Doostdar, Mohammad Reza; Kazemi, Manochehr; Vahidi, Alireza A numerical method for solving the Duffing equation involving both integral and non-integral forcing terms with separated and integral boundary conditions. (English) Zbl 07665307 Comput. Methods Differ. Equ. 11, No. 2, 241-253 (2023). MSC: 34B15 65L10 PDF BibTeX XML Cite \textit{M. R. Doostdar} et al., Comput. Methods Differ. Equ. 11, No. 2, 241--253 (2023; Zbl 07665307) Full Text: DOI OpenURL
Houas, Mohamed; Samei, Mohammad Esmael Existence and stability of solutions for linear and nonlinear damping of \(q\)-fractional Duffing-Rayleigh problem. (English) Zbl 07660430 Mediterr. J. Math. 20, No. 3, Paper No. 148, 28 p. (2023). MSC: 26A33 39B72 34C45 PDF BibTeX XML Cite \textit{M. Houas} and \textit{M. E. Samei}, Mediterr. J. Math. 20, No. 3, Paper No. 148, 28 p. (2023; Zbl 07660430) Full Text: DOI OpenURL
Liao, Shijun Avoiding small denominator problems by means of the homotopy analysis method. (English) Zbl 07646146 Adv. Appl. Math. Mech. 15, No. 2, 267-299 (2023). MSC: 65H20 41A58 34C25 PDF BibTeX XML Cite \textit{S. Liao}, Adv. Appl. Math. Mech. 15, No. 2, 267--299 (2023; Zbl 07646146) Full Text: DOI arXiv OpenURL
Song, Jin; Han, Xiujing; Zou, Yong; Jiang, Yandan; Bi, Qinsheng Relaxation oscillation patterns induced by amplitude-modulated excitation in the Duffing system. (English) Zbl 07646364 Chaos Solitons Fractals 164, Article ID 112555, 6 p. (2022). MSC: 34-XX 92-XX PDF BibTeX XML Cite \textit{J. Song} et al., Chaos Solitons Fractals 164, Article ID 112555, 6 p. (2022; Zbl 07646364) Full Text: DOI OpenURL
Cheng, Guanghui; Gui, Rong Bistable chaotic family and its chaotic mechanism. (English) Zbl 07642157 Chaos Solitons Fractals 162, Article ID 112407, 13 p. (2022). MSC: 34C28 34C15 37D45 PDF BibTeX XML Cite \textit{G. Cheng} and \textit{R. Gui}, Chaos Solitons Fractals 162, Article ID 112407, 13 p. (2022; Zbl 07642157) Full Text: DOI OpenURL
Wang, Xiaolong; Feng, Jing; Liu, Qi; Li, Yongge; Xu, Yong Neural network-based parameter estimation of stochastic differential equations driven by Lévy noise. (English) Zbl 07605521 Physica A 606, Article ID 128146, 18 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{X. Wang} et al., Physica A 606, Article ID 128146, 18 p. (2022; Zbl 07605521) Full Text: DOI OpenURL
Salas, Alvaro H. Elementary solution to a damped and forced cubic-quintic Duffing equation. (English) Zbl 07604271 Int. J. Math. Comput. Sci. 17, No. 4, 1643-1647 (2022). MSC: 37Cxx 33E30 34C15 PDF BibTeX XML Cite \textit{A. H. Salas}, Int. J. Math. Comput. Sci. 17, No. 4, 1643--1647 (2022; Zbl 07604271) Full Text: Link OpenURL
Burra, Lakshmi; Zanolin, Fabio A topological approach to the problem of chaotic tides. (English) Zbl 07590720 Nonlinear Anal., Real World Appl. 68, Article ID 103699, 14 p. (2022). Reviewer: Alberto Boscaggin (Collegno) MSC: 34C25 34C28 37C60 37E40 34C60 86A05 PDF BibTeX XML Cite \textit{L. Burra} and \textit{F. Zanolin}, Nonlinear Anal., Real World Appl. 68, Article ID 103699, 14 p. (2022; Zbl 07590720) Full Text: DOI OpenURL
Huang, Peng; Li, Xiong; Liu, Bin Invariant curves of almost periodic twist mappings. (English) Zbl 07587112 J. Dyn. Differ. Equations 34, No. 3, 1997-2033 (2022). Reviewer: Grzegorz Świątek (Warszawa) MSC: 37E40 37C55 37J40 PDF BibTeX XML Cite \textit{P. Huang} et al., J. Dyn. Differ. Equations 34, No. 3, 1997--2033 (2022; Zbl 07587112) Full Text: DOI arXiv OpenURL
Houas, Mohamed; Samei, Mohammad Esmael Existence and Mittag-Leffler-Ulam-stability results for Duffing type problem involving sequential fractional derivatives. (English) Zbl 07582603 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 185, 24 p. (2022). MSC: 30C45 34C15 39B72 PDF BibTeX XML Cite \textit{M. Houas} and \textit{M. E. Samei}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 185, 24 p. (2022; Zbl 07582603) Full Text: DOI OpenURL
Lan, Jun Existence and multiplicity of anti-periodic solutions for a class of second order Duffing equation. (Chinese. English summary) Zbl 07572902 Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 2, 463-469 (2022). MSC: 34C25 58E30 47H04 PDF BibTeX XML Cite \textit{J. Lan}, Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 2, 463--469 (2022; Zbl 07572902) Full Text: Link OpenURL
Xia, Chenyang; Wang, Zhenhui; Cheng, Zhibo Positive periodic solutions for a damped Duffing equation with singularity of attractive type. (Chinese. English summary) Zbl 07572522 Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 1, 131-138 (2022). MSC: 34K13 34C25 PDF BibTeX XML Cite \textit{C. Xia} et al., Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 1, 131--138 (2022; Zbl 07572522) Full Text: Link OpenURL
Benkaci-Ali, Nadir Existence and uniqueness results of positive solution of a class of singular Duffing oscillators. (English) Zbl 1489.34038 J. Indones. Math. Soc. 28, No. 1, 52-68 (2022). MSC: 34B15 34B16 34B18 PDF BibTeX XML Cite \textit{N. Benkaci-Ali}, J. Indones. Math. Soc. 28, No. 1, 52--68 (2022; Zbl 1489.34038) Full Text: Link OpenURL
