Meagher, Karen; Razafimahatratra, Andriaherimanana Sarobidy; Spiga, Pablo On triangles in derangement graphs. (English) Zbl 07313972 J. Comb. Theory, Ser. A 180, Article ID 105390, 27 p. (2021). MSC: 05C25 05C69 05D05 PDF BibTeX XML Cite \textit{K. Meagher} et al., J. Comb. Theory, Ser. A 180, Article ID 105390, 27 p. (2021; Zbl 07313972) Full Text: DOI
Frankl, Peter On the size of shadow-added intersecting families. (English) Zbl 07307275 Eur. J. Comb. 92, Article ID 103243, 10 p. (2021). MSC: 05D05 PDF BibTeX XML Cite \textit{P. Frankl}, Eur. J. Comb. 92, Article ID 103243, 10 p. (2021; Zbl 07307275) Full Text: DOI
Wang, Larry X. W. Restricted intersecting families on simplicial complex. (English) Zbl 07304633 Adv. Appl. Math. 124, Article ID 102144, 16 p. (2021). MSC: 05E45 05D05 PDF BibTeX XML Cite \textit{L. X. W. Wang}, Adv. Appl. Math. 124, Article ID 102144, 16 p. (2021; Zbl 07304633) Full Text: DOI
Meagher, Karen; Sin, Peter All 2-transitive groups have the EKR-module property. (English) Zbl 1448.05228 J. Comb. Theory, Ser. A 177, Article ID 105322, 21 p. (2021). MSC: 05E18 05D05 05C69 05A05 20B30 PDF BibTeX XML Cite \textit{K. Meagher} and \textit{P. Sin}, J. Comb. Theory, Ser. A 177, Article ID 105322, 21 p. (2021; Zbl 1448.05228) Full Text: DOI
Kim, Younjin Erdős-Ko-Rado type theorems for simplicial complexes via algebraic shifting. (English) Zbl 07301810 J. Korean Math. Soc. 57, No. 6, 1323-1333 (2020). MSC: 05D05 05E45 PDF BibTeX XML Cite \textit{Y. Kim}, J. Korean Math. Soc. 57, No. 6, 1323--1333 (2020; Zbl 07301810) Full Text: DOI
Hao, Shanshan; Cai, Bingling; Kang, Na The Erdös-Ko-Rado theorem for finite affine symplectic space. (Chinese. English summary) Zbl 1449.05237 J. Hebei Norm. Univ., Nat. Sci. Ed. 44, No. 1, 1-5 (2020). MSC: 05D05 05B25 PDF BibTeX XML Cite \textit{S. Hao} et al., J. Hebei Norm. Univ., Nat. Sci. Ed. 44, No. 1, 1--5 (2020; Zbl 1449.05237) Full Text: DOI
Liu, Xizhi Structural results for conditionally intersecting families and some applications. (English) Zbl 1441.05217 Electron. J. Comb. 27, No. 2, Research Paper P2.33, 13 p. (2020). MSC: 05D05 05C65 05C35 PDF BibTeX XML Cite \textit{X. Liu}, Electron. J. Comb. 27, No. 2, Research Paper P2.33, 13 p. (2020; Zbl 1441.05217) Full Text: DOI
Ellis, David; Kalai, Gil; Narayanan, Bhargav On symmetric intersecting families. (English) Zbl 1437.05229 Eur. J. Comb. 86, Article ID 103094, 13 p. (2020). MSC: 05D05 PDF BibTeX XML Cite \textit{D. Ellis} et al., Eur. J. Comb. 86, Article ID 103094, 13 p. (2020; Zbl 1437.05229) Full Text: DOI
Frankl, Peter; Kupavskii, Andrey Sharp results concerning disjoint cross-intersecting families. (English) Zbl 1437.05230 Eur. J. Comb. 86, Article ID 103089, 10 p. (2020). MSC: 05D05 05A20 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{A. Kupavskii}, Eur. J. Comb. 86, Article ID 103089, 10 p. (2020; Zbl 1437.05230) Full Text: DOI
Tokushige, Norihide When are stars the largest cross-intersecting families? (English) Zbl 1429.05200 Discrete Math. 343, No. 2, Article ID 111645, 14 p. (2020). MSC: 05D05 PDF BibTeX XML Cite \textit{N. Tokushige}, Discrete Math. 343, No. 2, Article ID 111645, 14 p. (2020; Zbl 1429.05200) Full Text: DOI arXiv
Hamm, A.; Kahn, J. On Erdős-Ko-Rado for random hypergraphs. I. (English) Zbl 1436.05109 Comb. Probab. Comput. 28, No. 6, 881-916 (2019). MSC: 05D05 05D40 05C65 05C80 PDF BibTeX XML Cite \textit{A. Hamm} and \textit{J. Kahn}, Comb. Probab. Comput. 28, No. 6, 881--916 (2019; Zbl 1436.05109) Full Text: DOI
