×

A symmetry-oriented mathematical model of classical counterpoint and related neurophysiological investigations by depth EEG. (English) Zbl 0706.92028

Summary: This work presents (1) a mathematical model of classical counterpoint, based on distinguished symmetries between consonant and dissonant musical intervals and derived local symmetries, together with (2) an investigation of the electrical activity (depth EEG) of the human brain in relation with consonant and dissonant musical stimuli. Presenting a musical test program to 13 patients with electrodes implanted within different brain areas [hippocampal formations of both sides, planum temporale (near Heschl’s gyrus) and/or placed epicortically at mediobasal limbic structures], we found that the reaction of depth EEG corresponds in a precise and quantified way to the postulates of mathematical counterpoint theory.
The main results are: (1) The EEG of the hippocampus reflects the consonance-dissonance dichotomy for simultaneous intervals in a predominant way. (2) Within the right Heschl’s gyrus, the EEG response to the distinguished symmetry between consonances and dissonances is significant. (3) The EEG of right hemispheric locations dominates the processing of music related to Gestalt perception in space-time (pitch/onset-time), in particular of successive intervals. (4) The geometrically distinguished pair of dichotomies (the consonance- dissonance dichotomy and dichotomy of proper tonal intervals from the major tonic) is reflected within the spectral density data of the classical \(\theta\)-, \(\alpha\)- and \(\beta\)-frequency bands. These findings may help to understand the relation between music and emotion.

MSC:

