Li, Qi; Han, Yuzhu Existence and uniqueness of solution to a fourth-order Kirchhoff type elliptic equation with strong singularity. (English) Zbl 07763119 Ann. Pol. Math. 130, No. 3, 253-269 (2023). MSC: 35J40 35J75 35A01 35A02 35A15 PDF BibTeX XML Cite \textit{Q. Li} and \textit{Y. Han}, Ann. Pol. Math. 130, No. 3, 253--269 (2023; Zbl 07763119) Full Text: DOI
Wang, Yue; Wei, Wei; Xiong, Zong-Hong; Yang, Jian Positive solution for a nonlocal problem with strong singular nonlinearity. (English) Zbl 07757672 Open Math. 21, Article ID 20230103, 17 p. (2023). MSC: 35B09 35J20 35J25 35J62 35J75 35R09 PDF BibTeX XML Cite \textit{Y. Wang} et al., Open Math. 21, Article ID 20230103, 17 p. (2023; Zbl 07757672) Full Text: DOI
Chaipunya, Parin; Chuensupantharat, Nantaporn; Sanguansuttigul, Printaporn Graphical Ekeland’s variational principle with a generalized \(w\)-distance and a new approach to quasi-equilibrium problems. (English) Zbl 07752868 Carpathian J. Math. 39, No. 1, 95-107 (2023). MSC: 49J52 54E50 91A35 PDF BibTeX XML Cite \textit{P. Chaipunya} et al., Carpathian J. Math. 39, No. 1, 95--107 (2023; Zbl 07752868) Full Text: DOI
Dali, Issam; Moustaid, Mohamed Bilal A new existence result of equilibria for vector equilibrium problems. (English) Zbl 07729084 Numer. Funct. Anal. Optim. 44, No. 11, 1119-1128 (2023). Reviewer: Xiaoming He (Beijing) MSC: 49J27 54D30 54D55 90B85 PDF BibTeX XML Cite \textit{I. Dali} and \textit{M. B. Moustaid}, Numer. Funct. Anal. Optim. 44, No. 11, 1119--1128 (2023; Zbl 07729084) Full Text: DOI
Zhang, Qian; Han, Yuzhu; Wang, Jian A note on a critical bi-harmonic equation with logarithmic perturbation. (English) Zbl 1520.35052 Appl. Math. Lett. 145, Article ID 108784, 5 p. (2023). MSC: 35J40 35A01 35A15 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Appl. Math. Lett. 145, Article ID 108784, 5 p. (2023; Zbl 1520.35052) Full Text: DOI
Wang, Fenqi; Sun, Jijiang Multiple solutions for a nonhomogeneous Schrödinger-Born-Infeld system. (English) Zbl 1519.35122 Bull. Malays. Math. Sci. Soc. (2) 46, No. 4, Paper No. 147, 20 p. (2023). MSC: 35J47 35A01 35A15 PDF BibTeX XML Cite \textit{F. Wang} and \textit{J. Sun}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 4, Paper No. 147, 20 p. (2023; Zbl 1519.35122) Full Text: DOI
Hamdani, Mohamed Karim; Mbarki, Lamine; Allaoui, Mostafa; Darhouche, Omar; Repovš, Dušan D. Existence and multiplicity of solutions involving the \(p(x)\)-Laplacian equations: on the effect of two nonlocal terms. (English) Zbl 1519.35188 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1452-1467 (2023). MSC: 35J92 35A01 35A15 PDF BibTeX XML Cite \textit{M. K. Hamdani} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1452--1467 (2023; Zbl 1519.35188) Full Text: DOI arXiv
Menoukeu-Pamen, Olivier; Tangpi, Ludovic Maximum principle for stochastic control of SDEs with measurable drifts. (English) Zbl 1518.49033 J. Optim. Theory Appl. 197, No. 3, 1195-1228 (2023). MSC: 49K45 58E30 60E15 60H20 60J60 28C20 PDF BibTeX XML Cite \textit{O. Menoukeu-Pamen} and \textit{L. Tangpi}, J. Optim. Theory Appl. 197, No. 3, 1195--1228 (2023; Zbl 1518.49033) Full Text: DOI arXiv
Kumar, Manoj; Abbas, Syed; Sakthivel, Rathinasamy Analysis of diffusive size-structured population model and optimal birth control. (English) Zbl 1518.92126 Evol. Equ. Control Theory 12, No. 2, 423-445 (2023). MSC: 92D25 35Q92 47H20 PDF BibTeX XML Cite \textit{M. Kumar} et al., Evol. Equ. Control Theory 12, No. 2, 423--445 (2023; Zbl 1518.92126) Full Text: DOI
Lakhdari, Abderrahmane; Belhaj Rhouma, Nedra; Hsini, Mounir A Moser-Trudinger type inequality on the Orlicz fractional space. (English) Zbl 1518.35365 J. Elliptic Parabol. Equ. 9, No. 1, 33-62 (2023). MSC: 35J62 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{A. Lakhdari} et al., J. Elliptic Parabol. Equ. 9, No. 1, 33--62 (2023; Zbl 1518.35365) Full Text: DOI
Zheng, Tian-Tian; Lei, Chun-Yu; Liao, Jia-Feng Multiple positive solutions for a Schrödinger-Poisson-Slater equation with critical growth. (English) Zbl 1514.35226 J. Math. Anal. Appl. 525, No. 2, Article ID 127206, 26 p. (2023). MSC: 35J91 35J15 35A01 35A15 PDF BibTeX XML Cite \textit{T.-T. Zheng} et al., J. Math. Anal. Appl. 525, No. 2, Article ID 127206, 26 p. (2023; Zbl 1514.35226) Full Text: DOI
Huang, Lanxin; Su, Jiabao Multiple solutions for nonhomogeneous Schrödinger-Poisson system with \(p\)-Laplacian. (English) Zbl 1512.35237 Electron. J. Differ. Equ. 2023, Paper No. 28, 14 p. (2023). MSC: 35J47 35J92 35J50 PDF BibTeX XML Cite \textit{L. Huang} and \textit{J. Su}, Electron. J. Differ. Equ. 2023, Paper No. 28, 14 p. (2023; Zbl 1512.35237) Full Text: Link