Hamm, A.; Kahn, J. On Erdős-Ko-Rado for random hypergraphs. II. (English) Zbl 1434.05153 Comb. Probab. Comput. 28, No. 1, 61-80 (2019). MSC: 05D40 05D05 05C65 PDF BibTeX XML Cite \textit{A. Hamm} and \textit{J. Kahn}, Comb. Probab. Comput. 28, No. 1, 61--80 (2019; Zbl 1434.05153) Full Text: DOI
Zhang, Huajun On the maximum size of subfamilies of labeled set with given matching number. (English) Zbl 1431.05143 J. Comb. Optim. 38, No. 4, 1296-1304 (2019). MSC: 05D05 06A07 PDF BibTeX XML Cite \textit{H. Zhang}, J. Comb. Optim. 38, No. 4, 1296--1304 (2019; Zbl 1431.05143) Full Text: DOI
Ellis, David; Keller, Nathan; Lifshitz, Noam Stability versions of Erdős-Ko-Rado type theorems via isoperimetry. (English) Zbl 1429.05198 J. Eur. Math. Soc. (JEMS) 21, No. 12, 3857-3902 (2019). MSC: 05D05 05D40 PDF BibTeX XML Cite \textit{D. Ellis} et al., J. Eur. Math. Soc. (JEMS) 21, No. 12, 3857--3902 (2019; Zbl 1429.05198) Full Text: DOI
Kupavskii, Andrey Degree versions of theorems on intersecting families via stability. (English) Zbl 1421.05090 J. Comb. Theory, Ser. A 168, 272-287 (2019). MSC: 05D05 PDF BibTeX XML Cite \textit{A. Kupavskii}, J. Comb. Theory, Ser. A 168, 272--287 (2019; Zbl 1421.05090) Full Text: DOI arXiv
Spiga, Pablo The Erdős-Ko-Rado theorem for the derangement graph of the projective general linear group acting on the projective space. (English) Zbl 1416.05276 J. Comb. Theory, Ser. A 166, 59-90 (2019). MSC: 05D05 05C69 PDF BibTeX XML Cite \textit{P. Spiga}, J. Comb. Theory, Ser. A 166, 59--90 (2019; Zbl 1416.05276) Full Text: DOI
Gerbner, Dániel; Methuku, Abhishek; Nagy, Dániel T.; Patkos, Balazs; Vizer, Máté Stability results for vertex Turán problems in Kneser graphs. (English) Zbl 1410.05213 Electron. J. Comb. 26, No. 2, Research Paper P2.13, 12 p. (2019). MSC: 05D05 05C12 05C35 PDF BibTeX XML Cite \textit{D. Gerbner} et al., Electron. J. Comb. 26, No. 2, Research Paper P2.13, 12 p. (2019; Zbl 1410.05213) Full Text: Link
Huang, Li-Ping; Lv, Benjian; Wang, Kaishun Erdős-Ko-Rado theorem, Grassmann graphs and \(p^s\)-Kneser graphs for vector spaces over a residue class ring. (English) Zbl 1407.05231 J. Comb. Theory, Ser. A 164, 125-158 (2019). MSC: 05D05 PDF BibTeX XML Cite \textit{L.-P. Huang} et al., J. Comb. Theory, Ser. A 164, 125--158 (2019; Zbl 1407.05231) Full Text: DOI
Meagher, Karen An Erdős-Ko-Rado theorem for the group \(\mathrm{PSU}(3, q)\). (English) Zbl 1407.05232 Des. Codes Cryptography 87, No. 4, 717-744 (2019). MSC: 05D05 05C35 05C69 20B05 PDF BibTeX XML Cite \textit{K. Meagher}, Des. Codes Cryptography 87, No. 4, 717--744 (2019; Zbl 1407.05232) Full Text: DOI
Gerbner, Dániel; Patkós, Balázs Extremal finite set theory. (English) Zbl 1409.05002 Discrete Mathematics and Its Applications. Boca Raton, FL: CRC Press (ISBN 978-1-138-19784-8/hbk). xvi, 335 p. (2019). Reviewer: Ko-Wei Lih (Taipei) MSC: 05-02 05D05 05C35 06A07 PDF BibTeX XML Cite \textit{D. Gerbner} and \textit{B. Patkós}, Extremal finite set theory. Boca Raton, FL: CRC Press (2019; Zbl 1409.05002)
Niu, Min-Yao; Wang, Gang; Gao, You; Fu, Fang-Wei Subspace code based on flats in affine space over finite fields. (English) Zbl 1420.94117 Discrete Math. Algorithms Appl. 10, No. 6, Article ID 1850078, 12 p. (2018). MSC: 94B65 94A60 PDF BibTeX XML Cite \textit{M.-Y. Niu} et al., Discrete Math. Algorithms Appl. 10, No. 6, Article ID 1850078, 12 p. (2018; Zbl 1420.94117) Full Text: DOI
Li, Shuchao; Zhang, Huihui On set systems with restricted \(k\)-wise \(L\)-intersection modulo a prime, and beyond. (English) Zbl 1400.05253 J. Comb. Des. 26, No. 6, 267-279 (2018). MSC: 05D05 11F75 11B05 PDF BibTeX XML Cite \textit{S. Li} and \textit{H. Zhang}, J. Comb. Des. 26, No. 6, 267--279 (2018; Zbl 1400.05253) Full Text: DOI
