) Zbl 07637312 Abstr. Appl. Anal. 2022, Article ID 5108445, 9 p. (2022). MSC: 65M06 35K05 80M20 PDF BibTeX XML Cite \textit{M. Hirpho}, Abstr. Appl. Anal. 2022, Article ID 5108445, 9 p. (2022; Zbl 07637312) Full Text: DOI OpenURL
Fečkan, Michal; Pospíšil, Michal; Danca, Marius-F.; Wang, JinRong Caputo delta weakly fractional difference equations. (English) Zbl 07636178 Fract. Calc. Appl. Anal. 25, No. 6, 2222-2240 (2022). MSC: 39A13 26A33 26D20 33E12 PDF BibTeX XML Cite \textit{M. Fečkan} et al., Fract. Calc. Appl. Anal. 25, No. 6, 2222--2240 (2022; Zbl 07636178) Full Text: DOI OpenURL
Osman, Sheelan; Langlands, Trevor Numerical investigation of two models of nonlinear fractional reaction subdiffusion equations. (English) Zbl 07636176 Fract. Calc. Appl. Anal. 25, No. 6, 2166-2192 (2022). MSC: 65M06 65M12 65M15 35R11 35K57 PDF BibTeX XML Cite \textit{S. Osman} and \textit{T. Langlands}, Fract. Calc. Appl. Anal. 25, No. 6, 2166--2192 (2022; Zbl 07636176) Full Text: DOI OpenURL
Hu, Jiuhua; Alikhanov, Anatoly; Efendiev, Yalchin; Leung, Wing Tat Partially explicit time discretization for time fractional diffusion equation. (English) Zbl 07636164 Fract. Calc. Appl. Anal. 25, No. 5, 1908-1924 (2022). MSC: 65M12 65M06 26A33 65M60 35R11 PDF BibTeX XML Cite \textit{J. Hu} et al., Fract. Calc. Appl. Anal. 25, No. 5, 1908--1924 (2022; Zbl 07636164) Full Text: DOI arXiv OpenURL
Ji, Tianfu; Hou, Jianhua; Yang, Changqing The operational matrix of Chebyshev polynomials for solving pantograph-type Volterra integro-differential equations. (English) Zbl 07636103 Adv. Contin. Discrete Models 2022, Paper No. 57, 16 p. (2022). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{T. Ji} et al., Adv. Contin. Discrete Models 2022, Paper No. 57, 16 p. (2022; Zbl 07636103) Full Text: DOI OpenURL
Fardi, Mojtaba; Al-Omari, Shrideh K. Qasem; Araci, Serkan A pseudo-spectral method based on reproducing kernel for solving the time-fractional diffusion-wave equation. (English) Zbl 07636100 Adv. Contin. Discrete Models 2022, Paper No. 54, 14 p. (2022). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{M. Fardi} et al., Adv. Contin. Discrete Models 2022, Paper No. 54, 14 p. (2022; Zbl 07636100) Full Text: DOI OpenURL
Wang, Kai; Feng, Jundong; Chen, Hongbo; Xu, Changling Numerical analysis of a linear second-order finite difference scheme for space-fractional Allen-Cahn equations. (English) Zbl 07636099 Adv. Contin. Discrete Models 2022, Paper No. 53, 14 p. (2022). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{K. Wang} et al., Adv. Contin. Discrete Models 2022, Paper No. 53, 14 p. (2022; Zbl 07636099) Full Text: DOI OpenURL
Avazzadeh, Zakieh; Nikan, Omid; Tenreiro Machado, José; Rasoulizadeh, Mohammad Navaz Numerical analysis of time-fractional Sobolev equation for fluid-driven processes in impermeable rocks. (English) Zbl 07636094 Adv. Contin. Discrete Models 2022, Paper No. 48, 14 p. (2022). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{Z. Avazzadeh} et al., Adv. Contin. Discrete Models 2022, Paper No. 48, 14 p. (2022; Zbl 07636094) Full Text: DOI OpenURL
Al Hassanieh, Nour G.; Banks, Jeffrey W.; Henshaw, William D.; Schwendeman, Donald W. Local compatibility boundary conditions for high-order accurate finite-difference approximations of PDEs. (English) Zbl 07634645 SIAM J. Sci. Comput. 44, No. 6, A3645-A3672 (2022). MSC: 65M06 65M12 65M20 65M22 35K05 35Q79 76N10 35Q31 PDF BibTeX XML Cite \textit{N. G. Al Hassanieh} et al., SIAM J. Sci. Comput. 44, No. 6, A3645--A3672 (2022; Zbl 07634645) Full Text: DOI arXiv OpenURL