Aissaoui, Narimane On the nonhomogeneous Kirchhoff-type problems. (English) Zbl 1512.35286 Mediterr. J. Math. 20, No. 3, Paper No. 144, 16 p. (2023). MSC: 35J62 35A01 35A15 PDF BibTeX XML Cite \textit{N. Aissaoui}, Mediterr. J. Math. 20, No. 3, Paper No. 144, 16 p. (2023; Zbl 1512.35286) Full Text: DOI
Kumar, Gourav; Ghosh, Debdas Ekeland’s variational principle for interval-valued functions. (English) Zbl 07655436 Comput. Appl. Math. 42, No. 1, Paper No. 28, 24 p. (2023). MSC: 26A24 65K05 90C30 PDF BibTeX XML Cite \textit{G. Kumar} and \textit{D. Ghosh}, Comput. Appl. Math. 42, No. 1, Paper No. 28, 24 p. (2023; Zbl 07655436) Full Text: DOI arXiv
Lei, Chunyu; Rădulescu, Vicenţiu D.; Zhang, Binlin Low perturbations and combined effects of critical and singular nonlinearities in Kirchhoff problems. (English) Zbl 1504.35146 Appl. Math. Optim. 87, No. 1, Paper No. 9, 38 p. (2023). Reviewer: Patrick Winkert (Berlin) MSC: 35J20 35J62 PDF BibTeX XML Cite \textit{C. Lei} et al., Appl. Math. Optim. 87, No. 1, Paper No. 9, 38 p. (2023; Zbl 1504.35146) Full Text: DOI
Zhang, Chuang-liang; Huang, Nan-jing On Ekeland’s variational principle for interval-valued functions with applications. (English) Zbl 07755989 Fuzzy Sets Syst. 436, 152-174 (2022). MSC: 26E50 49J53 PDF BibTeX XML Cite \textit{C.-l. Zhang} and \textit{N.-j. Huang}, Fuzzy Sets Syst. 436, 152--174 (2022; Zbl 07755989) Full Text: DOI arXiv
Kamburova, Detelina; Marinov, Rumen A note on Ekeland’s variational principle and Caristi’s fixed point theorem. (English) Zbl 07689772 J. Geom. Symmetry Phys. 64, 23-28 (2022). MSC: 47H09 47H10 54E50 90C48 PDF BibTeX XML Cite \textit{D. Kamburova} and \textit{R. Marinov}, J. Geom. Symmetry Phys. 64, 23--28 (2022; Zbl 07689772) Full Text: DOI Link
Wang, Lixia; Xiong, Chunlian; Zhao, Pingping Two solutions for nonhomogeneous Klein-Gordon equations coupled with Born-Infeld type equations. (English) Zbl 1506.35063 Electron. J. Differ. Equ. 2022, Paper No. 74, 11 p. (2022). MSC: 35J47 35J61 35A01 35A15 PDF BibTeX XML Cite \textit{L. Wang} et al., Electron. J. Differ. Equ. 2022, Paper No. 74, 11 p. (2022; Zbl 1506.35063) Full Text: Link
Li, Fengying; Li, Bingyu; Zhang, Shiqing A generalized mountain pass lemma with a closed subset for locally Lipschitz functionals. (English) Zbl 1502.49005 Appl. Anal. 101, No. 16, 5643-5659 (2022). Reviewer: Mohsen Timoumi (Monastir) MSC: 49J35 49J52 58E30 54C60 35A15 PDF BibTeX XML Cite \textit{F. Li} et al., Appl. Anal. 101, No. 16, 5643--5659 (2022; Zbl 1502.49005) Full Text: DOI arXiv
Gui, Xue-Lin; Ge, Bin Existence and multiplicity of solutions for generalized quasilinear Schrödinger equations. (English) Zbl 1498.35271 Complex Var. Elliptic Equ. 67, No. 10, 2360-2381 (2022). MSC: 35J62 35A01 35J20 PDF BibTeX XML Cite \textit{X.-L. Gui} and \textit{B. Ge}, Complex Var. Elliptic Equ. 67, No. 10, 2360--2381 (2022; Zbl 1498.35271) Full Text: DOI
Almuaalemi, Belal; Chen, Haibo; Khoutir, Sofiane Multiple solutions for a class of nonhomogeneous fourth-order quasilinear equations with nonlinearities. (English) Zbl 1497.35164 Differ. Equ. Dyn. Syst. 30, No. 3, 573-583 (2022). MSC: 35J30 35J62 35A01 PDF BibTeX XML Cite \textit{B. Almuaalemi} et al., Differ. Equ. Dyn. Syst. 30, No. 3, 573--583 (2022; Zbl 1497.35164) Full Text: DOI
Kim, In Hyoun; Kim, Yun-Ho; Oh, Min Wook; Zeng, Shengda Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent. (English) Zbl 1492.35124 Nonlinear Anal., Real World Appl. 67, Article ID 103627, 25 p. (2022). MSC: 35J62 35J25 35A01 35A15 PDF BibTeX XML Cite \textit{I. H. Kim} et al., Nonlinear Anal., Real World Appl. 67, Article ID 103627, 25 p. (2022; Zbl 1492.35124) Full Text: DOI
Mohan, Manil T. Pontryagin’s maximum principle for distributed optimal control of two dimensional tidal dynamics system with state constraints of integral type. (English) Zbl 1491.49005 Acta Appl. Math. 179, Paper No. 12, 35 p. (2022). MSC: 49J20 49K15 35Q35 35B50 PDF BibTeX XML Cite \textit{M. T. Mohan}, Acta Appl. Math. 179, Paper No. 12, 35 p. (2022; Zbl 1491.49005) Full Text: DOI
Liu, Rong; Liu, Guirong Optimal harvesting in a unidirectional consumer-resource mutualisms system with size structure in the consumer. (English) Zbl 1492.91231 Nonlinear Anal., Model. Control 27, No. 2, 385-411 (2022). MSC: 91B76 49K15 49K20 PDF BibTeX XML Cite \textit{R. Liu} and \textit{G. Liu}, Nonlinear Anal., Model. Control 27, No. 2, 385--411 (2022; Zbl 1492.91231) Full Text: DOI
Filali, Mohammed; Soualhine, Khalid; Talbi, Mohamed; Tsouli, Najib On a \(p(x)\)-Kirchhoff fourth order problem involving Leray-Lions type operators. (English) Zbl 1491.35213 J. Elliptic Parabol. Equ. 8, No. 1, 107-126 (2022). MSC: 35J62 35J40 35G30 35A01 35A02 PDF BibTeX XML Cite \textit{M. Filali} et al., J. Elliptic Parabol. Equ. 8, No. 1, 107--126 (2022; Zbl 1491.35213) Full Text: DOI