Mammoliti, Adam; Britz, Thomas On Mubayi’s conjecture and conditionally intersecting sets. (English) Zbl 1396.05112 SIAM J. Discrete Math. 32, No. 3, 2361-2380 (2018). MSC: 05D05 05C35 05C65 PDF BibTeX XML Cite \textit{A. Mammoliti} and \textit{T. Britz}, SIAM J. Discrete Math. 32, No. 3, 2361--2380 (2018; Zbl 1396.05112) Full Text: DOI
Frankl, Peter An exact result for \((0, \pm 1)\)-vectors. (English) Zbl 1394.05135 Optim. Lett. 12, No. 5, 1011-1017 (2018). MSC: 05D05 05C65 PDF BibTeX XML Cite \textit{P. Frankl}, Optim. Lett. 12, No. 5, 1011--1017 (2018; Zbl 1394.05135) Full Text: DOI
Alishahi, Meysam; Taherkhani, Ali Extremal \(G\)-free induced subgraphs of Kneser graphs. (English) Zbl 1392.05108 J. Comb. Theory, Ser. A 159, 269-282 (2018). MSC: 05D05 05C35 PDF BibTeX XML Cite \textit{M. Alishahi} and \textit{A. Taherkhani}, J. Comb. Theory, Ser. A 159, 269--282 (2018; Zbl 1392.05108) Full Text: DOI arXiv
Frankl, Peter; Kupavskii, Andrey Families of vectors without antipodal pairs. (English) Zbl 1413.05369 Stud. Sci. Math. Hung. 55, No. 2, 231-237 (2018). Reviewer: Peter Horák (Tacoma) MSC: 05D05 05C65 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{A. Kupavskii}, Stud. Sci. Math. Hung. 55, No. 2, 231--237 (2018; Zbl 1413.05369) Full Text: DOI arXiv
Liu, Jiu Qiang; Zhang, Sheng Gui; Xiao, Ji Meng A common generalization to theorems on set systems with \(\mathcal L\)-intersections. (English) Zbl 1391.05250 Acta Math. Sin., Engl. Ser. 34, No. 7, 1087-1100 (2018). MSC: 05D05 PDF BibTeX XML Cite \textit{J. Q. Liu} et al., Acta Math. Sin., Engl. Ser. 34, No. 7, 1087--1100 (2018; Zbl 1391.05250) Full Text: DOI
Long, Ling; Plaza, Rafael; Sin, Peter; Xiang, Qing Characterization of intersecting families of maximum size in \(\mathrm{PSL}(2,q)\). (English) Zbl 1385.05070 J. Comb. Theory, Ser. A 157, 461-499 (2018). MSC: 05D05 20B30 20D06 PDF BibTeX XML Cite \textit{L. Long} et al., J. Comb. Theory, Ser. A 157, 461--499 (2018; Zbl 1385.05070) Full Text: DOI
Borg, Peter Intersecting families, cross-intersecting families, and a proof of a conjecture of Feghali, Johnson and Thomas. (English) Zbl 1383.05303 Discrete Math. 341, No. 5, 1331-1335 (2018). MSC: 05D05 05C35 PDF BibTeX XML Cite \textit{P. Borg}, Discrete Math. 341, No. 5, 1331--1335 (2018; Zbl 1383.05303) Full Text: DOI arXiv
Kwan, Matthew; Sudakov, Benny; Vieira, Pedro Non-trivially intersecting multi-part families. (English) Zbl 1381.05081 J. Comb. Theory, Ser. A 156, 44-60 (2018). MSC: 05D05 PDF BibTeX XML Cite \textit{M. Kwan} et al., J. Comb. Theory, Ser. A 156, 44--60 (2018; Zbl 1381.05081) Full Text: DOI arXiv
Xiao, Jimeng; Liu, Jiuqiang; Zhang, Shenggui Families of vector spaces with \(r\)-wise \(\mathcal{L}\)-intersections. (English) Zbl 1380.05191 Discrete Math. 341, No. 4, 1041-1054 (2018). MSC: 05D05 PDF BibTeX XML Cite \textit{J. Xiao} et al., Discrete Math. 341, No. 4, 1041--1054 (2018; Zbl 1380.05191) Full Text: DOI
Wang, Jun; Zhang, Huajun Intersecting families in symmetric unions of direct products of set families. (English) Zbl 1379.05117 SIAM J. Discrete Math. 32, No. 1, 372-381 (2018). MSC: 05D05 06A07 05C69 05C76 PDF BibTeX XML Cite \textit{J. Wang} and \textit{H. Zhang}, SIAM J. Discrete Math. 32, No. 1, 372--381 (2018; Zbl 1379.05117) Full Text: DOI
Frankl, Peter; Han, Jie; Huang, Hao; Zhao, Yi A degree version of the Hilton-Milner theorem. (English) Zbl 1377.05189 J. Comb. Theory, Ser. A 155, 493-502 (2018). MSC: 05D05 05D15 PDF BibTeX XML Cite \textit{P. Frankl} et al., J. Comb. Theory, Ser. A 155, 493--502 (2018; Zbl 1377.05189) Full Text: DOI arXiv
