×

Estimating high-resolution red sea surface temperature hotspots, using a low-rank semiparametric spatial model. (English) Zbl 1478.62355

Summary: In this work, we estimate extreme sea surface temperature (SST) hotspots, that is, high threshold exceedance regions, for the Red Sea, a vital region of high biodiversity. We analyze high-resolution satellite-derived SST data comprising daily measurements at 16,703 grid cells across the Red Sea over the period 1985–2015. We propose a semiparametric Bayesian spatial mixed-effects linear model with a flexible mean structure to capture spatially-varying trend and seasonality, while the residual spatial variability is modeled through a Dirichlet process mixture (DPM) of low-rank spatial Student’s \(t\) processes (LTPs). By specifying cluster-specific parameters for each LTP mixture component, the bulk of the SST residuals influence tail inference and hotspot estimation only moderately. Our proposed model has a nonstationary mean, covariance, and tail dependence, and posterior inference can be drawn efficiently through Gibbs sampling. In our application, we show that the proposed method outperforms some natural parametric and semiparametric alternatives. Moreover, we show how hotspots can be identified, and we estimate extreme SST hotspots for the whole Red Sea, projected until the year 2100, based on the Representative Concentration Pathways 4.5 and 8.5. The estimated 95% credible region, for joint high threshold exceedances include large areas covering major endangered coral reefs in the southern Red Sea.

MSC:

62P12 Applications of statistics to environmental and related topics
62F15 Bayesian inference
62H11 Directional data; spatial statistics
62H30 Classification and discrimination; cluster analysis (statistical aspects)
86A05 Hydrology, hydrography, oceanography

Software:

GMRFLib; Rfast; rARPACK
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alexanderian, A. (2015). A brief note on the Karhunen-Loève expansion. Preprint. Available at arXiv:1509.07526.
[2] Anderes, E., Huser, R., Nychka, D. and Coram, M. (2013). Nonstationary positive definite tapering on the plane. J. Comput. Graph. Statist. 22 848-865. · doi:10.1080/10618600.2012.729982
[3] Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008). Gaussian predictive process models for large spatial data sets. J. R. Stat. Soc. Ser. B. Stat. Methodol. 70 825-848. · Zbl 05563371 · doi:10.1111/j.1467-9868.2008.00663.x
[4] Beaky, M. M., Scherrer, R. J. and Villumsen, J. V. (1992). Topology of large-scale structure in seeded hot dark matter models. Astrophys. J. 387 443-448.
[5] Berumen, M. L., Hoey, A. S., Bass, W. H., Bouwmeester, J., Catania, D., Cochran, J. E., Khalil, M. T., Miyake, S., Mughal, M. et al. (2013). The status of coral reef ecology research in the Red Sea. Coral Reefs 32 737-748.
[6] Bolin, D. and Lindgren, F. (2015). Excursion and contour uncertainty regions for latent Gaussian models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 85-106. · Zbl 1414.62332 · doi:10.1111/rssb.12055
[7] Bopp, G., Shaby, B. A. and Huser, R. (2021). A hierarchical max-infinitely divisible spatial model for extreme precipitation. J. Amer. Statist. Assoc. 116 93-106. · Zbl 1457.62368 · doi:10.1080/01621459.2020.1750414
[8] Bopp, G. P., Shaby, B. A., Forest, C. E. and Mejía, A. (2020). Projecting flood-inducing precipitation with a Bayesian analogue model. J. Agric. Biol. Environ. Stat. 25 229-249. · Zbl 07270322 · doi:10.1007/s13253-020-00391-6
[9] Castro-Camilo, D., Huser, R. and Rue, H. (2019). A spliced gamma-generalized Pareto model for short-term extreme wind speed probabilistic forecasting. J. Agric. Biol. Environ. Stat. 24 517-534. · Zbl 1426.62335 · doi:10.1007/s13253-019-00369-z
[10] Castruccio, S., Huser, R. and Genton, M. G. (2016). High-order composite likelihood inference for max-stable distributions and processes. J. Comput. Graph. Statist. 25 1212-1229. · doi:10.1080/10618600.2015.1086656
[11] Cheng, L., AghaKouchak, A., Gilleland, E. and Katz, R. W. (2014). Non-stationary extreme value analysis in a changing climate. Clim. Change 127 353-369.