Köbis, Elisabeth; Tammer, Christiane An existence principle of Takahashi’s type for vector optimization problems and applications. (English) Zbl 1482.90212 J. Nonlinear Convex Anal. 23, No. 1, 19-32 (2022). MSC: 90C30 49J52 49J53 PDF BibTeX XML Cite \textit{E. Köbis} and \textit{C. Tammer}, J. Nonlinear Convex Anal. 23, No. 1, 19--32 (2022; Zbl 1482.90212) Full Text: Link
Choudhuri, Debajyoti; Saoudi, Kamel Existence of multiple solutions to Schrödinger-Poisson system in a nonlocal set up in \(\mathbb{R}^3\). (English) Zbl 1481.35376 Z. Angew. Math. Phys. 73, No. 1, Paper No. 33, 17 p. (2022). MSC: 35R11 35J48 35J61 35J75 46E35 PDF BibTeX XML Cite \textit{D. Choudhuri} and \textit{K. Saoudi}, Z. Angew. Math. Phys. 73, No. 1, Paper No. 33, 17 p. (2022; Zbl 1481.35376) Full Text: DOI
Irzi, Nawal Multiplicity of solutions for a nonhomogeneous problem involving a potential in Orlicz-Sobolev spaces. (English) Zbl 07732667 Adv. Pure Appl. Math. 12, No. 4, 1-19 (2021). MSC: 35J62 35J25 35A01 35A15 PDF BibTeX XML Cite \textit{N. Irzi}, Adv. Pure Appl. Math. 12, No. 4, 1--19 (2021; Zbl 07732667) Full Text: DOI
Wang, Mengyu; Qu, Xinmin; Lu, Huiqin Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity. (English) Zbl 1484.35229 AIMS Math. 6, No. 5, 5028-5039 (2021). MSC: 35J65 35R11 47J05 47J30 PDF BibTeX XML Cite \textit{M. Wang} et al., AIMS Math. 6, No. 5, 5028--5039 (2021; Zbl 1484.35229) Full Text: DOI
Beg, Ismat; Roy, Kuhal; Saha, Mantu Ekeland’s variational principle in \(S^{JS}\)-metric spaces. (English) Zbl 1491.54056 Facta Univ., Ser. Math. Inf. 36, No. 5, 1117-1127 (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{I. Beg} et al., Facta Univ., Ser. Math. Inf. 36, No. 5, 1117--1127 (2021; Zbl 1491.54056) Full Text: DOI
Akrout, Kamel; Soltani, Nor Elhouda; Zediri, Sounia Existence and multiplicity of solutions for singular fractional elliptic system via the Nehari manifold approach. (English) Zbl 1485.35188 Novi Sad J. Math. 51, No. 1, 163-183 (2021). MSC: 35J60 35R11 35J67 35A01 35A15 PDF BibTeX XML Cite \textit{K. Akrout} et al., Novi Sad J. Math. 51, No. 1, 163--183 (2021; Zbl 1485.35188) Full Text: DOI
Azizi Mayvan, A.; Motallebi, M. R. Ekeland’s type variational principle for locally convex cone-valued functions. (English) Zbl 1480.58006 J. Fixed Point Theory Appl. 23, No. 4, Paper No. 65, 9 p. (2021). Reviewer: Xiaoming He (Beijing) MSC: 58E30 PDF BibTeX XML Cite \textit{A. Azizi Mayvan} and \textit{M. R. Motallebi}, J. Fixed Point Theory Appl. 23, No. 4, Paper No. 65, 9 p. (2021; Zbl 1480.58006) Full Text: DOI
Campos, Juan; Tarallo, Massimo Exponential dichotomies by Ekeland’s variational principle. (English) Zbl 1489.34080 J. Dyn. Differ. Equations 33, No. 4, 2133-2153 (2021). Reviewer: Ignacio Huerta (Santiago de Chile) MSC: 34D09 34A30 37C60 PDF BibTeX XML Cite \textit{J. Campos} and \textit{M. Tarallo}, J. Dyn. Differ. Equations 33, No. 4, 2133--2153 (2021; Zbl 1489.34080) Full Text: DOI
Zhang, Chuang-Liang; Huang, Nan-jing Set relations and weak minimal solutions for nonconvex set optimization problems with applications. (English) Zbl 07403126 J. Optim. Theory Appl. 190, No. 3, 894-914 (2021). MSC: 90C29 90C26 58E30 PDF BibTeX XML Cite \textit{C.-L. Zhang} and \textit{N.-j. Huang}, J. Optim. Theory Appl. 190, No. 3, 894--914 (2021; Zbl 07403126) Full Text: DOI
Hsini, Mounir; Irzi, Nawal; Kefi, Khaled Existence of solutions for a \(p(x)\)-biharmonic problem under Neumann boundary conditions. (English) Zbl 1473.35229 Appl. Anal. 100, No. 10, 2188-2199 (2021). MSC: 35J60 35P05 35A01 35A15 PDF BibTeX XML Cite \textit{M. Hsini} et al., Appl. Anal. 100, No. 10, 2188--2199 (2021; Zbl 1473.35229) Full Text: DOI
Mingqi, Xiang; Rădulescu, Vicenţiu D.; Zhang, Binlin Nonlocal Kirchhoff problems with singular exponential nonlinearity. (English) Zbl 1470.35404 Appl. Math. Optim. 84, No. 1, 915-954 (2021). MSC: 35R11 35A15 35J25 35R09 47G20 PDF BibTeX XML Cite \textit{X. Mingqi} et al., Appl. Math. Optim. 84, No. 1, 915--954 (2021; Zbl 1470.35404) Full Text: DOI
Guo, Ya-Hong; Sun, Hong-Rui; Cui, Na Existence and multiplicity results for the fractional magnetic Schrödinger equations with critical growth. (English) Zbl 1467.81034 J. Math. Phys. 62, No. 6, Article ID 061503, 19 p. (2021). MSC: 81Q05 35R11 81V10 35A01 35P30 PDF BibTeX XML Cite \textit{Y.-H. Guo} et al., J. Math. Phys. 62, No. 6, Article ID 061503, 19 p. (2021; Zbl 1467.81034) Full Text: DOI