Kupavskii, Andrey; Zakharov, Dmitriy Regular bipartite graphs and intersecting families. (English) Zbl 1377.05190 J. Comb. Theory, Ser. A 155, 180-189 (2018). MSC: 05D05 PDF BibTeX XML Cite \textit{A. Kupavskii} and \textit{D. Zakharov}, J. Comb. Theory, Ser. A 155, 180--189 (2018; Zbl 1377.05190) Full Text: DOI arXiv
Frankl, Peter; Kupavskii, Andrey Erdős-Ko-Rado theorem for \(\{0,\pm 1\}\)-vectors. (English) Zbl 1441.05215 J. Comb. Theory, Ser. A 155, 157-179 (2018). MSC: 05D05 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{A. Kupavskii}, J. Comb. Theory, Ser. A 155, 157--179 (2018; Zbl 1441.05215) Full Text: DOI
Ihringer, Ferdinand; Metsch, Klaus Large \(\{0,1,\ldots,t\}\)-cliques in dual polar graphs. (English) Zbl 1373.05139 J. Comb. Theory, Ser. A 154, 285-322 (2018). MSC: 05C69 05C35 PDF BibTeX XML Cite \textit{F. Ihringer} and \textit{K. Metsch}, J. Comb. Theory, Ser. A 154, 285--322 (2018; Zbl 1373.05139) Full Text: DOI arXiv
Keller, Nathan; Lifshitz, Noam The junta method in extremal hypergraph theory and Chvátal’s conjecture. (English) Zbl 1379.05083 Drmota, Michael (ed.) et al., Extended abstracts of the ninth European conference on combinatorics, graph theory and applications, EuroComb 2017, Vienna, Austria, August 28 – September 1, 2017. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 61, 711-717 (2017). MSC: 05C65 05C35 05A05 PDF BibTeX XML Cite \textit{N. Keller} and \textit{N. Lifshitz}, Electron. Notes Discrete Math. 61, 711--717 (2017; Zbl 1379.05083) Full Text: DOI
Adachi, Saori; Nozaki, Hiroshi On the largest subsets avoiding the diameter of \((0,\pm 1)\)-vectors. (English) Zbl 1380.05190 Ars Math. Contemp. 13, No. 1, 1-13 (2017). Reviewer: Martin Balko (Praha) MSC: 05D05 05C69 PDF BibTeX XML Cite \textit{S. Adachi} and \textit{H. Nozaki}, Ars Math. Contemp. 13, No. 1, 1--13 (2017; Zbl 1380.05190) Full Text: DOI arXiv
Suda, Sho; Tanaka, Hajime; Tokushige, Norihide A semidefinite programming approach to a cross-intersection problem with measures. (English) Zbl 1375.05261 Math. Program. 166, No. 1-2 (A), 113-130 (2017). MSC: 05D05 90C22 90C27 05C50 05C69 05C35 PDF BibTeX XML Cite \textit{S. Suda} et al., Math. Program. 166, No. 1--2 (A), 113--130 (2017; Zbl 1375.05261) Full Text: DOI
Frankl, Peter; Kupavskii, Andrey Intersection theorems for \(\{0,\pm1\}\)-vectors and \(s\)-cross-intersecting families. (English) Zbl 1395.05177 Mosc. J. Comb. Number Theory 7, No. 2, 3-21 (2017); correction ibid. 8, No. 4, 389-391 (2019). Reviewer: Peter Borg (Malta) MSC: 05D05 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{A. Kupavskii}, Mosc. J. Comb. Number Theory 7, No. 2, 3--21 (2017; Zbl 1395.05177) Full Text: Link
Godsil, Chris; Meagher, Karen An algebraic proof of the Erdős-Ko-Rado theorem for intersecting families of perfect matchings. (English) Zbl 1370.05102 Ars Math. Contemp. 12, No. 2, 205-217 (2017). MSC: 05C35 05C69 PDF BibTeX XML Cite \textit{C. Godsil} and \textit{K. Meagher}, Ars Math. Contemp. 12, No. 2, 205--217 (2017; Zbl 1370.05102) Full Text: DOI
Liu, Jiuqiang; Liu, Xiaodong Set systems with positive intersection sizes. (English) Zbl 1367.05204 Discrete Math. 340, No. 10, 2333-2340 (2017). MSC: 05D05 05A05 PDF BibTeX XML Cite \textit{J. Liu} and \textit{X. Liu}, Discrete Math. 340, No. 10, 2333--2340 (2017; Zbl 1367.05204) Full Text: DOI