Yaslan, H. Cerdik Numerical solution of the conformable fractional diffusion equation. (English) Zbl 07633790 Miskolc Math. Notes 23, No. 2, 975-986 (2022). MSC: 35K57 26A33 65M06 65M70 PDF BibTeX XML Cite \textit{H. C. Yaslan}, Miskolc Math. Notes 23, No. 2, 975--986 (2022; Zbl 07633790) Full Text: DOI OpenURL
Su, Guangwang; Sun, Taixiang; Han, Caihong; Qin, Bin; Quan, Weizhen Eventual periodicity of a max-type system of difference equations of higher order with four variables. (English) Zbl 07633786 Miskolc Math. Notes 23, No. 2, 913-927 (2022). MSC: 39A10 39A11 PDF BibTeX XML Cite \textit{G. Su} et al., Miskolc Math. Notes 23, No. 2, 913--927 (2022; Zbl 07633786) Full Text: DOI OpenURL
Çakır, Musa; Güneş, Baransel A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh. (English) Zbl 07633472 Hacet. J. Math. Stat. 51, No. 3, 787-799 (2022). MSC: 45J05 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{M. Çakır} and \textit{B. Güneş}, Hacet. J. Math. Stat. 51, No. 3, 787--799 (2022; Zbl 07633472) Full Text: DOI OpenURL
Antonietti, Paola F.; Manzini, Gianmarco; Mazzieri, Ilario; Scacchi, Simone; Verani, Marco The conforming virtual element method for polyharmonic and elastodynamics problems: a review. (English) Zbl 07633087 Antonietti, Paola F. (ed.) et al., The virtual element method and its applications. Cham: Birkhäuser. SEMA SIMAI Springer Ser. 31, 411-451 (2022). MSC: 65M60 65M06 65N30 74B10 74R10 74S05 74S20 35Q74 PDF BibTeX XML Cite \textit{P. F. Antonietti} et al., SEMA SIMAI Springer Ser. 31, 411--451 (2022; Zbl 07633087) Full Text: DOI arXiv OpenURL
Duan, Huoyuan; Zhang, Qiuyu Residual-based a posteriori error estimates for the time-dependent Ginzburg-Landau equations of superconductivity. (English) Zbl 07632678 J. Sci. Comput. 93, No. 3, Paper No. 79, 47 p. (2022). MSC: 65M60 65M06 65N30 65N50 65M15 35K15 35K20 82D55 35Q56 PDF BibTeX XML Cite \textit{H. Duan} and \textit{Q. Zhang}, J. Sci. Comput. 93, No. 3, Paper No. 79, 47 p. (2022; Zbl 07632678) Full Text: DOI OpenURL
Abedian, Rooholah; Dehghan, Mehdi A RBF-WENO finite difference scheme for non-linear degenerate parabolic equations. (English) Zbl 07632629 J. Sci. Comput. 93, No. 3, Paper No. 60, 29 p. (2022). MSC: 65M06 65D12 41A58 65M15 35K65 76S05 76T06 35Q35 PDF BibTeX XML Cite \textit{R. Abedian} and \textit{M. Dehghan}, J. Sci. Comput. 93, No. 3, Paper No. 60, 29 p. (2022; Zbl 07632629) Full Text: DOI OpenURL
Zhou, Lingling; Guo, Ruihan Optimal error estimates of the local discontinuous Galerkin method and high-order time discretization scheme for the Swift-Hohenberg equation. (English) Zbl 07632595 J. Sci. Comput. 93, No. 2, Paper No. 46, 30 p. (2022). MSC: 65M60 65M06 65N30 65N35 65M15 65M12 35Q35 PDF BibTeX XML Cite \textit{L. Zhou} and \textit{R. Guo}, J. Sci. Comput. 93, No. 2, Paper No. 46, 30 p. (2022; Zbl 07632595) Full Text: DOI OpenURL
Cavalcante, T. M.; Lira Filho, R. J. M.; Souza, A. C. R.; Carvalho, D. K. E.; Lyra, P. R. M. A multipoint flux approximation with a diamond stencil and a non-linear defect correction strategy for the numerical solution of steady state diffusion problems in heterogeneous and anisotropic media satisfying the discrete maximum principle. (English) Zbl 07632591 J. Sci. Comput. 93, No. 2, Paper No. 42, 15 p. (2022). MSC: 65N06 65N12 76M20 35J05 PDF BibTeX XML Cite \textit{T. M. Cavalcante} et al., J. Sci. Comput. 93, No. 2, Paper No. 42, 15 p. (2022; Zbl 07632591) Full Text: DOI OpenURL