Ansari, Qamrul Hasan; Bao, Truong Quang A limiting subdifferential version of Ekeland’s variational principle in set optimization. (English) Zbl 07369888 Optim. Lett. 15, No. 5, 1537-1551 (2021). MSC: 90C48 PDF BibTeX XML Cite \textit{Q. H. Ansari} and \textit{T. Q. Bao}, Optim. Lett. 15, No. 5, 1537--1551 (2021; Zbl 07369888) Full Text: DOI
Ekeland, Ivar; Séré, Éric A surjection theorem for maps with singular perturbation and loss of derivatives. (English) Zbl 07367691 J. Eur. Math. Soc. (JEMS) 23, No. 10, 3323-3349 (2021). Reviewer: Jürgen Appell (Würzburg) MSC: 47J07 47J25 35B25 35G25 35Q55 58C15 PDF BibTeX XML Cite \textit{I. Ekeland} and \textit{É. Séré}, J. Eur. Math. Soc. (JEMS) 23, No. 10, 3323--3349 (2021; Zbl 07367691) Full Text: DOI arXiv
Bu, Weichun; An, Tianqing; Ye, Guoju; Taarabti, Said Negative energy solutions for a new fractional \(p(x)\)-Kirchhoff problem without the (AR) condition. (English) Zbl 1464.35393 J. Funct. Spaces 2021, Article ID 8888078, 13 p. (2021). MSC: 35R11 35J20 35J25 35J62 35R09 PDF BibTeX XML Cite \textit{W. Bu} et al., J. Funct. Spaces 2021, Article ID 8888078, 13 p. (2021; Zbl 1464.35393) Full Text: DOI
Liang, Ruixi; Shang, Tingting Multiple solutions for nonhomogeneous Schrödinger equations. (English) Zbl 1460.35158 Mediterr. J. Math. 18, No. 2, Paper No. 59, 15 p. (2021). MSC: 35J62 35A01 35J20 PDF BibTeX XML Cite \textit{R. Liang} and \textit{T. Shang}, Mediterr. J. Math. 18, No. 2, Paper No. 59, 15 p. (2021; Zbl 1460.35158) Full Text: DOI
Azroul, E.; Benkirane, A.; Shimi, M.; Srati, M. On a class of fractional \(p(x)\)-Kirchhoff type problems. (English) Zbl 1458.35445 Appl. Anal. 100, No. 2, 383-402 (2021). MSC: 35R11 35D30 35J92 35J25 35R09 35P30 35S15 PDF BibTeX XML Cite \textit{E. Azroul} et al., Appl. Anal. 100, No. 2, 383--402 (2021; Zbl 1458.35445) Full Text: DOI
Drusvyatskiy, D.; Ioffe, A. D.; Lewis, A. S. Nonsmooth optimization using Taylor-like models: error bounds, convergence, and termination criteria. (English) Zbl 1459.65083 Math. Program. 185, No. 1-2 (A), 357-383 (2021). MSC: 65K05 90C30 65K10 PDF BibTeX XML Cite \textit{D. Drusvyatskiy} et al., Math. Program. 185, No. 1--2 (A), 357--383 (2021; Zbl 1459.65083) Full Text: DOI arXiv
Sengupta, R.; Zhukovskiy, S. Ekeland’s variational principle for functions unbounded from below. (English) Zbl 1497.58009 Discontin. Nonlinearity Complex. 9, No. 4, 553-558 (2020). Reviewer: Liviu Popescu (Craiova) MSC: 58E15 PDF BibTeX XML Cite \textit{R. Sengupta} and \textit{S. Zhukovskiy}, Discontin. Nonlinearity Complex. 9, No. 4, 553--558 (2020; Zbl 1497.58009) Full Text: DOI
Xie, Jie; Zhang, Xingyong; Liu, Cuiling; Kang, Danyang Existence and multiplicity of solutions for a class of damped-like fractional differential system. (English) Zbl 1484.34077 AIMS Math. 5, No. 5, 4268-4284 (2020). MSC: 34B15 34B10 34A08 PDF BibTeX XML Cite \textit{J. Xie} et al., AIMS Math. 5, No. 5, 4268--4284 (2020; Zbl 1484.34077) Full Text: DOI
Ayoujil, Abdesslem; Berrajaa, Mohammed; Ouhamou, Brahim Positive solutions for discrete anisotropic equations. (English) Zbl 1499.35085 Mathematica 62(85), No. 2, 107-116 (2020). MSC: 35B38 47A75 35P30 34L05 34L30 PDF BibTeX XML Cite \textit{A. Ayoujil} et al., Mathematica 62(85), No. 2, 107--116 (2020; Zbl 1499.35085) Full Text: DOI
El Amrouss, Abdelrachid; El Mahraoui, Ali Existence and multiplicity of solutions for anisotropic elliptic equations with variable exponent. (English) Zbl 1488.35205 An. Univ. Craiova, Ser. Mat. Inf. 47, No. 2, 252-266 (2020). MSC: 35J25 35J62 35D30 46E35 35J20 PDF BibTeX XML Cite \textit{A. El Amrouss} and \textit{A. El Mahraoui}, An. Univ. Craiova, Ser. Mat. Inf. 47, No. 2, 252--266 (2020; Zbl 1488.35205)
Li, Min; Wu, Zhen Necessary and sufficient conditions of near-optimality in a regime-switching diffusion model. (English) Zbl 1472.93199 Optim. Control Appl. Methods 41, No. 3, 793-807 (2020). Reviewer: Heinrich Hering (Rockenberg) MSC: 93E20 60H10 60J28 PDF BibTeX XML Cite \textit{M. Li} and \textit{Z. Wu}, Optim. Control Appl. Methods 41, No. 3, 793--807 (2020; Zbl 1472.93199) Full Text: DOI
Guo, Tiexin; Wang, Yachao; Yang, Bixuan; Zhang, Erxin On \(d\)-\(\sigma\)-stability in random metric spaces and its applications. (English) Zbl 1476.46001 J. Nonlinear Convex Anal. 21, No. 6, 1297-1316 (2020). MSC: 46A19 47H40 54H25 54E40 54E50 60H25 PDF BibTeX XML Cite \textit{T. Guo} et al., J. Nonlinear Convex Anal. 21, No. 6, 1297--1316 (2020; Zbl 1476.46001) Full Text: arXiv Link
Bouafia, Dahmane; Moussaoui, Toufik Existence results for a sublinear second order Dirichlet boundary value problem on the half-line. (English) Zbl 1466.34031 Opusc. Math. 40, No. 5, 537-548 (2020). MSC: 34B40 34B15 58E50 PDF BibTeX XML Cite \textit{D. Bouafia} and \textit{T. Moussaoui}, Opusc. Math. 40, No. 5, 537--548 (2020; Zbl 1466.34031) Full Text: DOI