[12] Cooley, D. and Sain, S. R. (2010). Spatial hierarchical modeling of precipitation extremes from a regional climate model. J. Agric. Biol. Environ. Stat. 15 381-402. · Zbl 1306.62262 · doi:10.1007/s13253-010-0023-9
[13] Craigmile, P. F., Cressie, N., Santner, T. J. and Rao, Y. (2005). A loss function approach to identifying environmental exceedances. Extremes 8 143-159. · Zbl 1115.62117 · doi:10.1007/s10687-006-7964-y
[14] Cressie, N. A. C., Zhang, J. and Craigmile, P. F. (2005). Geostatistical prediction of spatial extremes and their extent. In Geostatistics for Environmental Applications, Proceedings of the Fifth Conference on Geostatistics for Environmental Applications (P. Renard, H. Demougeot-Renard and R. Froidevaux, eds.) 27-37. Springer, Berlin.
[15] Davison, A. C. and Huser, R. (2015). Statistics of extremes. Annu. Rev. Stat. Appl. 2 203-235. · doi:10.1146/annurev-statistics-010814-020133
[16] Davison, A. C., Huser, R. and Thibaud, E. (2013). Geostatistics of dependent and asymptotically independent extremes. Math. Geosci. 45 511-529. · Zbl 1321.86016 · doi:10.1007/s11004-013-9469-y
[17] Davison, A., Huser, R. and Thibaud, E. (2019). Spatial extremes. In Handbook of Environmental and Ecological Statistics M. Fuentes, J. A. Hoeting and R. L. Smith, eds.). Chapman & Hall/CRC Handb. Mod. Stat. Methods 711-744. CRC Press, Boca Raton, FL. · Zbl 1321.86016
[18] Davison, A. C., Padoan, S. A. and Ribatet, M. (2012). Statistical modeling of spatial extremes. Statist. Sci. 27 161-186. · Zbl 1330.86021 · doi:10.1214/11-STS376
[19] de Fondeville, R. and Davison, A. C. (2018). High-dimensional peaks-over-threshold inference. Biometrika 105 575-592. · Zbl 1499.62158 · doi:10.1093/biomet/asy026
[20] Demarta, S. and McNeil, A. J. (2005). The t copula and related copulas. Int. Stat. Rev. 73 111-129. · Zbl 1104.62060
[21] Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E. and Wimmer, W. (2012). The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 116 140-158.
[22] Duan, J. A., Guindani, M. and Gelfand, A. E. (2007). Generalized spatial Dirichlet process models. Biometrika 94 809-825. · Zbl 1156.62064
[23] Dutta, S. and Bhattacharya, S. (2014). Markov chain Monte Carlo based on deterministic transformations. Stat. Methodol. 16 100-116. · Zbl 1486.62004 · doi:10.1016/j.stamet.2013.08.006
[24] Eklundh, L. and Olsson, L. (2003). Vegetation index trends for the African Sahel 1982-1999. Geophys. Res. Lett. 30 1430.
[25] Fix, M. J., Cooley, D., Sain, S. R. and Tebaldi, C. (2018). A comparison of U.S. precipitation extremes under RCP8.5 and RCP4.5 with an application of pattern scaling. Clim. Change 146 335-347.
[26] French, J. P. and Hoeting, J. A. (2016). Credible regions for exceedance sets of geostatistical data. Environmetrics 27 4-14. · Zbl 1525.62116 · doi:10.1002/env.2371
[27] French, J. P. and Sain, S. R. (2013). Spatio-temporal exceedance locations and confidence regions. Ann. Appl. Stat. 7 1421-1449. · Zbl 1283.62226 · doi:10.1214/13-AOAS631
[28] Fuentes, M. (2007). Approximate likelihood for large irregularly spaced spatial data. J. Amer. Statist. Assoc. 102 321-331. · Zbl 1284.62589 · doi:10.1198/016214506000000852
[29] Furrer, R., Genton, M. G. and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Statist. 15 502-523. · doi:10.1198/106186006X132178
[30] Furrer, R., Knutti, R., Sain, S., Nychka, D. and Meehl, G. (2007). Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophys. Res. Lett. 34 L06711.