Elías-Zúñiga, Alex On two-scale dimension and its application for deriving a new analytical solution for the fractal Duffing’s equation. (English) Zbl 07537377 Fractals 30, No. 3, Article ID 2250061, 10 p. (2022). MSC: 70K40 28A80 PDF BibTeX XML Cite \textit{A. Elías-Zúñiga}, Fractals 30, No. 3, Article ID 2250061, 10 p. (2022; Zbl 07537377) Full Text: DOI OpenURL
He, Chun-Hui; Liu, Chao A modified frequency-amplitude formulation for fractal vibration systems. (English) Zbl 07537362 Fractals 30, No. 3, Article ID 2250046, 8 p. (2022). MSC: 74H45 74K05 74S40 PDF BibTeX XML Cite \textit{C.-H. He} and \textit{C. Liu}, Fractals 30, No. 3, Article ID 2250046, 8 p. (2022; Zbl 07537362) Full Text: DOI OpenURL
Šremr, Jiří Positive periodic solutions to the forced non-autonomous Duffing equations. (English) Zbl 07501808 Georgian Math. J. 29, No. 2, 295-307 (2022). MSC: 34C25 34B18 34B30 37C60 PDF BibTeX XML Cite \textit{J. Šremr}, Georgian Math. J. 29, No. 2, 295--307 (2022; Zbl 07501808) Full Text: DOI OpenURL
Salas, Alvaro H.; Castillo, Jairo H.; Martínez, Lorenzo J. Analytical solution to the Lagrange top. (English) Zbl 1499.34006 Int. J. Math. Comput. Sci. 17, No. 2, 679-683 (2022). MSC: 34A05 33E05 70E15 PDF BibTeX XML Cite \textit{A. H. Salas} et al., Int. J. Math. Comput. Sci. 17, No. 2, 679--683 (2022; Zbl 1499.34006) Full Text: Link OpenURL
Salas, Alvaro H.; Castillo, Jairo H.; Martínez, Lorenzo J. The Duffing equation – a trigonometric point of view. (English) Zbl 1501.34037 Int. J. Math. Comput. Sci. 17, No. 2, 583-588 (2022). MSC: 34C15 34B30 34A45 PDF BibTeX XML Cite \textit{A. H. Salas} et al., Int. J. Math. Comput. Sci. 17, No. 2, 583--588 (2022; Zbl 1501.34037) Full Text: Link OpenURL
Salas, Alvaro H.; El-Tantawy, S. A.; Castillo, Jairo H. Analytical solution to the damped cubic-quintic Duffing equation. (English) Zbl 1499.34007 Int. J. Math. Comput. Sci. 17, No. 1, 425-430 (2022). MSC: 34A05 33E05 34B30 PDF BibTeX XML Cite \textit{A. H. Salas} et al., Int. J. Math. Comput. Sci. 17, No. 1, 425--430 (2022; Zbl 1499.34007) Full Text: Link OpenURL
Salas, Alvaro H.; Castillo, Jairo E.; Pinzon, Jorge E. Solution of Duffing’s differential equation by means of elementary functions and its application to a nonlinear electrical circuit. (English) Zbl 1499.34239 Int. J. Math. Comput. Sci. 17, No. 1, 277-287 (2022). MSC: 34C15 94C05 34A05 34B30 PDF BibTeX XML Cite \textit{A. H. Salas} et al., Int. J. Math. Comput. Sci. 17, No. 1, 277--287 (2022; Zbl 1499.34239) Full Text: Link OpenURL
Salas, Alvaro H.; Martinez, Lorenzo J.; Ocampo, David L. Analytical approximant to a damped pendulum forced with a constant torque. (English) Zbl 1499.34240 Int. J. Math. Comput. Sci. 17, No. 1, 123-133 (2022). MSC: 34C15 34B30 33E05 PDF BibTeX XML Cite \textit{A. H. Salas} et al., Int. J. Math. Comput. Sci. 17, No. 1, 123--133 (2022; Zbl 1499.34240) Full Text: Link OpenURL
Weaire, D.; Mughal, A.; Ryan-Purcell, J.; Hutzler, S. Description of the buckling of a chain of hard spheres in terms of Jacobi functions. (English) Zbl 07487495 Physica D 433, Article ID 133177, 13 p. (2022). MSC: 82-XX 35-XX PDF BibTeX XML Cite \textit{D. Weaire} et al., Physica D 433, Article ID 133177, 13 p. (2022; Zbl 07487495) Full Text: DOI Link OpenURL
Liu, Hong-Zhun A modification to the first integral method and its applications. (English) Zbl 07483687 Appl. Math. Comput. 419, Article ID 126855, 13 p. (2022). MSC: 35Cxx 35Qxx 35Rxx PDF BibTeX XML Cite \textit{H.-Z. Liu}, Appl. Math. Comput. 419, Article ID 126855, 13 p. (2022; Zbl 07483687) Full Text: DOI OpenURL
Benkaci-Ali, Nadir Exponential growth of solution and asymptotic stability results for Hilfer fractional weighted \(p\)-Laplacian initial value problem with Duffing-type oscillator. (English) Zbl 1499.34209 J. Fract. Calc. Appl. 13, No. 1, 230-239 (2022). MSC: 34B30 34D20 47N20 34A08 34C11 34A12 PDF BibTeX XML Cite \textit{N. Benkaci-Ali}, J. Fract. Calc. Appl. 13, No. 1, 230--239 (2022; Zbl 1499.34209) Full Text: Link OpenURL
Zhang, Xin Li; Piao, Da Xiong Invariant tori of sublinear asymmetric Duffing equations. (Chinese. English summary) Zbl 07599678 Acta Math. Sin., Chin. Ser. 64, No. 6, 967-978 (2021). MSC: 34C11 34C25 37E40 PDF BibTeX XML Cite \textit{X. L. Zhang} and \textit{D. X. Piao}, Acta Math. Sin., Chin. Ser. 64, No. 6, 967--978 (2021; Zbl 07599678) Full Text: Link OpenURL
Yazgan, Ramazan An analysis for a special class of solution of a Duffing system with variable delays. (English) Zbl 07536385 AIMS Math. 6, No. 10, 11187-11199 (2021). MSC: 34K14 34K40 PDF BibTeX XML Cite \textit{R. Yazgan}, AIMS Math. 6, No. 10, 11187--11199 (2021; Zbl 07536385) Full Text: DOI OpenURL
Abdulganiy, Ridwanulahi Iyanda; Wen, Shiping; Feng, Yuming; Zhang, Wei; Tang, Ning Adapted block hybrid method for the numerical solution of Duffing equations and related problems. (English) Zbl 07533526 AIMS Math. 6, No. 12, 14013-14034 (2021). MSC: 65L03 65L05 65L50 PDF BibTeX XML Cite \textit{R. I. Abdulganiy} et al., AIMS Math. 6, No. 12, 14013--14034 (2021; Zbl 07533526) Full Text: DOI OpenURL