Hao, Tao Maximum principle for mean-field forward-backward stochastic delay control system with terminal state constraints and application to mean-field game. (Chinese. English summary) Zbl 1474.93237 Chin. Ann. Math., Ser. A 41, No. 3, 331-356 (2020). MSC: 93E20 49N80 49N10 PDF BibTeX XML Cite \textit{T. Hao}, Chin. Ann. Math., Ser. A 41, No. 3, 331--356 (2020; Zbl 1474.93237) Full Text: DOI
Hamdani, Mohamed Karim Multiple solutions for Grushin operator without odd nonlinearity. (English) Zbl 1465.35234 Asian-Eur. J. Math. 13, No. 7, Article ID 2050131, 20 p. (2020). MSC: 35J70 35A01 35A15 PDF BibTeX XML Cite \textit{M. K. Hamdani}, Asian-Eur. J. Math. 13, No. 7, Article ID 2050131, 20 p. (2020; Zbl 1465.35234) Full Text: DOI arXiv
Chung, Nguyen Thanh Multiple solutions for a fourth-order elliptic equation of Kirchhoff type with variable exponent. (English) Zbl 1465.35208 Asian-Eur. J. Math. 13, No. 5, Article ID 2050096, 15 p. (2020). MSC: 35J60 35J35 35A01 35A15 PDF BibTeX XML Cite \textit{N. T. Chung}, Asian-Eur. J. Math. 13, No. 5, Article ID 2050096, 15 p. (2020; Zbl 1465.35208) Full Text: DOI
Li, Min; Wu, Zhen Near-optimal control problems for forward-backward regime-switching systems. (English) Zbl 1460.93110 ESAIM, Control Optim. Calc. Var. 26, Paper No. 94, 26 p. (2020). MSC: 93E20 60H10 60J27 PDF BibTeX XML Cite \textit{M. Li} and \textit{Z. Wu}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 94, 26 p. (2020; Zbl 1460.93110) Full Text: DOI
Che, Guofeng; Chen, Haibo Existence and multiplicity of solutions for Kirchhoff-Schrödinger-Poisson system with concave and convex nonlinearities. (English) Zbl 1459.35185 J. Korean Math. Soc. 57, No. 6, 1551-1571 (2020). MSC: 35J62 35J47 35A01 35J50 PDF BibTeX XML Cite \textit{G. Che} and \textit{H. Chen}, J. Korean Math. Soc. 57, No. 6, 1551--1571 (2020; Zbl 1459.35185) Full Text: DOI
Wang, Yang; Liu, Yansheng Positive and negative solutions for the nonlinear fractional Kirchhoff equation in \(\mathbb{R}^N \). (English) Zbl 1455.35094 SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 25, 19 p. (2020). MSC: 35J60 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Y. Liu}, SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 25, 19 p. (2020; Zbl 1455.35094) Full Text: DOI
Cobzaş, S. Fixed points and completeness in metric and generalized metric spaces. (English. Russian original) Zbl 1451.54011 J. Math. Sci., New York 250, No. 3, 475-535 (2020); translation from Fundam. Prikl. Mat. 22, No. 1, 127-215 (2018). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 47H10 54E50 54H12 06F30 PDF BibTeX XML Cite \textit{S. Cobzaş}, J. Math. Sci., New York 250, No. 3, 475--535 (2020; Zbl 1451.54011); translation from Fundam. Prikl. Mat. 22, No. 1, 127--215 (2018) Full Text: DOI arXiv
Zhou, Jianwen; Zhou, Bianxiang; Wang, Yanning Multiplicity results for variable-order nonlinear fractional magnetic Schrödinger equation with variable growth. (English) Zbl 1447.81121 J. Funct. Spaces 2020, Article ID 7817843, 15 p. (2020). MSC: 81Q05 35Q55 35R11 81V10 35P30 PDF BibTeX XML Cite \textit{J. Zhou} et al., J. Funct. Spaces 2020, Article ID 7817843, 15 p. (2020; Zbl 1447.81121) Full Text: DOI
Bergounioux, Maïtine; Bourdin, Loïc Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints. (English) Zbl 1447.49035 ESAIM, Control Optim. Calc. Var. 26, Paper No. 35, 38 p. (2020). MSC: 49K15 26A33 34A08 49J15 49K40 93C15 PDF BibTeX XML Cite \textit{M. Bergounioux} and \textit{L. Bourdin}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 35, 38 p. (2020; Zbl 1447.49035) Full Text: DOI
Azroul, Elhoussine; Benkirane, Abdelmoujib; Srati, Mohammed Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space. Nonlocal eigenvalue type problem. (English) Zbl 1445.35297 Adv. Oper. Theory 5, No. 4, 1599-1617 (2020). MSC: 35R11 46E30 58E05 35J61 35P30 PDF BibTeX XML Cite \textit{E. Azroul} et al., Adv. Oper. Theory 5, No. 4, 1599--1617 (2020; Zbl 1445.35297) Full Text: DOI
Zhang, Xia; Zhang, Binlin A multiplicity result for a class of fractional \(p\)-Laplacian equations with perturbations in \(\mathbb{R}^N\). (English) Zbl 1442.35096 Complex Var. Elliptic Equ. 65, No. 7, 1219-1255 (2020). MSC: 35J20 35J60 46E35 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{B. Zhang}, Complex Var. Elliptic Equ. 65, No. 7, 1219--1255 (2020; Zbl 1442.35096) Full Text: DOI
Ansari, Qamrul Hasan; Hamel, Andreas H.; Sharma, Pradeep Kumar Ekeland’s variational principle with weighted set order relations. (English) Zbl 1435.49005 Math. Methods Oper. Res. 91, No. 1, 117-136 (2020). MSC: 49J53 90C29 46N10 47J30 47H04 47H10 58E30 PDF BibTeX XML Cite \textit{Q. H. Ansari} et al., Math. Methods Oper. Res. 91, No. 1, 117--136 (2020; Zbl 1435.49005) Full Text: DOI