Filmus, Yuval The weighted complete intersection theorem. (English) Zbl 1366.05111 J. Comb. Theory, Ser. A 151, 84-101 (2017). MSC: 05D05 05C35 PDF BibTeX XML Cite \textit{Y. Filmus}, J. Comb. Theory, Ser. A 151, 84--101 (2017; Zbl 1366.05111) Full Text: DOI
Fakhari, Seyed Amin Seyed Erdős-Ko-Rado type theorems for simplicial complexes. (English) Zbl 1366.05126 Electron. J. Comb. 24, No. 2, Research Paper P2.38, 11 p. (2017). MSC: 05E45 05D05 05C70 PDF BibTeX XML Cite \textit{S. A. S. Fakhari}, Electron. J. Comb. 24, No. 2, Research Paper P2.38, 11 p. (2017; Zbl 1366.05126) Full Text: Link
Frankl, Peter; Kupavskii, Andrey A size-sensitive inequality for cross-intersecting families. (English) Zbl 1358.05295 Eur. J. Comb. 62, 263-271 (2017). MSC: 05D05 05A20 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{A. Kupavskii}, Eur. J. Comb. 62, 263--271 (2017; Zbl 1358.05295) Full Text: DOI arXiv
Kostochka, Alexandr; Mubayi, Dhruv The structure of large intersecting families. (English) Zbl 1358.05039 Proc. Am. Math. Soc. 145, No. 6, 2311-2321 (2017). MSC: 05B07 05C65 05C70 05D05 05D15 PDF BibTeX XML Cite \textit{A. Kostochka} and \textit{D. Mubayi}, Proc. Am. Math. Soc. 145, No. 6, 2311--2321 (2017; Zbl 1358.05039) Full Text: DOI arXiv
Lee, Sang June; Siggers, Mark; Tokushige, Norihide Towards extending the Ahlswede-Khachatrian theorem to cross \(t\)-intersecting families. (English) Zbl 1358.05298 Discrete Appl. Math. 216, Part 3, 627-645 (2017). MSC: 05D05 PDF BibTeX XML Cite \textit{S. J. Lee} et al., Discrete Appl. Math. 216, Part 3, 627--645 (2017; Zbl 1358.05298) Full Text: DOI arXiv
Frankl, Peter; Tokushige, Norihide A note on Huang-Zhao theorem on intersecting families with large minimum degree. (English) Zbl 1357.05064 Discrete Math. 340, No. 5, 1098-1103 (2017). MSC: 05C35 05C07 05C65 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{N. Tokushige}, Discrete Math. 340, No. 5, 1098--1103 (2017; Zbl 1357.05064) Full Text: DOI
Guo, Jun; Xu, Qiuli The Erdős-Ko-Rado theorem for finite affine spaces. (English) Zbl 1356.05153 Linear Multilinear Algebra 65, No. 3, 593-599 (2017). MSC: 05D05 PDF BibTeX XML Cite \textit{J. Guo} and \textit{Q. Xu}, Linear Multilinear Algebra 65, No. 3, 593--599 (2017; Zbl 1356.05153) Full Text: DOI
Aharoni, Ron; Howard, David Cross-intersecting pairs of hypergraphs. (English) Zbl 1355.05176 J. Comb. Theory, Ser. A 148, 15-26 (2017). MSC: 05C65 05C70 05C15 PDF BibTeX XML Cite \textit{R. Aharoni} and \textit{D. Howard}, J. Comb. Theory, Ser. A 148, 15--26 (2017; Zbl 1355.05176) Full Text: DOI arXiv
Pyaderkin, M. M. On the stability of some Erdős-Ko-Rado type results. (English) Zbl 1355.05190 Discrete Math. 340, No. 4, 822-831 (2017). MSC: 05C69 05C80 PDF BibTeX XML Cite \textit{M. M. Pyaderkin}, Discrete Math. 340, No. 4, 822--831 (2017; Zbl 1355.05190) Full Text: DOI
Adachi, Saori; Hayashi, Rina; Nozaki, Hiroshi; Yamamoto, Chika Maximal \(m\)-distance sets containing the representation of the Hamming graph \(H(n, m)\). (English) Zbl 1351.05156 Discrete Math. 340, No. 3, 430-442 (2017). MSC: 05C62 05C12 PDF BibTeX XML Cite \textit{S. Adachi} et al., Discrete Math. 340, No. 3, 430--442 (2017; Zbl 1351.05156) Full Text: DOI arXiv
Wang, Jun; Zhang, Huajun Intersecting \(k\)-uniform families containing a given family. (English) Zbl 1351.05012 Discrete Math. 340, No. 2, 140-144 (2017). MSC: 05A05 PDF BibTeX XML Cite \textit{J. Wang} and \textit{H. Zhang}, Discrete Math. 340, No. 2, 140--144 (2017; Zbl 1351.05012) Full Text: DOI
Han, Jie; Kohayakawa, Yoshiharu The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton-Milner family. (English) Zbl 1350.05169 Proc. Am. Math. Soc. 145, No. 1, 73-87 (2017). MSC: 05D05 PDF BibTeX XML Cite \textit{J. Han} and \textit{Y. Kohayakawa}, Proc. Am. Math. Soc. 145, No. 1, 73--87 (2017; Zbl 1350.05169) Full Text: DOI arXiv