Chen, Zhong; Jiang, Wei; Du, Hong A new reproducing kernel method for Duffing equations. (English) Zbl 1480.65178 Int. J. Comput. Math. 98, No. 11, 2341-2354 (2021). MSC: 65L10 34B10 PDF BibTeX XML Cite \textit{Z. Chen} et al., Int. J. Comput. Math. 98, No. 11, 2341--2354 (2021; Zbl 1480.65178) Full Text: DOI OpenURL
Elías-Zúñiga, Alex; Palacios-Pineda, Luis Manuel; Jiménez-Cedeño, Isaac H.; Martínez-Romero, Oscar; Olvera-Trejo, Daniel Analytical solution of the fractal cubic-quintic Duffing equation. (English) Zbl 1489.34002 Fractals 29, No. 4, Article ID 2150080, 7 p. (2021). MSC: 34A05 34A08 34C15 34B30 34C05 33E05 34C20 PDF BibTeX XML Cite \textit{A. Elías-Zúñiga} et al., Fractals 29, No. 4, Article ID 2150080, 7 p. (2021; Zbl 1489.34002) Full Text: DOI OpenURL
Šremr, Jiři Existence and exact multiplicity of positive periodic solutions to forced non-autonomous Duffing type differential equations. (English) Zbl 1488.34248 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 62, 33 p. (2021). MSC: 34C25 34B18 37C60 34B30 PDF BibTeX XML Cite \textit{J. Šremr}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 62, 33 p. (2021; Zbl 1488.34248) Full Text: DOI OpenURL
El-Dib, Yusry O. An analytical solution for forcing nonlinear fractional delayed Duffing oscillator. (English) Zbl 1472.34012 J. Appl. Nonlinear Dyn. 10, No. 1, 111-124 (2021). MSC: 34A08 34K20 PDF BibTeX XML Cite \textit{Y. O. El-Dib}, J. Appl. Nonlinear Dyn. 10, No. 1, 111--124 (2021; Zbl 1472.34012) Full Text: DOI OpenURL
Zheng, Nannan; Wang, Zaihong Infinitely many periodic solutions of Duffing equations under integral condition. (English) Zbl 1489.34068 Topol. Methods Nonlinear Anal. 57, No. 1, 297-315 (2021). Reviewer: Eric R. Kaufmann (Little Rock) MSC: 34C25 34B30 37C60 47N20 PDF BibTeX XML Cite \textit{N. Zheng} and \textit{Z. Wang}, Topol. Methods Nonlinear Anal. 57, No. 1, 297--315 (2021; Zbl 1489.34068) Full Text: DOI OpenURL
Bäuerlein, Bastian; Avila, Kerstin Phase lag predicts nonlinear response maxima in liquid-sloshing experiments. (English) Zbl 1496.76026 J. Fluid Mech. 925, Paper No. A22, 29 p. (2021). MSC: 76B10 76B07 76B15 76-05 70K30 PDF BibTeX XML Cite \textit{B. Bäuerlein} and \textit{K. Avila}, J. Fluid Mech. 925, Paper No. A22, 29 p. (2021; Zbl 1496.76026) Full Text: DOI arXiv OpenURL
Salas, Alvaro H. Elementary solution to the damped pendulum. (English) Zbl 1469.34002 Int. J. Math. Comput. Sci. 16, No. 4, 1647-1652 (2021). MSC: 34A05 34A34 34A25 33E05 PDF BibTeX XML Cite \textit{A. H. Salas}, Int. J. Math. Comput. Sci. 16, No. 4, 1647--1652 (2021; Zbl 1469.34002) Full Text: Link OpenURL
Salas, Alvaro H.; Martinez, Lorenzo J.; Ocampo, David L. Trigonometric solution to the pendulum equation. (English) Zbl 1469.34003 Int. J. Math. Comput. Sci. 16, No. 4, 1397-1404 (2021). MSC: 34A05 34A34 PDF BibTeX XML Cite \textit{A. H. Salas} et al., Int. J. Math. Comput. Sci. 16, No. 4, 1397--1404 (2021; Zbl 1469.34003) Full Text: Link OpenURL
Montagu, E. L.; Norbury, John Bifurcation tearing in a forced Duffing equation. (English) Zbl 1484.34101 J. Differ. Equations 300, 1-32 (2021). Reviewer: Alois Steindl (Wien) MSC: 34C23 34E10 34E15 34B08 37C60 PDF BibTeX XML Cite \textit{E. L. Montagu} and \textit{J. Norbury}, J. Differ. Equations 300, 1--32 (2021; Zbl 1484.34101) Full Text: DOI OpenURL
Šremr, Jiří Bifurcation of positive periodic solutions to non-autonomous undamped Duffing equations. (English) Zbl 1464.34041 Math. Appl., Brno 10, No. 1, 79-92 (2021). MSC: 34B08 34C23 34C25 34B18 PDF BibTeX XML Cite \textit{J. Šremr}, Math. Appl., Brno 10, No. 1, 79--92 (2021; Zbl 1464.34041) OpenURL
Chen, Fengjuan; Qian, Yahe The second order Melnikov integral in the time-periodic equation with heteroclinic cycle. (Chinese. English summary) Zbl 1474.34280 J. Zhejiang Norm. Univ., Nat. Sci. 44, No. 1, 9-14 (2021). MSC: 34C28 34C15 37C60 34D08 34E10 34C23 34C37 PDF BibTeX XML Cite \textit{F. Chen} and \textit{Y. Qian}, J. Zhejiang Norm. Univ., Nat. Sci. 44, No. 1, 9--14 (2021; Zbl 1474.34280) Full Text: DOI OpenURL
Morozov, K. E.; Morozov, A. D. Quasiperiodic perturbations of twodimensional Hamiltonian systems with nonmonotone rotation. (English. Russian original) Zbl 1468.70011 J. Math. Sci., New York 255, No. 6, 741-752 (2021); translation from Probl. Mat. Anal. 110, 59-69 (2021). Reviewer: Martha Alvarez-Ramírez (Ciudad de México) MSC: 70H09 70K60 PDF BibTeX XML Cite \textit{K. E. Morozov} and \textit{A. D. Morozov}, J. Math. Sci., New York 255, No. 6, 741--752 (2021; Zbl 1468.70011); translation from Probl. Mat. Anal. 110, 59--69 (2021) Full Text: DOI OpenURL