Hsini, Mounir; Irzi, Nawal; Kefi, Khaled Nonhomogeneous \(p(x)\)-Laplacian Steklov problem with weights. (English) Zbl 1433.35150 Complex Var. Elliptic Equ. 65, No. 3, 440-454 (2020). MSC: 35J92 35J40 35A01 35A15 PDF BibTeX XML Cite \textit{M. Hsini} et al., Complex Var. Elliptic Equ. 65, No. 3, 440--454 (2020; Zbl 1433.35150) Full Text: DOI
Li, Yuanyuan Multiple positive solutions for quasilinear elliptic problems with combined critical Sobolev-Hardy terms. (English) Zbl 1513.35180 Bound. Value Probl. 2019, Paper No. 136, 19 p. (2019). MSC: 35J20 35D30 PDF BibTeX XML Cite \textit{Y. Li}, Bound. Value Probl. 2019, Paper No. 136, 19 p. (2019; Zbl 1513.35180) Full Text: DOI
Wei, Chongqing; Li, Anran Nonexistence and existence of nontrivial solutions for Klein-Gordon-Maxwell systems with competing nonlinearities. (English) Zbl 1513.35226 Bound. Value Probl. 2019, Paper No. 31, 13 p. (2019). MSC: 35J50 35B38 35D30 PDF BibTeX XML Cite \textit{C. Wei} and \textit{A. Li}, Bound. Value Probl. 2019, Paper No. 31, 13 p. (2019; Zbl 1513.35226) Full Text: DOI
Miholca, Mihaela A generalized Ekeland’s variational principle for vector equilibria. (English) Zbl 1513.58012 Stud. Univ. Babeș-Bolyai, Math. 64, No. 4, 581-592 (2019). MSC: 58E30 PDF BibTeX XML Cite \textit{M. Miholca}, Stud. Univ. Babeș-Bolyai, Math. 64, No. 4, 581--592 (2019; Zbl 1513.58012) Full Text: DOI
Wang, Lixia; Wang, Xiaoming; Zhang, Luyu Ground state solutions for the critical Klein-Gordon-Maxwell system. (English) Zbl 1499.35065 Acta Math. Sci., Ser. B, Engl. Ed. 39, No. 5, 1451-1460 (2019). MSC: 35B33 35J65 35Q55 PDF BibTeX XML Cite \textit{L. Wang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 39, No. 5, 1451--1460 (2019; Zbl 1499.35065) Full Text: DOI
Chen, Li; Wang, Jiandong Maximum principle for delayed stochastic mean-field control problem with state constraint. (English) Zbl 1485.93625 Adv. Difference Equ. 2019, Paper No. 348, 25 p. (2019). MSC: 93E20 60H10 49K45 49N10 PDF BibTeX XML Cite \textit{L. Chen} and \textit{J. Wang}, Adv. Difference Equ. 2019, Paper No. 348, 25 p. (2019; Zbl 1485.93625) Full Text: DOI
Hashemi, Eshagh; Saadati, Reza; Park, Choonkil Generalized Ekeland’s variational principle with applications. (English) Zbl 1499.49039 J. Inequal. Appl. 2019, Paper No. 250, 13 p. (2019). MSC: 49J40 49J53 54E40 47H10 PDF BibTeX XML Cite \textit{E. Hashemi} et al., J. Inequal. Appl. 2019, Paper No. 250, 13 p. (2019; Zbl 1499.49039) Full Text: DOI
Wang, Lixia; Ma, Shiwang Multiple solutions for a nonhomogeneous Schrödinger-Poisson system with concave and convex nonlinearities. (English) Zbl 1465.35183 J. Appl. Anal. Comput. 9, No. 2, 628-637 (2019). MSC: 35J47 35J05 35J10 35A01 PDF BibTeX XML Cite \textit{L. Wang} and \textit{S. Ma}, J. Appl. Anal. Comput. 9, No. 2, 628--637 (2019; Zbl 1465.35183) Full Text: DOI
Lei, Yan; Guo, Zuji; Wang, Shuli A class of constrained minimal elements for Schrödinger-Poisson equations. (Chinese. English summary) Zbl 1449.35190 J. Northwest Norm. Univ., Nat. Sci. 55, No. 4, 14-20 (2019). MSC: 35J05 35J20 PDF BibTeX XML Cite \textit{Y. Lei} et al., J. Northwest Norm. Univ., Nat. Sci. 55, No. 4, 14--20 (2019; Zbl 1449.35190) Full Text: DOI
Shang, Yanying; Wang, Cong Multiple positive solutions for a inhomogeneous Neumann problem with critical weight Hardy-Sobolev exponent and boundary singularities. (Chinese. English summary) Zbl 1449.35024 Chin. Ann. Math., Ser. A 40, No. 4, 349-360 (2019). MSC: 35B09 35J75 PDF BibTeX XML Cite \textit{Y. Shang} and \textit{C. Wang}, Chin. Ann. Math., Ser. A 40, No. 4, 349--360 (2019; Zbl 1449.35024) Full Text: DOI
Błaszkiewicz, Piotr; Ćmiel, Hanna; Linzi, Alessandro; Szewczyk, Piotr Caristi-Kirk and Oettli-Théra ball spaces and applications. (English) Zbl 1444.54021 J. Fixed Point Theory Appl. 21, No. 4, Paper No. 98, 17 p. (2019). Reviewer: Vasile Berinde (Baia Mare) MSC: 54H25 54E35 54E40 54E50 PDF BibTeX XML Cite \textit{P. Błaszkiewicz} et al., J. Fixed Point Theory Appl. 21, No. 4, Paper No. 98, 17 p. (2019; Zbl 1444.54021) Full Text: DOI arXiv
Zuo, Jiabin; An, Tianqing; Ye, Guoju; Qiao, Zhenhua Nonhomogeneous fractional \(p\)-Kirchhoff problems involving a critical nonlinearity. (English) Zbl 1438.35450 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 41, 15 p. (2019). MSC: 35R11 35J60 35A15 PDF BibTeX XML Cite \textit{J. Zuo} et al., Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 41, 15 p. (2019; Zbl 1438.35450) Full Text: DOI
Wang, Lixia Two solutions for a nonhomogeneous Klein-Gordon-Maxwell system. (English) Zbl 1438.35124 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 40, 12 p. (2019). MSC: 35J47 35B33 35J50 PDF BibTeX XML Cite \textit{L. Wang}, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 40, 12 p. (2019; Zbl 1438.35124) Full Text: DOI