Idomoto, Taiki; Suzuki, Takao An affine Weyl group action on the basic hypergeometric series arising from the \(q\)-Garnier system. (English) Zbl 07632577 Lett. Math. Phys. 112, No. 6, Paper No. 121, 22 p. (2022). MSC: 17B80 33D15 34M56 39A13 PDF BibTeX XML Cite \textit{T. Idomoto} and \textit{T. Suzuki}, Lett. Math. Phys. 112, No. 6, Paper No. 121, 22 p. (2022; Zbl 07632577) Full Text: DOI arXiv OpenURL
Alzabut, Jehad; Selvam, A. George Maria; Dhakshinamoorthy, Vignesh; Mohammadi, Hakimeh; Rezapour, Shahram On chaos of discrete time fractional order host-immune-tumor cells interaction model. (English) Zbl 07632371 J. Appl. Math. Comput. 68, No. 6, 4795-4820 (2022). MSC: 37C25 39A28 PDF BibTeX XML Cite \textit{J. Alzabut} et al., J. Appl. Math. Comput. 68, No. 6, 4795--4820 (2022; Zbl 07632371) Full Text: DOI OpenURL
Li, Lin; Chen, Zhong A meshless method for solving nonlinear variable-order fractional Ginzburg-Landau equations on arbitrary domains. (English) Zbl 1499.65405 J. Appl. Math. Comput. 68, No. 6, 3937-3959 (2022). MSC: 65M06 35Q56 35R11 65M12 PDF BibTeX XML Cite \textit{L. Li} and \textit{Z. Chen}, J. Appl. Math. Comput. 68, No. 6, 3937--3959 (2022; Zbl 1499.65405) Full Text: DOI OpenURL
Achouri, Talha; Ayadi, Mekki; Habbal, Abderrahmane; Yahyaoui, Boutheina Numerical analysis for the two-dimensional Fisher-Kolmogorov-Petrovski-Piskunov equation with mixed boundary condition. (English) Zbl 1499.65366 J. Appl. Math. Comput. 68, No. 6, 3589-3614 (2022). MSC: 65M06 65M12 92C50 PDF BibTeX XML Cite \textit{T. Achouri} et al., J. Appl. Math. Comput. 68, No. 6, 3589--3614 (2022; Zbl 1499.65366) Full Text: DOI OpenURL
Karataş, Ramazan The dynamical behavior of a higher order difference equation. (English) Zbl 07631978 Adv. Appl. Discrete Math. 35, 17-23 (2022). MSC: 39A10 PDF BibTeX XML Cite \textit{R. Karataş}, Adv. Appl. Discrete Math. 35, 17--23 (2022; Zbl 07631978) Full Text: DOI OpenURL
Chen, Yanlai; Dong, Bo; Pereira, Rebecca A new conservative discontinuous Galerkin method via implicit penalization for the generalized Korteweg-de Vries equation. (English) Zbl 07630979 SIAM J. Numer. Anal. 60, No. 6, 3078-3098 (2022). MSC: 65M60 65M06 65N30 65M12 65M15 35C08 35Q53 PDF BibTeX XML Cite \textit{Y. Chen} et al., SIAM J. Numer. Anal. 60, No. 6, 3078--3098 (2022; Zbl 07630979) Full Text: DOI arXiv OpenURL
Gao, Xinyue; Qin, Yi; Li, Jian; Chen, Zhangxin A full discretization of a time-dependent closed-loop geothermal system by a two-grid scheme. (English) Zbl 07630842 Results Appl. Math. 16, Article ID 100343, 24 p. (2022). MSC: 65M55 65M06 65N30 65N50 76S05 76D05 74L10 35K05 86A99 76M10 76M20 35Q35 35Q79 PDF BibTeX XML Cite \textit{X. Gao} et al., Results Appl. Math. 16, Article ID 100343, 24 p. (2022; Zbl 07630842) Full Text: DOI OpenURL
Kravchenko, D. S.; Kustova, E. V.; Melnik, M. Yu. Modeling of state-to-state oxygen kinetics behind reflected shock waves. (English. Russian original) Zbl 07630569 Vestn. St. Petersbg. Univ., Math. 55, No. 3, 281-289 (2022); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 9(67), No. 3, 429-442 (2022). MSC: 76P05 76L05 76V05 76M20 PDF BibTeX XML Cite \textit{D. S. Kravchenko} et al., Vestn. St. Petersbg. Univ., Math. 55, No. 3, 281--289 (2022; Zbl 07630569); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 9(67), No. 3, 429--442 (2022) Full Text: DOI OpenURL
Argyros, Ioannis K.; Shakhno, Stepan; Yarmola, Halyna Extended local and semilocal convergence for interpolatory iterative methods for nonlinear equations. (English) Zbl 07627123 S\(\vec{\text{e}}\)MA J. 79, No. 4, 619-630 (2022). MSC: 65-XX 47J25 65G99 65J15 65H10 49M15 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., S\(\vec{\text{e}}\)MA J. 79, No. 4, 619--630 (2022; Zbl 07627123) Full Text: DOI OpenURL