He, Ji-Huan; El-Dib, Yusry O. Homotopy perturbation method with three expansions. (English) Zbl 1495.34028 J. Math. Chem. 59, No. 4, 1139-1150 (2021). Reviewer: J. Peter Praveen (Guntur) MSC: 34A45 34A25 34C15 PDF BibTeX XML Cite \textit{J.-H. He} and \textit{Y. O. El-Dib}, J. Math. Chem. 59, No. 4, 1139--1150 (2021; Zbl 1495.34028) Full Text: DOI OpenURL
Peng, Yaqun; Zhang, Xinli; Piao, Daxiong Boundedness of solutions of a quasi-periodic sublinear Duffing equation. (English) Zbl 1472.34066 Chin. Ann. Math., Ser. B 42, No. 1, 85-104 (2021). Reviewer: Zaihong Wang (Beijing) MSC: 34C11 37C60 34C15 PDF BibTeX XML Cite \textit{Y. Peng} et al., Chin. Ann. Math., Ser. B 42, No. 1, 85--104 (2021; Zbl 1472.34066) Full Text: DOI OpenURL
Ghisi, Marina; Gobbino, Massimo; Haraux, Alain Small perturbations for a Duffing-like evolution equation involving non-commuting operators. (English) Zbl 1459.35039 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 14, 44 p. (2021). MSC: 35B40 35L76 35L35 35L90 PDF BibTeX XML Cite \textit{M. Ghisi} et al., NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 14, 44 p. (2021; Zbl 1459.35039) Full Text: DOI arXiv OpenURL
Ghaleb, A. F.; Abou-Dina, M. S.; Moatimid, G. M.; Zekry, M. H. Analytic approximate solutions of the cubic-quintic Duffing-van der Pol equation with two-external periodic forcing terms: stability analysis. (English) Zbl 07318189 Math. Comput. Simul. 180, 129-151 (2021). MSC: 92Cxx 65Hxx PDF BibTeX XML Cite \textit{A. F. Ghaleb} et al., Math. Comput. Simul. 180, 129--151 (2021; Zbl 07318189) Full Text: DOI OpenURL
Demina, Maria V. Liouvillian integrability of the generalized Duffing oscillators. (English) Zbl 1462.34007 Anal. Math. Phys. 11, No. 1, Paper No. 25, 18 p. (2021). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 34A05 34A34 34C05 34C15 35C07 PDF BibTeX XML Cite \textit{M. V. Demina}, Anal. Math. Phys. 11, No. 1, Paper No. 25, 18 p. (2021; Zbl 1462.34007) Full Text: DOI OpenURL
Liu, Chaoran; Yu, Kaiping; Liao, Baopeng; Hu, Rongping Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter. (English) Zbl 1458.74059 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105654, 18 p. (2021). Reviewer: Jiri Náprstek (Praha) MSC: 74H45 74H55 74H60 70K05 70K44 70K50 PDF BibTeX XML Cite \textit{C. Liu} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105654, 18 p. (2021; Zbl 1458.74059) Full Text: DOI OpenURL
Nikolov, Svetoslav G.; Vassilev, Vassil M. Completely integrable dynamical systems of Hopf-Langford type. (English) Zbl 1454.37056 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105464, 9 p. (2021). MSC: 37J35 70H06 PDF BibTeX XML Cite \textit{S. G. Nikolov} and \textit{V. M. Vassilev}, Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105464, 9 p. (2021; Zbl 1454.37056) Full Text: DOI OpenURL
El-Dib, Yusry O.; Elgazery, Nasser S. Effect of fractional derivative properties on the periodic solution of the nonlinear oscillations. (English) Zbl 1501.34008 Fractals 28, No. 7, Article ID 2050095, 12 p. (2020). MSC: 34A08 34C15 37C60 34C25 34A34 34A45 26A33 34D20 PDF BibTeX XML Cite \textit{Y. O. El-Dib} and \textit{N. S. Elgazery}, Fractals 28, No. 7, Article ID 2050095, 12 p. (2020; Zbl 1501.34008) Full Text: DOI OpenURL
Pirmohabbati, P.; Sheikhani, A. H. Refahi; Najafi, H. Saberi; Ziabari, A. Abdolahzadeh Numerical solution of full fractional Duffing equations with cubic-quintic-heptic nonlinearities. (English) Zbl 1484.65147 AIMS Math. 5, No. 2, 1621-1641 (2020). MSC: 65L05 34A08 PDF BibTeX XML Cite \textit{P. Pirmohabbati} et al., AIMS Math. 5, No. 2, 1621--1641 (2020; Zbl 1484.65147) Full Text: DOI OpenURL
Selvam, A. G. M.; Baleanu, D.; Alzabut, J.; Vignesh, D.; Abbas, S. On Hyers-Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum. (English) Zbl 1486.34040 Adv. Difference Equ. 2020, Paper No. 456, 15 p. (2020). MSC: 34A08 26A33 70K20 PDF BibTeX XML Cite \textit{A. G. M. Selvam} et al., Adv. Difference Equ. 2020, Paper No. 456, 15 p. (2020; Zbl 1486.34040) Full Text: DOI OpenURL
Babilio, Enrico The Duffing-Mathieu equation arising from dynamics of post-buckled beams. (English) Zbl 1489.74018 Lacarbonara, Walter (ed.) et al., Nonlinear dynamics of structures, systems and devices. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume I. Cham: Springer. 267-275 (2020). MSC: 74H45 74H60 74K10 PDF BibTeX XML Cite \textit{E. Babilio}, in: Nonlinear dynamics of structures, systems and devices. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17--20, 2019. Volume I. Cham: Springer. 267--275 (2020; Zbl 1489.74018) Full Text: DOI OpenURL
Mall, Susmita; Jeswal, Sumit Kumar; Chakraverty, Snehashish Connectionist learning models for application problems involving differential and integral equations. (English) Zbl 07324108 Chakraverty, Snehashish (ed.), Mathematical methods in interdisciplinary sciences. Hoboken, NJ: John Wiley & Sons. 1-22 (2020). MSC: 74-XX 76-XX 80-XX PDF BibTeX XML Cite \textit{S. Mall} et al., in: Mathematical methods in interdisciplinary sciences. Hoboken, NJ: John Wiley \& Sons. 1--22 (2020; Zbl 07324108) Full Text: DOI OpenURL
