×

Found 899 Documents (Results 1–100)

Introduction to Drinfeld modules. (English) Zbl 07660625

Anni, Samuele (ed.) et al., Arithmetic, geometry, cryptography, and coding theory, AGC2T. 18th international conference, Centre International de Rencontres Mathématiques, Marseille, France, May 31 – June 4, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 779, 167-186 (2022).
MSC:  11G09 11G45 11R37
PDF BibTeX XML Cite
Full Text: DOI

On braided double-biproduct Hopf algebras. (English) Zbl 07605690

Andruskiewitsch, Nicolás (ed.) et al., Hopf algebras and tensor categories. International workshop, Nanjing University, Nanjing, China, September 9–13, 2019. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 771, 63-116 (2021).
MSC:  16T05 16S40 18M05
PDF BibTeX XML Cite
Full Text: DOI

On the Stark units of Drinfeld modules. (English) Zbl 1470.11158

Anglès, Bruno (ed.) et al., Arithmetic and geometry over local fields. VIASM 2018. Based on lectures given during the program “Arithmetic and geometry of local and global fields”, summer 2018, Hanoi, Vietnam. Cham: Springer. Lect. Notes Math. 2275, 281-324 (2021).
MSC:  11G09 11R58 11M38
PDF BibTeX XML Cite
Full Text: DOI

From the Carlitz exponential to Drinfeld modular forms. (English) Zbl 1457.11079

Anglès, Bruno (ed.) et al., Arithmetic and geometry over local fields. VIASM 2018. Based on lectures given during the program “Arithmetic and geometry of local and global fields”, summer 2018, Hanoi, Vietnam. Cham: Springer. Lect. Notes Math. 2275, 93-177 (2021).
MSC:  11G09 11F52
PDF BibTeX XML Cite
Full Text: DOI arXiv HAL

Difference Galois theory for the “applied” mathematician. (English) Zbl 1473.12008

Anglès, Bruno (ed.) et al., Arithmetic and geometry over local fields. VIASM 2018. Based on lectures given during the program “Arithmetic and geometry of local and global fields”, summer 2018, Hanoi, Vietnam. Cham: Springer. Lect. Notes Math. 2275, 29-59 (2021).
PDF BibTeX XML Cite
Full Text: DOI arXiv

Computing modular polynomials and isogenies of rank two Drinfeld modules over finite fields. (English) Zbl 1469.11178

Brenner, Susanne C. (ed.) et al., 75 years of mathematics of computation. Symposium celebrating 75 years of mathematics of computation, Institute for Computational and Experimental Research in Mathematics, ICERM, Providence, RI, USA, November 1–3, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 754, 283-313 (2020).
MSC:  11G09 11Y16 11Y40
PDF BibTeX XML Cite
Full Text: DOI

Multizeta in function field arithmetic. (English) Zbl 1441.11222

Böckle, Gebhard (ed.) et al., \(t\)-motives: Hodge structures, transcendence and other motivic aspects. EMS Series of Congress Reports. Zürich: European Mathematical Society (EMS). 441-452 (2020).
PDF BibTeX XML Cite
Full Text: DOI

Automata methods in transcendence. (English) Zbl 1441.11052

Böckle, Gebhard (ed.) et al., \(t\)-motives: Hodge structures, transcendence and other motivic aspects. EMS Series of Congress Reports. Zürich: European Mathematical Society (EMS). 351-372 (2020).
PDF BibTeX XML Cite
Full Text: DOI

Frobenius difference equations and difference Galois groups. (English) Zbl 1440.11098

Böckle, Gebhard (ed.) et al., \(t\)-motives: Hodge structures, transcendence and other motivic aspects. EMS Series of Congress Reports. Zürich: European Mathematical Society (EMS). 261-295 (2020).
PDF BibTeX XML Cite
Full Text: DOI

The digit principle and derivates of certain \(L\)-series. (English) Zbl 1468.11183

Actes de la conférence «Analogies between number field and function field : algebraic and analytic approaches ». Besançon: Presses Universitaires de Franche-Comté. Publ. Math. Besançon, Algèbre Théor. Nombres 2019, Part 1, 81-102 (2019).
MSC:  11M38 11G09
PDF BibTeX XML Cite

Computing the characteristic polynomial of a finite rank two Drinfeld module. (English) Zbl 1467.11057

Bradford, Russell (ed.), Proceedings of the 44th international symposium on symbolic and algebraic computation, ISSAC ’19, Beijing, China, July 15–18, 2019. New York, NY: Association for Computing Machinery (ACM). 307-314 (2019).
MSC:  11G09 68W30
PDF BibTeX XML Cite
Full Text: DOI arXiv

Filter Results by …

Document Type

Reviewing State

all top 5

Author

all top 5

Serial

all top 5

Year of Publication

all top 3

Main Field