91E30 Psychophysics and psychophysiology; perception
92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Leibniz, G. W., Epistolae ad Diversos, Vol. I (1734), Leipzig
[2] Fux, J. J., Gradus ad Parnassum (1742), Mizler: Mizler Leipzig
[3] Papez, J., A proposed mechanism of emotion, Arch. Neurol. Psychiat., 38, 725-743 (1937)
[4] MacLean, P., Psychosomatic disease and the “visceral brain”: recent developments bearing on the Papez theory of emotion, Psychosom. Med., 11, 338-353 (1949)
[5] MacLean, P., The triune brain, emotion, and scientific bias, (Schmitt, F., The Neurosciences: Second Study Program (1970), Rockefeller Univ. Press: Rockefeller Univ. Press New York), 336-348
[6] Euler, L., (Speiser, A., Tentamen novae theoriae musicae (...) op. omn., Vol. XI (1960)), Zu¨rich
[7] Stumpf, C., Tonpsychologie (1883-1890), Leipzig
[8] von Helmholtz, H., Lehre von den Tonempfindungen als physiologische Grundlage der Musik (1968), Nachdruck: Nachdruck Darmstadt · JFM 27.0701.03
[9] Roederer, J., Introduction to Physics and Psychophysics of Music (1973), Springer: Springer New York
[10] de la Motte-Haber, H., Musikpsychologie (1984), Laaber: Laaber Laaber
[11] Mazzola, G., Die Rolle des Symmetriedenkens fu¨r die Entwicklungsgeschichte der europa¨ischen Musik, (Symmetrie, Vol. 1 (1986), Institut Mathildenho¨he: Institut Mathildenho¨he Darmstadt), 405-416
[12] Vogel, M., Die Lehre von den Tonbeziehungen, Syst. Musikwissenschaft (1975), Bonn-Bad Godesberg
[13] Plomp, R.; Levelt, W., Tonal consonance and critical bandwidth, J. acoust. Soc. Am., 38, 548 (1965)
[14] Muzzulini, D., Physikalische und mathematische Ansa¨tze in der Musiktheorie: Helmholtz-Oettingen-Mazzola (1987), Musikwiss. Semin. Univ. Zu¨rich
[15] Husmann, H., Vom Wesen der Konsonanz (1953), Heidelberg
[16] Albersheim, G., Zur Musikpsychologie (1974), Heinrichshofen: Heinrichshofen Wilhelmshofen
[17] Kahle, W., (Taschenatlas der Anotomie, Vol. 3 (1979), Thieme: Thieme Stuttgart)
[18] Hudspeth, A. J.; Corey, D. P., Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli, (Proc. natn. Acad. Sci. Am., 74 (1977)), 2407-2411, 6
[19] Wieser, H.-G., Musik und Gehirn, Revue Suisse Me´d., 7, 153-162 (1987)
[20] Goldstein, J. L., An optimum processor theory for the central formation of the pitch of complex tones, J. acoust. Soc. Am., 54, 1496 (1973)
[21] Terhardt, E., Zur Tonho¨henwahrnehmung von Kla¨ngen. II. Ein Funktionsschema, Acustica, 26, 187-199 (1972)
[22] Langner, G., Evidence for neuronal periodicity detection in the auditory system of the Guinea Fowl: implications for pitch analysis in the time domain, Exp. Brain Res., 52, 333-355 (1983)
[23] Smoorenburg, G. F., Pitch perception of two-frequency stimuli, J. acoust. Soc. Am., 48, 924 (1970)
[24] Creutzfeldt, O.; Ojemann, G.; Lettich, E., Single neuron activity in the right and left human temporal lobe during listening and speaking, (Engel, J.; Ojemann, G. A.; Lu¨ders, H. O.; Williamson, P. D., Fundamental Mechanisms of Human Brain Function (1987), Raven Press: Raven Press New York), 69-81
[25] Penfield, W.; Perot, P., The brain’s record of auditory and visual experience, Brain, 86, 596-696 (1963)
[26] Halgren, E.; Walter, R. D.; Cherlow, D. G.; Crandall, P. H., Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala, Brain, 101, 83-117 (1978)
[27] Gloor, P.; Olivier, A.; Quesney, L. F., The role of the amygdala in the expression of psychic phenomena in temporal lobe seizures, (Ben-Ari, Y., The Amygdaloid Complex (INSERM Symp. No. 20) (1981)), 489-498
[28] Wieser, H.-G., Electroclinical Features of the Psychomotor Seizure (1983), Fischer-Butterworths: Fischer-Butterworths Stuttgart-London
[29] Petsche, H.; Pockberger, H.; Rappelsberger, P., EEG studies in musical perception and performances, (Spintge, R.; Droh, R., Musik in der Medizin (1987), Springer: Springer Heidelberg), 53-79
[30] Stigsby, B.; Risberg, J.; Ingvar, D. H., Electroencephalographic changes in the dominant hemisphere during memorizing and reasoning, Electroenceph. clin. Neurophysiol., 42, 665-675 (1977)
[31] Dolce, G.; Waldeier, H., Spectral and multivariate analysis of EEG changes during mental activity in man, Electroenceph. clin. Neurophysiol., 36, 577-584 (1974)
[32] Giannitrapani, D., The Electrophysiology of Intellectual Functions (1985), Karger: Karger Basel
[33] Busk, J.; Galbreith, G. C., EEG correlates of visual-motor practice in man, Electroenceph. clin. Neurophysiol., 38, 415-422 (1975)
[34] Hirshkowitz, M.; Earle, J.; Paley, E., EEG asymmetry in musicians and nonmusicians: a study of hemispheric specialization, Neuropsychologia, 16, 125-128 (1978)
[35] McKee, G.; Humphrey, B.; McAdam, D. H., Scaled lateralization of alpha activity during linguistic and musical tasks, Psychophysiology, 10, 441-443 (1973)
[36] Walker, J. L., Alpha EEG correlates of performance on a musical recognition task, Physiol. Psychol., 8, 417-420 (1980)
[37] Gloor, P., Volume conductor principles: Their application to the surface and depth electroencephalogram, (Wieser, H.-G.; Elger, C. E., Presurgical Evaluation of Epileptics (1987), Springer: Springer Berlin), 59-68
[38] Mazzola, G., Computer aided reference-free modelling of electrical brain activity from surface and depth EEG-recordings, Preprint, Univ. Zu¨rich (1987)
[39] Mazzola, G., Mathematische Betrachtungen in der Musik, (Lecture Notes (1987), Univ. Zu¨rich)
[40] Eimert, H., Lehrbuch der Zwo¨lftontechnik (1952), Breitkopf und Ha¨rtel: Breitkopf und Ha¨rtel Wiesbaden
[41] Wille, R., Mathematische Sprache in der Musiktheorie, (J.buchU¨berblicke Mathematik (1980), Bibliographisches Institut: Bibliographisches Institut Mannheim) · Zbl 0493.00017
[42] Apfel, E., Diskant und Kontrapunkt in der Musiktheorie des 12. bis 15 (1982), Jahrhunderts. Heinrichshofen: Jahrhunderts. Heinrichshofen Wilhelmshaven
[43] Jeppesen, K., Kontrapunkt (1980), Breitkopf und Ha¨rtel: Breitkopf und Ha¨rtel Wiesbaden
[44] Mazzola, G., Konsonanz-Dissonanz und verborgene Symmetrien, (Herf, F. R., Mikroto¨ne II (1988), Helbling edn: Helbling edn Innsbruck), 95-104
[45] Mazzola, G., Gruppen und Kategorien in der Musik (1985), Heldermann: Heldermann Berlin · Zbl 0574.00016
[46] Mazzola, G.; Muzzulini, D., Der Kontrapunkt und die (K/D)-Dichotomie, Preprint, Univ. Zu¨rich (1987)
[47] Tittel, E., Der neue Gradus (1959), Doblinger
[48] Hanslick, E., Vom Musikalisch Scho¨nen (1980), Breitkopf und Ha¨rtel: Breitkopf und Ha¨rtel Wiesbaden
[49] Messiaen, O., Technik meiner musikalischen Sprache (1944), Leduc: Leduc Paris
[50] Wieser, H.-G.; Elger, C. E.; Stodieck, S. R.G., The “Foramen Ovale Electrode”: A new recording method for preoperative evaluation of patients suffering from mesiobasal limbic temporal lobe epilepsy, Electroenceph. clin. Neurophysiol., 61, 314-322 (1985)
[51] Mazzola, G., Das \(M (2, Z)/Z^2\)-o-scope, (Go¨tze, H.; Wille, R., Musik und Mathematik, Salzburger Musikgespra¨ch 1984 (1985), Springer: Springer Berlin), 92-94
[52] Eimert, H., Grundlagen der Musikalischen Reihentechnik (1964), Universaledition: Universaledition Wien
[53] de la Motte, D., Harmonielehre (1976), Ba¨renreiter: Ba¨renreiter Kassel
[54] Jenkins, G. M.; Watts, D. G., Spectral Analysis (1968), Holden-Day: Holden-Day Oakland · Zbl 0167.17504
[55] Kirnberger, J. P., Die Kunst des reinen Satzes in der Musik (1771), Academic Press: Academic Press Berlin and Ko¨nigsberg
[56] Aggleton, P.; Mishkin, M., The amygdala: sensory gateway to the emotions, (Plutchik, R.; Kellerman, H., Emotions: Theory, Research, and Experience, Vol. 3 (1985), Academic Press: Academic Press New York)
[57] Winson, J.; Abzug, C., Gating of neuronal transmission in the hippocampus: efficiency of transmission varies with behavioral state, Science, 196, 1223 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.