×

LILIX – a package for the solution of the coupled channel Schrödinger equation. (English) Zbl 1017.65063

Summary: The code LILIX is based on a CP method for solving systems of coupled Schrödinger equations. The method is of the sixth order, highly stable and with uniform accuracy with respect to the energy. The package contains three main subroutines to be accessed directly by the user. Subroutine LI generates the partition consistent with the desired accuracy while subroutine LIX helps propagating the solution and its derivative with respect to the momentum \(k\) in both directions (forwards and backwards) along the mesh points of the partition. Subroutine RENORM helps conserving the linear independence of various vectors in the solution matrix whenever this may be of concern.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34-04 Software, source code, etc. for problems pertaining to ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
34A30 Linear ordinary differential equations and systems
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)

Software:

LILIX
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allison, A. C., Adv. At. Mol. Phys., 25, 1113 (1988)
[2] Rawitscher, G. H.; Esry, B. D.; Tiesinga, E.; Burke, J. P.; Koltracht, I., J. Chem. Phys., 111, 10 418 (1999)
[3] Ixaru, L. Gr., J. Comput. Phys., 36, 182 (1980)
[4] Ixaru, L. Gr., Numerical Methods for Differential Equations (1984), Reidel: Reidel Dordrecht-Boston-Lancaster · Zbl 0301.34010
[5] Ixaru, L. Gr., J. Comput. Appl. Math., 125, 347 (2000)
[6] Rykaczewski, K.; Batchelder, J. C.; Bingham, C. R.; Davinson, T.; Ginter, T. N.; Gross, C. J.; Grzywacz, R.; Karny, M.; MacDonald, B. D.; Mas, J. F.; McConnell, J. W.; Piechaczek, A.; Slinger, R. C.; Toth, K. S.; Walters, W. B.; Woods, P. J.; Zganjar, E. F.; Barmore, B.; Ixaru, L. Gr.; Kruppa, A. T.; Nazarewicz, W.; Rizea, M.; Vertse, T., Phys. Rev. C, 60, 1113 (1999), 011301-1
[7] Gyarmati, B.; Vertse, T., Nucl. Phys. A, 160, 523 (1971)
[8] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1972), Dover: Dover New York · Zbl 0515.33001
[9] Ixaru, L. Gr.; Meyer, H. De; Berghe, G. Vanden, J. Comput. Appl. Math., 88, 289 (1998)
[10] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., Numerical Recipes, The Art of Scientific Computing (1986), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0587.65003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.