Mubayi, Dhruv; Verstraëte, Jacques A survey of Turán problems for expansions. (English) Zbl 1354.05068 Beveridge, Andrew (ed.) et al., Recent trends in combinatorics. Cham: Springer (ISBN 978-3-319-24296-5/hbk; 978-3-319-24298-9/ebook). The IMA Volumes in Mathematics and its Applications 159, 117-143 (2016). MSC: 05C35 05C65 05D05 05D40 PDF BibTeX XML Cite \textit{D. Mubayi} and \textit{J. Verstraëte}, IMA Vol. Math. Appl. 159, 117--143 (2016; Zbl 1354.05068) Full Text: DOI
Li, Shuchao; Zhang, Huihui Set systems with \(L\)-intersections and \(k\)-wise \(L\)-intersecting families. (English) Zbl 1355.05243 J. Comb. Des. 24, No. 11, 514-529 (2016). MSC: 05D05 11F75 11B05 PDF BibTeX XML Cite \textit{S. Li} and \textit{H. Zhang}, J. Comb. Des. 24, No. 11, 514--529 (2016; Zbl 1355.05243) Full Text: DOI
Hoppen, Carlos; Lefmann, Hanno; Odermann, Knut A coloring problem for intersecting vector spaces. (English) Zbl 1343.05154 Discrete Math. 339, No. 12, 2941-2954 (2016). MSC: 05D05 05C15 PDF BibTeX XML Cite \textit{C. Hoppen} et al., Discrete Math. 339, No. 12, 2941--2954 (2016; Zbl 1343.05154) Full Text: DOI
Devlin, Pat; Kahn, Jeff On “stability” in the Erdős-Ko-Rado theorem. (English) Zbl 1338.05130 SIAM J. Discrete Math. 30, No. 2, 1283-1289 (2016). MSC: 05C35 05D40 05C80 05C65 05C69 PDF BibTeX XML Cite \textit{P. Devlin} and \textit{J. Kahn}, SIAM J. Discrete Math. 30, No. 2, 1283--1289 (2016; Zbl 1338.05130) Full Text: DOI
Borg, Peter; Meagher, Karen The Katona cycle proof of the Erdős-Ko-Rado theorem and its possibilities. (English) Zbl 1408.05132 J. Algebr. Comb. 43, No. 4, 915-939 (2016). MSC: 05D05 05A05 PDF BibTeX XML Cite \textit{P. Borg} and \textit{K. Meagher}, J. Algebr. Comb. 43, No. 4, 915--939 (2016; Zbl 1408.05132) Full Text: DOI
Bond, Benjamin EKR sets for large \(n\) and \(r\). (English) Zbl 1409.05204 Graphs Comb. 32, No. 2, 495-510 (2016). MSC: 05D05 PDF BibTeX XML Cite \textit{B. Bond}, Graphs Comb. 32, No. 2, 495--510 (2016; Zbl 1409.05204) Full Text: DOI arXiv
Das, Shagnik; Tran, Tuan Removal and stability for Erdős-Ko-Rado. (English) Zbl 1336.05141 SIAM J. Discrete Math. 30, No. 2, 1102-1114 (2016). MSC: 05D05 05C80 PDF BibTeX XML Cite \textit{S. Das} and \textit{T. Tran}, SIAM J. Discrete Math. 30, No. 2, 1102--1114 (2016; Zbl 1336.05141) Full Text: DOI
De Boeck, Maarten The second largest Erdős-Ko-Rado sets of generators of the hyperbolic quadrics \(\mathcal{Q}^+(4n + 1, q)\). (English) Zbl 1338.05032 Adv. Geom. 16, No. 2, 253-263 (2016). MSC: 05B25 51A50 51E20 52C10 PDF BibTeX XML Cite \textit{M. De Boeck}, Adv. Geom. 16, No. 2, 253--263 (2016; Zbl 1338.05032) Full Text: DOI
Frankl, Peter; Tokushige, Norihide Intersection problems in the \(q\)-ary cube. (English) Zbl 1334.05174 J. Comb. Theory, Ser. A 141, 90-126 (2016). MSC: 05D05 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{N. Tokushige}, J. Comb. Theory, Ser. A 141, 90--126 (2016; Zbl 1334.05174) Full Text: DOI
Fakhari, S. A. Seyed Intersecting faces of a simplicial complex via algebraic shifting. (English) Zbl 1322.05137 Discrete Math. 339, No. 1, 78-83 (2016). MSC: 05E45 05C35 13C14 PDF BibTeX XML Cite \textit{S. A. S. Fakhari}, Discrete Math. 339, No. 1, 78--83 (2016; Zbl 1322.05137) Full Text: DOI arXiv
Frankl, Peter; Kohayakawa, Yoshiharu; Rödl, Vojtěch A note on supersaturated set systems. (English) Zbl 1321.05284 Eur. J. Comb. 51, 190-199 (2016). MSC: 05D05 05A15 05A20 PDF BibTeX XML Cite \textit{P. Frankl} et al., Eur. J. Comb. 51, 190--199 (2016; Zbl 1321.05284) Full Text: DOI