Zhang, Jingjing An improved Störmer-Verlet method based on exact discretization for nonlinear oscillators. (English) Zbl 1474.65226 Appl. Math. Comput. 386, Article ID 125476, 14 p. (2020). MSC: 65L06 65L11 70H05 70H12 PDF BibTeX XML Cite \textit{J. Zhang}, Appl. Math. Comput. 386, Article ID 125476, 14 p. (2020; Zbl 1474.65226) Full Text: DOI OpenURL
Syam, Muhammed I. The modified fractional power series method for solving fractional undamped Duffing equation with cubic nonlinearity. (English) Zbl 07296471 Nonlinear Dyn. Syst. Theory 20, No. 5, 568-577 (2020). MSC: 65L99 34A08 34A25 PDF BibTeX XML Cite \textit{M. I. Syam}, Nonlinear Dyn. Syst. Theory 20, No. 5, 568--577 (2020; Zbl 07296471) Full Text: Link OpenURL
El-Dib, Yusry O. Stability approach of a fractional-delayed Duffing oscillator. (English) Zbl 1460.34098 Discontin. Nonlinearity Complex. 9, No. 3, 367-376 (2020). Reviewer: Hakan Adıgüzel (Serdivan) MSC: 34K37 34K20 34K07 PDF BibTeX XML Cite \textit{Y. O. El-Dib}, Discontin. Nonlinearity Complex. 9, No. 3, 367--376 (2020; Zbl 1460.34098) Full Text: DOI OpenURL
Jiang, Fangfang Periodic solutions of discontinuous Duffing equations. (English) Zbl 1457.34067 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 93, 16 p. (2020). Reviewer: Alessandro Fonda (Trieste) MSC: 34C25 34A36 37C60 PDF BibTeX XML Cite \textit{F. Jiang}, Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 93, 16 p. (2020; Zbl 1457.34067) Full Text: DOI OpenURL
Zhang, Xinli Quasi-periodic solutions for Duffing equation with jumping term. (Chinese. English summary) Zbl 1463.34162 Period. Ocean Univ. China 50, No. 4, 145-150 (2020). MSC: 34C27 34C15 34C20 PDF BibTeX XML Cite \textit{X. Zhang}, Period. Ocean Univ. China 50, No. 4, 145--150 (2020; Zbl 1463.34162) Full Text: DOI OpenURL
Chen, Lu Applications of the Moser’s twist theorem to some impulsive differential equations. (English) Zbl 1453.34022 Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 75, 20 p. (2020). Reviewer: Snezhana Hristova (Plovdiv) MSC: 34A37 34C27 34C11 PDF BibTeX XML Cite \textit{L. Chen}, Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 75, 20 p. (2020; Zbl 1453.34022) Full Text: DOI OpenURL
Kanatnikov, A. N.; Krishchenko, A. P. Qualitative properties of a Duffing system with polynomial nonlinearity. (English. Russian original) Zbl 1485.34106 Proc. Steklov Inst. Math. 308, 184-195 (2020); translation from Tr. Mat. Inst. Steklova 308, 197-209 (2020). Reviewer: Alexander Prokopenya (Warszawa) MSC: 34C15 34B30 34C45 34A45 37C60 PDF BibTeX XML Cite \textit{A. N. Kanatnikov} and \textit{A. P. Krishchenko}, Proc. Steklov Inst. Math. 308, 184--195 (2020; Zbl 1485.34106); translation from Tr. Mat. Inst. Steklova 308, 197--209 (2020) Full Text: DOI OpenURL
Mohanty, R. K.; Manchanda, Geetan; Khan, Arshad; Khurana, Gunjan A new high accuracy method in exponential form based on off-step discretization for non-linear two point boundary value problems. (English) Zbl 1437.65080 J. Difference Equ. Appl. 26, No. 2, 171-202 (2020). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65L10 65L12 65L20 65L50 PDF BibTeX XML Cite \textit{R. K. Mohanty} et al., J. Difference Equ. Appl. 26, No. 2, 171--202 (2020; Zbl 1437.65080) Full Text: DOI OpenURL
Burra, Lakshmi; Zanolin, Fabio Chaos in a periodically perturbed second-order equation with signum nonlinearity. (English) Zbl 1445.34055 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 2, Article ID 2050031, 9 p. (2020). MSC: 34C15 37C60 34A36 34C25 34C28 PDF BibTeX XML Cite \textit{L. Burra} and \textit{F. Zanolin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 2, Article ID 2050031, 9 p. (2020; Zbl 1445.34055) Full Text: DOI OpenURL
Cheng, Zhibo; Yuan, Qigang Damped superlinear Duffing equation with strong singularity of repulsive type. (English) Zbl 1447.34043 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 37, 18 p. (2020). Reviewer: Alberto Boscaggin (Collegno) MSC: 34C25 34B16 37E40 34C23 34C15 PDF BibTeX XML Cite \textit{Z. Cheng} and \textit{Q. Yuan}, J. Fixed Point Theory Appl. 22, No. 2, Paper No. 37, 18 p. (2020; Zbl 1447.34043) Full Text: DOI OpenURL
Liu, Shiwei; Zheng, Juan; Fang, Yonglei Obrechkoff two-step method fitted with Fourier spectrum for undamped Duffing equation. (English) Zbl 1433.65127 J. Math. Chem. 58, No. 3, 717-734 (2020). MSC: 65L05 65L06 65L12 PDF BibTeX XML Cite \textit{S. Liu} et al., J. Math. Chem. 58, No. 3, 717--734 (2020; Zbl 1433.65127) Full Text: DOI OpenURL
Kim, Jinkyu; Lee, Hyeonseok; Shin, Jinwon Extended framework of Hamilton’s principle applied to Duffing oscillation. (English) Zbl 1433.70033 Appl. Math. Comput. 367, Article ID 124762, 17 p. (2020). MSC: 70H25 34C15 37N05 70K50 70K05 PDF BibTeX XML Cite \textit{J. Kim} et al., Appl. Math. Comput. 367, Article ID 124762, 17 p. (2020; Zbl 1433.70033) Full Text: DOI arXiv OpenURL