[31] Gelfand, A. E., Kottas, A. and MacEachern, S. N. (2005). Bayesian nonparametric spatial modeling with Dirichlet process mixing. J. Amer. Statist. Assoc. 100 1021-1035. · Zbl 1117.62342 · doi:10.1198/016214504000002078
[32] Gelfand, A. E. and Schliep, E. M. (2016). Spatial statistics and Gaussian processes: A beautiful marriage. Spat. Stat. 18 86-104. · doi:10.1016/j.spasta.2016.03.006
[33] Genevier, L. G. C., Jamil, T., Raitsos, D. E., Krokos, G. and Hoteit, I. (2019). Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Change Biol. 25 2338-2351. · doi:10.1111/gcb.14652
[34] Ghosal, S. and van der Vaart, A. (2017). Fundamentals of Nonparametric Bayesian Inference. Cambridge Series in Statistical and Probabilistic Mathematics 44. Cambridge Univ. Press, Cambridge. · Zbl 1376.62004 · doi:10.1017/9781139029834
[35] Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 359-378. · Zbl 1284.62093 · doi:10.1198/016214506000001437
[36] Gneiting, T. and Ranjan, R. (2011). Comparing density forecasts using threshold- and quantile-weighted scoring rules. J. Bus. Econom. Statist. 29 411-422. · Zbl 1219.91108 · doi:10.1198/jbes.2010.08110
[37] Hazra, A. and Huser, R. (2021a). Supplement to “Estimating high-resolution Red Sea surface temperature hotspots, using a low-rank semiparametric spatial model.” https://doi.org/10.1214/20-AOAS1418SUPPA.
[38] Hazra, A. and Huser, R. (2021b). R code for “Estimating high-resolution Red Sea surface temperature hotspots, using a low-rank semiparametric spatial model.” https://doi.org/10.1214/20-AOAS1418SUPPB.
[39] Hazra, A., Reich, B. J. and Staicu, A.-M. (2020). A multivariate spatial skew-\(t\) process for joint modeling of extreme precipitation indexes. Environmetrics 31 e2602, 19. · doi:10.1002/env.2602
[40] Hazra, A., Reich, B. J., Shaby, B. A. and Staicu, A.-M. (2018). A semiparametric Bayesian model for spatiotemporal extremes. Preprint. Available at arXiv:1812.11699.
[41] Heaton, M. J., Datta, A., Finley, A. O., Furrer, R., Guinness, J., Guhaniyogi, R., Gerber, F., Gramacy, R. B., Hammerling, D. et al. (2019). A case study competition among methods for analysing large spatial data. J. Agric. Biol. Environ. Stat. 24 398-425. · Zbl 1426.62345
[42] Higdon, D. (2002). Space and space-time modeling using process convolutions. In Quantitative Methods for Current Environmental Issues 37-56. Springer, London. · Zbl 1255.86016
[43] Huser, R. (2021). Editorial: EVA 2019 data competition on spatio-temporal prediction of Red Sea surface temperature extremes. Extremes 24 91-104. · Zbl 1461.00065 · doi:10.1007/s10687-019-00369-9
[44] Huser, R., Opitz, T. and Thibaud, E. (2017). Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures. Spat. Stat. 21 166-186. · doi:10.1016/j.spasta.2017.06.004
[45] Huser, R. and Wadsworth, J. L. (2019). Modeling spatial processes with unknown extremal dependence class. J. Amer. Statist. Assoc. 114 434-444. · Zbl 1478.62277 · doi:10.1080/01621459.2017.1411813
[46] Huser, R. and Wadsworth, J. L. (2020). Advances in statistical modeling of spatial extremes. Wiley Interdiscip. Rev.: Comput. Stat. e1537. · doi:10.1002/wics.1537
[47] Huser, R., Dombry, C., Ribatet, M. and Genton, M. G. (2019). Full likelihood inference for max-stable data. Stat 8 e218, 14. · doi:10.1002/sta4.218
[48] Lewandowska, A. M., Boyce, D. G., Hofmann, M., Matthiessen, B., Sommer, U. and Worm, B. (2014). Effects of sea surface warming on marine plankton. Ecol. Lett. 17 614-623.