Tran, Tuan; Das, Shagnik A simple removal lemma for large nearly-intersecting families. (English) Zbl 1346.05130 Nešetril, Jaroslav (ed.) et al., Extended abstracts of the eight European conference on combinatorics, graph theory and applications, EuroComb 2015, Bergen, Norway, August 31 – September 4, 2015. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 49, 93-99, electronic only (2015). MSC: 05C35 PDF BibTeX XML Cite \textit{T. Tran} and \textit{S. Das}, Electron. Notes Discrete Math. 49, 93--99 (2015; Zbl 1346.05130) Full Text: DOI
Bardestani, Mohammad; Mallahi-Karai, Keivan On the Erdős-Ko-Rado property for finite groups. (English) Zbl 1326.05160 J. Algebr. Comb. 42, No. 1, 111-128 (2015). MSC: 05D05 05E18 05A05 20D05 20D10 20D15 20G40 PDF BibTeX XML Cite \textit{M. Bardestani} and \textit{K. Mallahi-Karai}, J. Algebr. Comb. 42, No. 1, 111--128 (2015; Zbl 1326.05160) Full Text: DOI arXiv
Katona, Gyula O. H.; Nagy, Dániel T. Union-intersecting set systems. (English) Zbl 1327.05327 Graphs Comb. 31, No. 5, 1507-1516 (2015). MSC: 05D05 PDF BibTeX XML Cite \textit{G. O. H. Katona} and \textit{D. T. Nagy}, Graphs Comb. 31, No. 5, 1507--1516 (2015; Zbl 1327.05327) Full Text: DOI arXiv
Ihringer, Ferdinand Cross-intersecting Erdős-Ko-Rado sets in finite classical polar spaces. (English) Zbl 1327.51013 Electron. J. Comb. 22, No. 2, Research Paper P2.49, 24 p. (2015). MSC: 51E20 05B25 52C10 PDF BibTeX XML Cite \textit{F. Ihringer}, Electron. J. Comb. 22, No. 2, Research Paper P2.49, 24 p. (2015; Zbl 1327.51013) Full Text: Link arXiv
Pach, János; Tardos, Gábor Cross-intersecting families of vectors. (English) Zbl 1312.05137 Graphs Comb. 31, No. 2, 477-495 (2015). MSC: 05D05 11B83 PDF BibTeX XML Cite \textit{J. Pach} and \textit{G. Tardos}, Graphs Comb. 31, No. 2, 477--495 (2015; Zbl 1312.05137) Full Text: DOI
Das, Shagnik; Sudakov, Benny Most probably intersecting hypergraphs. (English) Zbl 1310.05150 Electron. J. Comb. 22, No. 1, Research Paper P1.80, 21 p. (2015). MSC: 05C65 05C35 05D05 PDF BibTeX XML Cite \textit{S. Das} and \textit{B. Sudakov}, Electron. J. Comb. 22, No. 1, Research Paper P1.80, 21 p. (2015; Zbl 1310.05150) Full Text: Link arXiv
Dyck, Adam; Meagher, Karen An Erdős-Ko-Rado theorem for subset partitions. (English) Zbl 1309.05176 Involve 8, No. 1, 119-127 (2015). MSC: 05D05 05A18 PDF BibTeX XML Cite \textit{A. Dyck} and \textit{K. Meagher}, Involve 8, No. 1, 119--127 (2015; Zbl 1309.05176) Full Text: DOI arXiv
Borg, Peter; Meagher, Karen Intersecting generalised permutations. (English) Zbl 1309.05005 Australas. J. Comb. 61, Part 2, 147-155 (2015). MSC: 05A05 PDF BibTeX XML Cite \textit{P. Borg} and \textit{K. Meagher}, Australas. J. Comb. 61, Part 2, 147--155 (2015; Zbl 1309.05005) Full Text: Link arXiv
Borg, Peter A cross-intersection theorem for subsets of a set. (English) Zbl 1314.05205 Bull. Lond. Math. Soc. 47, No. 2, 248-256 (2015). Reviewer: Thomas Britz (Sydney) MSC: 05D05 05A05 PDF BibTeX XML Cite \textit{P. Borg}, Bull. Lond. Math. Soc. 47, No. 2, 248--256 (2015; Zbl 1314.05205) Full Text: DOI arXiv
Balogh, József; Das, Shagnik; Delcourt, Michelle; Liu, Hong; Sharifzadeh, Maryam Intersecting families of discrete structures are typically trivial. (English) Zbl 1307.05199 J. Comb. Theory, Ser. A 132, 224-245 (2015). MSC: 05C80 05C65 05C35 PDF BibTeX XML Cite \textit{J. Balogh} et al., J. Comb. Theory, Ser. A 132, 224--245 (2015; Zbl 1307.05199) Full Text: DOI arXiv