Khurshudyan, Asatur Zh. An identity for the Heaviside function and its application in representation of nonlinear Green’s function. (English) Zbl 1438.46049 Comput. Appl. Math. 39, No. 1, Paper No. 32, 12 p. (2020). MSC: 46F30 46F10 46T30 34A05 34A34 PDF BibTeX XML Cite \textit{A. Zh. Khurshudyan}, Comput. Appl. Math. 39, No. 1, Paper No. 32, 12 p. (2020; Zbl 1438.46049) Full Text: DOI OpenURL
Kadkhoda, Nematollah; Jafari, Hossein An analytical approach to obtain exact solutions of some space-time conformable fractional differential equations. (English) Zbl 1487.35406 Adv. Difference Equ. 2019, Paper No. 428, 10 p. (2019). MSC: 35R11 26A33 35C05 PDF BibTeX XML Cite \textit{N. Kadkhoda} and \textit{H. Jafari}, Adv. Difference Equ. 2019, Paper No. 428, 10 p. (2019; Zbl 1487.35406) Full Text: DOI OpenURL
Yao, Shaowen; Zhang, Xiaozhong Positive periodic solution for \(p\)-Laplacian neutral damped Duffing equation with strong singularities of attractive and repulsive type. (English) Zbl 1499.34416 J. Inequal. Appl. 2019, Paper No. 102, 13 p. (2019). MSC: 34K40 34K13 PDF BibTeX XML Cite \textit{S. Yao} and \textit{X. Zhang}, J. Inequal. Appl. 2019, Paper No. 102, 13 p. (2019; Zbl 1499.34416) Full Text: DOI OpenURL
Dzhumabaev, D. S.; Abilassanov, B. A.; Zhubatkan, A. A.; Asetbekov, A. B. A numerical algorithm of solving a quasilinear boundary value problem with parameter for the Duffing equation. (English) Zbl 1488.65181 Mat. Zh. 19, No. 4, 46-54 (2019). MSC: 65L10 34B08 PDF BibTeX XML Cite \textit{D. S. Dzhumabaev} et al., Mat. Zh. 19, No. 4, 46--54 (2019; Zbl 1488.65181) OpenURL
Zhang, Guoqi; Wu, Zhiqiang Homotopy analysis method for approximations of Duffing oscillator with dual frequency excitations. (English) Zbl 1448.34077 Chaos Solitons Fractals 127, 342-353 (2019). MSC: 34C15 34C27 34C60 34A45 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{Z. Wu}, Chaos Solitons Fractals 127, 342--353 (2019; Zbl 1448.34077) Full Text: DOI OpenURL
Urenda-Cázares, Ernesto; Gallegos, A.; Macías-Díaz, J. E.; Vargas-Rodríguez, H. An integral of motion for the damped cubic-quintic Duffing oscillator with variable coefficients. (English) Zbl 1475.70015 Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104860, 9 p. (2019). MSC: 70H06 70H03 70H33 35A30 PDF BibTeX XML Cite \textit{E. Urenda-Cázares} et al., Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104860, 9 p. (2019; Zbl 1475.70015) Full Text: DOI OpenURL
Balogh, Andras; Banda, Jacob; Yagdjian, Karen High-performance implementation of a Runge-Kutta finite-difference scheme for the Higgs boson equation in the de Sitter spacetime. (English) Zbl 07263914 Commun. Nonlinear Sci. Numer. Simul. 68, 15-30 (2019). MSC: 65Lxx 65Mxx 35Kxx 34Axx PDF BibTeX XML Cite \textit{A. Balogh} et al., Commun. Nonlinear Sci. Numer. Simul. 68, 15--30 (2019; Zbl 07263914) Full Text: DOI arXiv OpenURL
Chuĭko, S. M.; Nesmelova, O. V. The Newton-Kantorovich method in the theory of autonomous Noetherian boundary-value problems in the case of parametric resonance. (Russian. English summary) Zbl 1449.34062 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2019, No. 12, 3-12 (2019). MSC: 34B15 34A45 PDF BibTeX XML Cite \textit{S. M. Chuĭko} and \textit{O. V. Nesmelova}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2019, No. 12, 3--12 (2019; Zbl 1449.34062) Full Text: DOI OpenURL
Dong, Hejin; Shen, Jianhua The Lagrange stability of a class of impulsive differential equation. (Chinese. English summary) Zbl 1449.35047 J. Hangzhou Norm. Univ., Nat. Sci. 18, No. 4, 376-383 (2019). MSC: 35B35 35R12 PDF BibTeX XML Cite \textit{H. Dong} and \textit{J. Shen}, J. Hangzhou Norm. Univ., Nat. Sci. 18, No. 4, 376--383 (2019; Zbl 1449.35047) Full Text: DOI OpenURL
Ivanov, A. A. Analysis of the effect of random noise on synchronization in a system of two coupled Duffing oscillators. (Russian, English) Zbl 1438.60072 Sib. Zh. Ind. Mat. 22, No. 1, 41-52 (2019); translation in J. Appl. Ind. Math. 13, No. 1, 65-75 (2019). MSC: 60H10 34C15 65C05 PDF BibTeX XML Cite \textit{A. A. Ivanov}, Sib. Zh. Ind. Mat. 22, No. 1, 41--52 (2019; Zbl 1438.60072); translation in J. Appl. Ind. Math. 13, No. 1, 65--75 (2019) Full Text: DOI OpenURL
Schließauf, Henrik Escaping orbits are rare in the quasi-periodic Littlewood boundedness problem. (English) Zbl 1427.37050 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 4, Paper No. 24, 21 p. (2019). Reviewer: Piotr Garbaczewski (Opole) MSC: 37J46 37J40 70K43 70K40 PDF BibTeX XML Cite \textit{H. Schließauf}, NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 4, Paper No. 24, 21 p. (2019; Zbl 1427.37050) Full Text: DOI arXiv OpenURL
Isojima, Shin; Toyama, Hirotaka Ultradiscrete analogues of the hard-spring equation and its conserved quantity. (English) Zbl 1410.34045 Japan J. Ind. Appl. Math. 36, No. 1, 53-78 (2019). MSC: 34A34 39A10 39A23 PDF BibTeX XML Cite \textit{S. Isojima} and \textit{H. Toyama}, Japan J. Ind. Appl. Math. 36, No. 1, 53--78 (2019; Zbl 1410.34045) Full Text: DOI OpenURL
Shen, Jianhua; Chen, Lu; Yuan, Xiaoping Lagrange stability for impulsive Duffing equations. (English) Zbl 1416.34023 J. Differ. Equations 266, No. 11, 6924-6962 (2019). Reviewer: Anatoly Martynyuk (Kyïv) MSC: 34C11 34A37 37C27 34C15 37J40 PDF BibTeX XML Cite \textit{J. Shen} et al., J. Differ. Equations 266, No. 11, 6924--6962 (2019; Zbl 1416.34023) Full Text: DOI arXiv OpenURL
López-Reyes, L. J.; Kurmyshev, Evguenii V. Parametric resonance in nonlinear vibrations of string under harmonic heating. (English) Zbl 1456.74055 Commun. Nonlinear Sci. Numer. Simul. 55, 146-156 (2018). MSC: 74H45 74K05 74F15 74F05 PDF BibTeX XML Cite \textit{L. J. López-Reyes} and \textit{E. V. Kurmyshev}, Commun. Nonlinear Sci. Numer. Simul. 55, 146--156 (2018; Zbl 1456.74055) Full Text: DOI OpenURL
Gusso, André; Pimentel, Jéssica D. Approximate fully analytical Fourier series solution to the forced and damped Helmholtz-Duffing oscillator. (English) Zbl 1465.34015 Appl. Math. Modelling 61, 593-603 (2018). MSC: 34A25 34C15 37C60 34A45 PDF BibTeX XML Cite \textit{A. Gusso} and \textit{J. D. Pimentel}, Appl. Math. Modelling 61, 593--603 (2018; Zbl 1465.34015) Full Text: DOI OpenURL
Yao, Shaowen; Cheng, Zhibo Positive periodic solution for damped Duffing equation with singularity. (Chinese. English summary) Zbl 1424.34131 Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 3, 543-548 (2018). MSC: 34C25 34B16 47N20 34B18 PDF BibTeX XML Cite \textit{S. Yao} and \textit{Z. Cheng}, Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 3, 543--548 (2018; Zbl 1424.34131) OpenURL
Georgiev, Zhivko D.; Uzunov, Ivan M.; Todorov, Todor G. Analysis and synthesis of oscillator systems described by a perturbed double-well Duffing equation. (English) Zbl 1412.34149 Nonlinear Dyn. 94, No. 1, 57-85 (2018). MSC: 34C37 34C28 34C05 37C29 PDF BibTeX XML Cite \textit{Z. D. Georgiev} et al., Nonlinear Dyn. 94, No. 1, 57--85 (2018; Zbl 1412.34149) Full Text: DOI OpenURL
Syam, Muhammed I.; Raja, Muhammad Asif; Syam, Mahmmoud M.; Jaradat, H. M. An accurate method for solving the undamped Duffing equation with cubic nonlinearity. (English) Zbl 1401.76020 Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 69, 16 p. (2018). MSC: 76A05 76W05 76Z99 65L05 PDF BibTeX XML Cite \textit{M. I. Syam} et al., Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 69, 16 p. (2018; Zbl 1401.76020) Full Text: DOI OpenURL
Eilertsen, Justin; Magnan, Jerry On the chaotic dynamics associated with the center manifold equations of double-diffusive convection near a codimension-four bifurcation point at moderate thermal Rayleigh number. (English) Zbl 1395.37023 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 8, Article ID 1850094, 24 p. (2018). MSC: 37D45 35Q35 37G25 37G20 35B42 PDF BibTeX XML Cite \textit{J. Eilertsen} and \textit{J. Magnan}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 8, Article ID 1850094, 24 p. (2018; Zbl 1395.37023) Full Text: DOI OpenURL
Miino, Yuu; Ueta, Tetsushi; Kawakami, Hiroshi Nonlinear resonance and devil’s staircase in a forced planer system containing a piecewise linear hysteresis. (English) Zbl 1392.34043 Chaos Solitons Fractals 111, 75-85 (2018). MSC: 34C23 34A38 34C28 37G15 PDF BibTeX XML Cite \textit{Y. Miino} et al., Chaos Solitons Fractals 111, 75--85 (2018; Zbl 1392.34043) Full Text: DOI OpenURL
Ghisi, Marina; Gobbino, Massimo; Haraux, Alain An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term. (English) Zbl 1394.35291 Nonlinear Anal., Real World Appl. 43, 167-191 (2018). MSC: 35L90 35L77 35B40 74K10 PDF BibTeX XML Cite \textit{M. Ghisi} et al., Nonlinear Anal., Real World Appl. 43, 167--191 (2018; Zbl 1394.35291) Full Text: DOI arXiv OpenURL
Fečkan, Michal; Marynets, Kateryna Approximation approach to periodic BVP for mixed fractional differential systems. (English) Zbl 1388.34006 J. Comput. Appl. Math. 339, 208-217 (2018). MSC: 34A08 34B15 34A45 PDF BibTeX XML Cite \textit{M. Fečkan} and \textit{K. Marynets}, J. Comput. Appl. Math. 339, 208--217 (2018; Zbl 1388.34006) Full Text: DOI OpenURL
Kalita, Piotr; Kowalski, Piotr M. On multivalued Duffing equation. (English) Zbl 1452.34031 J. Math. Anal. Appl. 462, No. 2, 1130-1147 (2018). Reviewer: Jan Tomeček (Olomouc) MSC: 34A60 34C15 47N20 34B15 PDF BibTeX XML Cite \textit{P. Kalita} and \textit{P. M. Kowalski}, J. Math. Anal. Appl. 462, No. 2, 1130--1147 (2018; Zbl 1452.34031) Full Text: DOI OpenURL
Varshney, Vaibhav; Sabarathinam, S.; Prasad, Awadhesh; Thamilmaran, K. Infinite number of hidden attractors in memristor-based autonomous Duffing oscillator. (English) Zbl 1388.34028 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 1, Article ID 1850013, 13 p. (2018). MSC: 34C15 34C05 34D45 34C60 94C05 PDF BibTeX XML Cite \textit{V. Varshney} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 1, Article ID 1850013, 13 p. (2018; Zbl 1388.34028) Full Text: DOI OpenURL