Chen, Lin Multiple solutions for a singular quasilinear \(\left({p,q} \right)\)-system. (Chinese. English summary) Zbl 1438.35171 Math. Pract. Theory 49, No. 3, 248-257 (2019). MSC: 35J62 35J75 PDF BibTeX XML Cite \textit{L. Chen}, Math. Pract. Theory 49, No. 3, 248--257 (2019; Zbl 1438.35171)
Guo, Zhongkai; Ren, Qiuyan; Li, Jiansheng Optimal control of age-structured SIR epidemic model with vaccination and treatment. (Chinese. English summary) Zbl 1438.49031 J. Nanjing Norm. Univ., Nat. Sci. Ed. 42, No. 1, 28-35 (2019). MSC: 49K20 92D30 PDF BibTeX XML Cite \textit{Z. Guo} et al., J. Nanjing Norm. Univ., Nat. Sci. Ed. 42, No. 1, 28--35 (2019; Zbl 1438.49031) Full Text: DOI
Li, Shanshan; Wang, Zhiyong Two solutions for a class of fractional boundary value problems with mixed nonlinearities. (Chinese. English summary) Zbl 1438.34043 J. Math., Wuhan Univ. 39, No. 2, 305-316 (2019). MSC: 34A08 34B15 58E50 PDF BibTeX XML Cite \textit{S. Li} and \textit{Z. Wang}, J. Math., Wuhan Univ. 39, No. 2, 305--316 (2019; Zbl 1438.34043) Full Text: DOI
Song, Hongxue; Wei, Yunfeng Multiple solutions for quasilinear nonhomogeneous elliptic equations with a parameter. (Chinese. English summary) Zbl 1438.35175 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 2, 286-296 (2019). MSC: 35J62 35J20 PDF BibTeX XML Cite \textit{H. Song} and \textit{Y. Wei}, Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 2, 286--296 (2019; Zbl 1438.35175)
Li, Ruijing; Fu, Fengyun The maximum principle for partially observed optimal control problems of mean-field FBSDEs. (English) Zbl 1423.93418 Int. J. Control 92, No. 10, 2463-2472 (2019). MSC: 93E20 49J15 93C15 60H10 93E11 49N10 PDF BibTeX XML Cite \textit{R. Li} and \textit{F. Fu}, Int. J. Control 92, No. 10, 2463--2472 (2019; Zbl 1423.93418) Full Text: DOI
Li, Ruijing A general maximum principle for forward-backward stochastic control systems of mean-field type. (Chinese. English summary) Zbl 1438.93235 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 1, 143-155 (2019). MSC: 93E20 93C15 60H10 PDF BibTeX XML Cite \textit{R. Li}, Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 1, 143--155 (2019; Zbl 1438.93235)
Messirdi, Sofiane; Matallah, Atika On nonhomogeneous \(p\)-Laplacian elliptic equations involving a critical Sobolev exponent and multiple Hardy-type terms. (English) Zbl 1438.35201 Mathematica 61(84), No. 1, 49-62 (2019). MSC: 35J92 35B33 35J20 35J70 35J75 31C45 PDF BibTeX XML Cite \textit{S. Messirdi} and \textit{A. Matallah}, Mathematica 61(84), No. 1, 49--62 (2019; Zbl 1438.35201) Full Text: DOI
Chung, Nguyen Thanh On the existence of solutions for a class of fourth order elliptic equations of Kirchhoff type with variable exponent. (English) Zbl 1438.35140 Adv. Theory Nonlinear Anal. Appl. 3, No. 1, 35-45 (2019). MSC: 35J60 35J35 35G30 46E35 PDF BibTeX XML Cite \textit{N. T. Chung}, Adv. Theory Nonlinear Anal. Appl. 3, No. 1, 35--45 (2019; Zbl 1438.35140) Full Text: DOI
Bui, Hoa T.; Kruger, Alexander Y. Extremality, stationarity and generalized separation of collections of sets. (English) Zbl 1425.49007 J. Optim. Theory Appl. 182, No. 1, 211-264 (2019). Reviewer: Alfred Göpfert (Leipzig) MSC: 49J52 49J53 49K40 90C30 PDF BibTeX XML Cite \textit{H. T. Bui} and \textit{A. Y. Kruger}, J. Optim. Theory Appl. 182, No. 1, 211--264 (2019; Zbl 1425.49007) Full Text: DOI arXiv Link
Kefi, Khaled For a class of \(p(x)\)-biharmonic operators with weights. (English) Zbl 1420.35168 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 1557-1570 (2019). Reviewer: Rodica Luca (Iaşi) MSC: 35P30 35J35 35G30 46E35 PDF BibTeX XML Cite \textit{K. Kefi}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 1557--1570 (2019; Zbl 1420.35168) Full Text: DOI
Chiappinelli, Raffaele Surjectivity of coercive gradient operators in Hilbert space and nonlinear spectral theory. (English) Zbl 07083886 Ann. Funct. Anal. 10, No. 2, 170-179 (2019). MSC: 47J10 47H05 47H08 PDF BibTeX XML Cite \textit{R. Chiappinelli}, Ann. Funct. Anal. 10, No. 2, 170--179 (2019; Zbl 07083886) Full Text: DOI Euclid
Al-Homidan, Suliman; Ansari, Qamrul Hasan; Kassay, Gábor Takahashi’s minimization theorem and some related results in quasi-metric spaces. (English) Zbl 1417.54011 J. Fixed Point Theory Appl. 21, No. 1, Paper No. 38, 20 p. (2019). Reviewer: Erdal Karapinar (Ankara) MSC: 54E15 54E50 54E55 PDF BibTeX XML Cite \textit{S. Al-Homidan} et al., J. Fixed Point Theory Appl. 21, No. 1, Paper No. 38, 20 p. (2019; Zbl 1417.54011) Full Text: DOI