Li, Yu-Shuang; Zhang, Hua-Jun Erdös-Ko-Rado theorem for ladder graphs. (English) Zbl 1304.05076 Acta Math. Appl. Sin., Engl. Ser. 30, No. 3, 583-588 (2014). MSC: 05C35 05C69 05D05 PDF BibTeX XML Cite \textit{Y.-S. Li} and \textit{H.-J. Zhang}, Acta Math. Appl. Sin., Engl. Ser. 30, No. 3, 583--588 (2014; Zbl 1304.05076) Full Text: DOI
Frankl, Peter; Lee, Sang June; Siggers, Mark; Tokushige, Norihide An Erdős-Ko-Rado theorem for cross \(t\)-intersecting families. (English) Zbl 1301.05316 J. Comb. Theory, Ser. A 128, 207-249 (2014). MSC: 05C81 PDF BibTeX XML Cite \textit{P. Frankl} et al., J. Comb. Theory, Ser. A 128, 207--249 (2014; Zbl 1301.05316) Full Text: DOI arXiv
Meagher, Karen; Spiga, Pablo An Erdős-Ko-Rado theorem for the derangement graph of \(\mathrm{PGL}_3(q)\) acting on the projective plane. (English) Zbl 1298.05175 SIAM J. Discrete Math. 28, No. 2, 918-941 (2014). MSC: 05C35 05C69 05E10 05D05 20B05 PDF BibTeX XML Cite \textit{K. Meagher} and \textit{P. Spiga}, SIAM J. Discrete Math. 28, No. 2, 918--941 (2014; Zbl 1298.05175) Full Text: DOI arXiv
Alon, Noga; Aydinian, Harout; Huang, Hao Maximizing the number of nonnegative subsets. (English) Zbl 1301.05346 SIAM J. Discrete Math. 28, No. 2, 811-816 (2014). MSC: 05D05 05C70 PDF BibTeX XML Cite \textit{N. Alon} et al., SIAM J. Discrete Math. 28, No. 2, 811--816 (2014; Zbl 1301.05346) Full Text: DOI arXiv
Barber, Ben Maximum hitting for \(n\) sufficiently large. (English) Zbl 1298.05311 Graphs Comb. 30, No. 2, 267-274 (2014). MSC: 05D05 05C35 PDF BibTeX XML Cite \textit{B. Barber}, Graphs Comb. 30, No. 2, 267--274 (2014; Zbl 1298.05311) Full Text: DOI arXiv
Borg, Peter A short proof of an Erdős-Ko-Rado theorem for compositions. (English) Zbl 1298.05007 Discrete Math. 333, 62-65 (2014). MSC: 05A05 05D05 PDF BibTeX XML Cite \textit{P. Borg}, Discrete Math. 333, 62--65 (2014; Zbl 1298.05007) Full Text: DOI
Borg, Peter Erdős-Ko-Rado with separation conditions. (English) Zbl 1296.05192 Australas. J. Comb. 59, Part 1, 39-63 (2014). MSC: 05D05 PDF BibTeX XML Cite \textit{P. Borg}, Australas. J. Comb. 59, Part 1, 39--63 (2014; Zbl 1296.05192) Full Text: Link
Blokhuis, Aart; Brouwer, Andries E.; Güven, Çiçek Cocliques in the Kneser graph on the point-hyperplane flags of a projective space. (English) Zbl 1340.05202 Combinatorica 34, No. 1, 1-10 (2014). Reviewer: Leo Storme (Gent) MSC: 05C69 05B25 05C35 51E20 PDF BibTeX XML Cite \textit{A. Blokhuis} et al., Combinatorica 34, No. 1, 1--10 (2014; Zbl 1340.05202) Full Text: DOI
Ihringer, Ferdinand; Metsch, Klaus On the maximum size of Erdős-Ko-Rado sets in \(H(2d+1, q^2)\). (English) Zbl 1321.51006 Des. Codes Cryptography 72, No. 2, 311-316 (2014). Reviewer: Guglielmo Lunardon (Napoli) MSC: 51E14 05E30 PDF BibTeX XML Cite \textit{F. Ihringer} and \textit{K. Metsch}, Des. Codes Cryptography 72, No. 2, 311--316 (2014; Zbl 1321.51006) Full Text: DOI
Ahanjideh, Milad; Ahanjideh, Neda Erdős-Ko-Rado theorem in some linear groups and some projective special linear group. (English) Zbl 1298.20001 Stud. Sci. Math. Hung. 51, No. 1, 83-91 (2014). Reviewer: Anatoli Kondrat’ev (Ekaterinburg) MSC: 20B35 05D05 20D06 20G40 20D60 PDF BibTeX XML Cite \textit{M. Ahanjideh} and \textit{N. Ahanjideh}, Stud. Sci. Math. Hung. 51, No. 1, 83--91 (2014; Zbl 1298.20001) Full Text: DOI
Ou, Li; Lv, Benjian; Wang, Kaishun The Erdős-Ko-Rado theorem for singular linear spaces. (English) Zbl 1285.05170 Linear Algebra Appl. 440, 206-212 (2014). MSC: 05D05 PDF BibTeX XML Cite \textit{L. Ou} et al., Linear Algebra Appl. 440, 206--212 (2014; Zbl 1285.05170) Full Text: DOI
Liu, Jiuqiang; Yang, