Liu, Ji-Cai Supercongruences for sums involving Domb numbers. (English) Zbl 1472.11021 Bull. Sci. Math. 169, Article ID 102992, 13 p. (2021). MSC: 11A07 11Y55 05A19 33F10 PDF BibTeX XML Cite \textit{J.-C. Liu}, Bull. Sci. Math. 169, Article ID 102992, 13 p. (2021; Zbl 1472.11021) Full Text: DOI arXiv OpenURL
Xia, Wei Proof of some conjectural congruences of Z.-W. Sun. (English) Zbl 1479.11018 J. Comb. Number Theory 11, No. 3, 117-128 (2019). MSC: 11A07 11B68 PDF BibTeX XML Cite \textit{W. Xia}, J. Comb. Number Theory 11, No. 3, 117--128 (2019; Zbl 1479.11018) OpenURL
Mao, Guo-Shuai; Wang, Jie On some congruences involving Domb numbers and harmonic numbers. (English) Zbl 1433.11017 Int. J. Number Theory 15, No. 10, 2179-2200 (2019). Reviewer: Olaf Ninnemann (Uffing am Staffelsee) MSC: 11B65 11B75 11A07 PDF BibTeX XML Cite \textit{G.-S. Mao} and \textit{J. Wang}, Int. J. Number Theory 15, No. 10, 2179--2200 (2019; Zbl 1433.11017) Full Text: DOI OpenURL
Cooper, Shaun; Wan, James G.; Zudilin, Wadim Holonomic alchemy and series for \(1/\pi \). (English) Zbl 1391.11165 Andrews, George E. (ed.) et al., Analytic number theory, modular forms and \(q\)-hypergeometric series. In honor of Krishna Alladi’s 60th birthday, University of Florida, Gainesville, FL, USA, March 17–21, 2016. Cham: Springer (ISBN 978-3-319-68375-1/hbk; 978-3-319-68376-8/ebook). Springer Proceedings in Mathematics & Statistics 221, 179-205 (2017). MSC: 11Y60 11F11 11B65 PDF BibTeX XML Cite \textit{S. Cooper} et al., Springer Proc. Math. Stat. 221, 179--205 (2017; Zbl 1391.11165) Full Text: DOI arXiv OpenURL
Osburn, Robert; Sahu, Brundaban A supercongruence for generalized Domb numbers. (English) Zbl 1337.11001 Funct. Approximatio, Comment. Math. 48, No. 1, 29-36 (2013). MSC: 11A07 11F11 PDF BibTeX XML Cite \textit{R. Osburn} and \textit{B. Sahu}, Funct. Approximatio, Comment. Math. 48, No. 1, 29--36 (2013; Zbl 1337.11001) Full Text: DOI arXiv Euclid OpenURL
Chan, Heng Huat; Zudilin, Wadim New representations for Apéry-like sequences. (English) Zbl 1275.11035 Mathematika 56, No. 1, 107-117 (2010). Reviewer: Enzo Bonacci (Latina) MSC: 11B65 11F11 11F20 33C20 PDF BibTeX XML Cite \textit{H. H. Chan} and \textit{W. Zudilin}, Mathematika 56, No. 1, 107--117 (2010; Zbl 1275.11035) Full Text: DOI OpenURL
Chan, Heng Huat; Verrill, Helena The Apéry numbers, the Almkvist-Zudilin numbers and new series for \(1/\pi\). (English) Zbl 1193.11038 Math. Res. Lett. 16, No. 2-3, 405-420 (2009). Reviewer: Jeremy Lovejoy (Paris) MSC: 11F11 11F20 11Y60 11F03 05A10 PDF BibTeX XML Cite \textit{H. H. Chan} and \textit{H. Verrill}, Math. Res. Lett. 16, No. 2--3, 405--420 (2009; Zbl 1193.11038) Full Text: DOI OpenURL
Guillera, Jesús A class of conjectured series representations for \(1/\pi\). (English) Zbl 1163.11031 Exp. Math. 15, No. 4, 409-414 (2006). Reviewer: Roland Girgensohn (München) MSC: 11F03 11Y55 11B83 11F27 PDF BibTeX XML Cite \textit{J. Guillera}, Exp. Math. 15, No. 4, 409--414 (2006; Zbl 1163.11031) Full Text: DOI Euclid EuDML OpenURL
Chan, Heng Huat; Chan, Song Heng; Liu, Zhi-Guo Domb’s numbers and Ramanujan-Sato type series for \(1/\pi\). (English) Zbl 1122.11087 Adv. Math. 186, No. 2, 396-410 (2004). MSC: 11Y60 11F11 33C20 33C05 PDF BibTeX XML Cite \textit{H. H. Chan} et al., Adv. Math. 186, No. 2, 396--410 (2004; Zbl 1122.11087) Full Text: DOI OpenURL