Bae, Jung-Hyun; Kim, Yun-Ho Critical points theorems via the generalized Ekeland variational principle and its application to equations of \(p(x)\)-Laplace type in \(\mathbb{R}^{N}\). (English) Zbl 1409.58004 Taiwanese J. Math. 23, No. 1, 193-229 (2019). MSC: 58E05 35D30 35J15 35J60 58E30 49J50 PDF BibTeX XML Cite \textit{J.-H. Bae} and \textit{Y.-H. Kim}, Taiwanese J. Math. 23, No. 1, 193--229 (2019; Zbl 1409.58004) Full Text: DOI Euclid
Azroul, E.; Benkirane, A.; Shimi, M. Eigenvalue problems involving the fractional \(p(x)\)-Laplacian operator. (English) Zbl 1406.35456 Adv. Oper. Theory 4, No. 2, 539-555 (2019). MSC: 35R11 35P30 35J20 PDF BibTeX XML Cite \textit{E. Azroul} et al., Adv. Oper. Theory 4, No. 2, 539--555 (2019; Zbl 1406.35456) Full Text: DOI Euclid
Chiappinelli, R.; Edmunds, D. E. Measure of noncompactness, surjectivity of gradient operators and an application to the \(p\)-Laplacian. (English) Zbl 06996205 J. Math. Anal. Appl. 471, No. 1-2, 712-727 (2019). MSC: 47-XX 49-XX PDF BibTeX XML Cite \textit{R. Chiappinelli} and \textit{D. E. Edmunds}, J. Math. Anal. Appl. 471, No. 1--2, 712--727 (2019; Zbl 06996205) Full Text: DOI
Shen, Liejun Multiplicity and asymptotic behavior of solutions for Kirchhoff type equations involving the Hardy-Sobolev exponent and singular nonlinearity. (English) Zbl 1498.35231 J. Inequal. Appl. 2018, Paper No. 213, 19 p. (2018). MSC: 35J47 35J60 PDF BibTeX XML Cite \textit{L. Shen}, J. Inequal. Appl. 2018, Paper No. 213, 19 p. (2018; Zbl 1498.35231) Full Text: DOI
Ansari, Qamrul Hasan; Sharma, Pradeep Kumar; Yao, Jen-Chih Minimal element theorems and Ekeland’s variational principle with new set order relations. (English) Zbl 1454.49024 J. Nonlinear Convex Anal. 19, No. 7, 1127-1139 (2018). MSC: 49J53 58E30 65K10 90C29 90C26 46N10 PDF BibTeX XML Cite \textit{Q. H. Ansari} et al., J. Nonlinear Convex Anal. 19, No. 7, 1127--1139 (2018; Zbl 1454.49024) Full Text: Link
Ayoujil, Abdesslem Weighted eigenvalue problems involving a fourth-order elliptic equation with variable exponent. (English) Zbl 1442.35107 Int. J. Dyn. Syst. Differ. Equ. 8, No. 1-2, 66-76 (2018). MSC: 35J35 35P30 PDF BibTeX XML Cite \textit{A. Ayoujil}, Int. J. Dyn. Syst. Differ. Equ. 8, No. 1--2, 66--76 (2018; Zbl 1442.35107) Full Text: DOI
Talbi, Mohamed; Hssini, El. M.; Massar, M.; Tsouli, N. Positive solutions to a non-homogeneous elliptic system of fourth order. (English) Zbl 1442.35106 Int. J. Dyn. Syst. Differ. Equ. 8, No. 1-2, 48-65 (2018). MSC: 35J30 35J35 35B09 PDF BibTeX XML Cite \textit{M. Talbi} et al., Int. J. Dyn. Syst. Differ. Equ. 8, No. 1--2, 48--65 (2018; Zbl 1442.35106) Full Text: DOI
Eftekharinasab, Kaveh A generalized Palais-Smale condition in the Fréchet space setting. (English) Zbl 1428.58004 Proc. Int. Geom. Cent. 11, No. 1, 1-11 (2018). MSC: 58B20 58E30 PDF BibTeX XML Cite \textit{K. Eftekharinasab}, Proc. Int. Geom. Cent. 11, No. 1, 1--11 (2018; Zbl 1428.58004) Full Text: DOI arXiv
Liu, Rong; Liu, Guirong Maximum principle for a nonlinear size-structured model of fish and fry management. (English) Zbl 1418.91401 Nonlinear Anal., Model. Control 23, No. 4, 533-552 (2018). MSC: 91B76 35Q91 49N90 PDF BibTeX XML Cite \textit{R. Liu} and \textit{G. Liu}, Nonlinear Anal., Model. Control 23, No. 4, 533--552 (2018; Zbl 1418.91401) Full Text: DOI
Cordoni, Francesco; Di Persio, Luca Optimal control for the stochastic Fitzhugh-Nagumo model with recovery variable. (English) Zbl 1408.93148 Evol. Equ. Control Theory 7, No. 4, 571-585 (2018). MSC: 93E20 49K45 35R60 49J53 60H15 65K10 58E30 PDF BibTeX XML Cite \textit{F. Cordoni} and \textit{L. Di Persio}, Evol. Equ. Control Theory 7, No. 4, 571--585 (2018; Zbl 1408.93148) Full Text: DOI arXiv
Miholca, Mihaela Cyclically antimonotone vector equilibrium problems. (English) Zbl 1423.58010 Optimization 67, No. 12, 2191-2204 (2018). Reviewer: Dumitru Motreanu (Perpignan) MSC: 58E30 PDF BibTeX XML Cite \textit{M. Miholca}, Optimization 67, No. 12, 2191--2204 (2018; Zbl 1423.58010) Full Text: DOI
Ousbika, Mohamed; El Allali, Zakaria A weak solution of anisotropic nonlinear discrete problem with variable exponents. (English) Zbl 1404.39008 J. Adv. Math. Stud. 11, No. 2, 391-398 (2018). MSC: 39A12 34B15 PDF BibTeX XML Cite \textit{M. Ousbika} and \textit{Z. El Allali}, J. Adv. Math. Stud. 11, No. 2, 391--398 (2018; Zbl 1404.39008)
Hsini, Mounir; Irzi, Nawal; Kefi, Khaled Eigenvalues of some \(p(x)\)-biharmonic problems under Neumann boundary conditions. (English) Zbl 1483.35089 Rocky Mt. J. Math. 48, No. 8, 2543-2558 (2018). MSC: 35J40 35D30 35J35 35J62 35J66 35P30 PDF BibTeX XML Cite \textit{M. Hsini} et al., Rocky Mt. J. Math. 48, No. 8, 2543--2558 (2018; Zbl 1483.35089) Full Text: DOI Euclid