Rahimkhani, P.; Moeti, R. Numerical solution of the fractional order Duffing-van der Pol oscillator equation by using Bernoulli wavelets collocation method. (English) Zbl 1382.65201 Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 59, 18 p. (2018). MSC: 65L05 34A08 34K28 65T60 PDF BibTeX XML Cite \textit{P. Rahimkhani} and \textit{R. Moeti}, Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 59, 18 p. (2018; Zbl 1382.65201) Full Text: DOI OpenURL
Lomtatidze, Alexander; Šremr, Jiří On periodic solutions to second-order Duffing type equations. (English) Zbl 1396.34024 Nonlinear Anal., Real World Appl. 40, 215-242 (2018). Reviewer: Petru Jebelean (Timişoara) MSC: 34C25 37C60 34A40 PDF BibTeX XML Cite \textit{A. Lomtatidze} and \textit{J. Šremr}, Nonlinear Anal., Real World Appl. 40, 215--242 (2018; Zbl 1396.34024) Full Text: DOI OpenURL
Gasparetto, Carlo; Gazzola, Filippo Resonance tongues for the Hill equation with Duffing coefficients and instabilities in a nonlinear beam equation. (English) Zbl 1382.34061 Commun. Contemp. Math. 20, No. 1, Article ID 1750022, 22 p. (2018). Reviewer: Alexander O. Ignatyev (Donetsk) MSC: 34D20 34B30 34C15 PDF BibTeX XML Cite \textit{C. Gasparetto} and \textit{F. Gazzola}, Commun. Contemp. Math. 20, No. 1, Article ID 1750022, 22 p. (2018; Zbl 1382.34061) Full Text: DOI arXiv OpenURL
Saadatmandi, Abbas; Yeganeh, Somayye New approach for the Duffing equation involving both integral and non-integral forcing terms. (English) Zbl 07560537 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 79, No. 2, 43-52 (2017). MSC: 65L60 34K28 PDF BibTeX XML Cite \textit{A. Saadatmandi} and \textit{S. Yeganeh}, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 79, No. 2, 43--52 (2017; Zbl 07560537) OpenURL
Özyapici, Ali Generalized trial equation method and its applications to Duffing and Poisson-Boltzmann equations. (English) Zbl 1424.34063 Turk. J. Math. 41, No. 3, 686-693 (2017). MSC: 34A45 34A05 34A34 PDF BibTeX XML Cite \textit{A. Özyapici}, Turk. J. Math. 41, No. 3, 686--693 (2017; Zbl 1424.34063) Full Text: DOI OpenURL
Johannessen, Kim The Duffing oscillator with damping for a softening potential. (English) Zbl 1397.34064 Int. J. Appl. Comput. Math. 3, No. 4, 3805-3816 (2017). MSC: 34C15 34B30 PDF BibTeX XML Cite \textit{K. Johannessen}, Int. J. Appl. Comput. Math. 3, No. 4, 3805--3816 (2017; Zbl 1397.34064) Full Text: DOI OpenURL
Yuan, Xiaoping Boundedness of solutions for Duffing equation with low regularity in time. (English) Zbl 1394.34063 Chin. Ann. Math., Ser. B 38, No. 5, 1037-1046 (2017). Reviewer: Zaihong Wang (Beijing) MSC: 34C11 34D20 PDF BibTeX XML Cite \textit{X. Yuan}, Chin. Ann. Math., Ser. B 38, No. 5, 1037--1046 (2017; Zbl 1394.34063) Full Text: DOI arXiv OpenURL
Jiang, Tao; Yang, Zhiyan; Jing, Zhujun Bifurcations and chaos in the Duffing equation with parametric excitation and single external forcing. (English) Zbl 1377.34047 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 8, Article ID 1750125, 31 p. (2017). MSC: 34C15 70K40 34C37 34C29 34C28 70K28 34C23 34D10 PDF BibTeX XML Cite \textit{T. Jiang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 8, Article ID 1750125, 31 p. (2017; Zbl 1377.34047) Full Text: DOI OpenURL
Wiggers, Vinícius; Rech, Paulo C. Multistability and organization of periodicity in a van der Pol-Duffing oscillator. (English) Zbl 1375.34077 Chaos Solitons Fractals 103, 632-637 (2017). MSC: 34C60 34C15 PDF BibTeX XML Cite \textit{V. Wiggers} and \textit{P. C. Rech}, Chaos Solitons Fractals 103, 632--637 (2017; Zbl 1375.34077) Full Text: DOI OpenURL
Liu, Yuji Boundary value problems for impulsive Bagley-Torvik models involving the Riemann-Liouville fractional derivatives. (English) Zbl 1370.34015 São Paulo J. Math. Sci. 11, No. 1, 148-188 (2017). MSC: 34A08 34B37 26A33 39B99 45G10 34B15 34B16 PDF BibTeX XML Cite \textit{Y. Liu}, São Paulo J. Math. Sci. 11, No. 1, 148--188 (2017; Zbl 1370.34015) Full Text: DOI OpenURL
Medak, Beata; Tret’yakov, Alexey A. Application of \(p\)-regularity theory to the Duffing equation. (English) Zbl 1484.34093 Bound. Value Probl. 2017, Paper No. 85, 9 p. (2017). MSC: 34B30 34B15 34B08 37C60 34C25 PDF BibTeX XML Cite \textit{B. Medak} and \textit{A. A. Tret'yakov}, Bound. Value Probl. 2017, Paper No. 85, 9 p. (2017; Zbl 1484.34093) Full Text: DOI OpenURL
Chen, Hebai; Chen, Xingwu; Xie, Jianhua Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. (English) Zbl 1366.34043 Discrete Contin. Dyn. Syst., Ser. B 22, No. 4, 1273-1293 (2017). MSC: 34C05 34C07 34C23 34C37 34A34 PDF BibTeX XML Cite \textit{H. Chen} et al., Discrete Contin. Dyn. Syst., Ser. B 22, No. 4, 1273--1293 (2017; Zbl 1366.34043) Full Text: DOI OpenURL
Zivieri, Roberto; Vergura, Silvano; Carpentieri, Mario Analytical and numerical solution to the nonlinear cubic Duffing equation: an application to electrical signal analysis of distribution lines. (English) Zbl 1480.94021 Appl. Math. Modelling 40, No. 21-22, 9152-9164 (2016). MSC: 94A12 33E05 34A05 PDF BibTeX XML Cite \textit{R. Zivieri} et al., Appl. Math. Modelling 40, No. 21--22, 9152--9164 (2016; Zbl 1480.94021) Full Text: DOI OpenURL