[49] Mejia, A. F., Yue, Y., Bolin, D., Lindgren, F. and Lindquist, M. A. (2020). A Bayesian general linear modeling approach to Cortical surface FMRI data analysis. J. Amer. Statist. Assoc. 115 501-520. · Zbl 1445.62283 · doi:10.1080/01621459.2019.1611582
[50] Morris, S. A., Reich, B. J., Thibaud, E. and Cooley, D. (2017). A space-time skew-\(t\) model for threshold exceedances. Biometrics 73 749-758. · Zbl 1522.62207 · doi:10.1111/biom.12644
[51] Opitz, T. (2013). Extremal \(t\) processes: Elliptical domain of attraction and a spectral representation. J. Multivariate Anal. 122 409-413. · Zbl 1282.60054 · doi:10.1016/j.jmva.2013.08.008
[52] Opitz, T., Huser, R., Bakka, H. and Rue, H. (2018). INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles. Extremes 21 441-462. · Zbl 1407.62167 · doi:10.1007/s10687-018-0324-x
[53] Padoan, S. A., Ribatet, M. and Sisson, S. A. (2010). Likelihood-based inference for max-stable processes. J. Amer. Statist. Assoc. 105 263-277. · Zbl 1397.62172 · doi:10.1198/jasa.2009.tm08577
[54] Papadakis, M., Tsagris, M., Dimitriadis, M., Tsamardinos, I., Fasiolo, M., Bor-boudakis, G. and Burkardt, J. (2017). Rfast: Fast R functions. R Package Version 1.
[55] Qiu, Y. and Mei, J. (2016). Package ‘rARPACK’.
[56] Reaser, J. K., Pomerance, R. and Thomas, P. O. (2000). Coral bleaching and global climate change: Scientific findings and policy recommendations. Conserv. Biol. 14 1500-1511.
[57] Reich, B. J. and Shaby, B. A. (2012). A hierarchical max-stable spatial model for extreme precipitation. Ann. Appl. Stat. 6 1430-1451. · Zbl 1257.62120 · doi:10.1214/12-AOAS591
[58] Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability 104. CRC Press/CRC, Boca Raton, FL. · Zbl 1093.60003 · doi:10.1201/9780203492024
[59] Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 319-392. · Zbl 1248.62156 · doi:10.1111/j.1467-9868.2008.00700.x
[60] Sang, H. and Gelfand, A. E. (2009). Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 16 407-426. · doi:10.1007/s10651-007-0078-0
[61] Sang, H. and Gelfand, A. E. (2010). Continuous spatial process models for spatial extreme values. J. Agric. Biol. Environ. Stat. 15 49-65. · Zbl 1306.62334 · doi:10.1007/s13253-009-0010-1
[62] Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639-650. · Zbl 0823.62007
[63] Shaltout, M. (2019). Recent sea surface temperature trends and future scenarios for the Red Sea. Oceanologia 61 484-504.
[64] Smith, R. L. (1990). Max-stable processes and spatial extremes. Unpublished manuscript.
[65] Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer, New York. · Zbl 0924.62100 · doi:10.1007/978-1-4612-1494-6
[66] Stein, M. L., Chi, Z. and Welty, L. J. (2004). Approximating likelihoods for large spatial data sets. J. R. Stat. Soc. Ser. B. Stat. Methodol. 66 275-296. · Zbl 1062.62094 · doi:10.1046/j.1369-7412.2003.05512.x
[67] Thibaud, E. and Opitz, T. (2015). Efficient inference and simulation for elliptical Pareto processes. Biometrika 102 855-870. · Zbl 1372.62011 · doi:10.1093/biomet/asv045
[68] Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. J. Roy. Statist. Soc. Ser. B 50 297-312.
[69] Wikle, C. K. (2010). Low-rank representations for spatial processes. In Handbook of Spatial Statistics (A. E. Gelfand, P. Diggle, P. Guttorp and M. Fuentes, eds.). Chapman & Hall/CRC Handb. Mod. Stat. Methods 107-118. CRC Press, Boca Raton, FL. · doi:10.1201/9781420072884-c8
[70] Wikle, C. K. and Cressie, N. (1999). A dimension-reduced approach to space-time Kalman filtering. Biometrika 86 815-829. · Zbl 0942.62114 · doi:10.1093/biomet/86.4.815
[71] Wu, Y. and Ghosal, S. (2010). The \[{L_1}\]-consistency of Dirichlet mixtures in multivariate Bayesian density estimation. J. Multivariate Anal. 101 2411-2419 · Zbl 1198.62028 · doi:10.1016/j.jmva.2010.06.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.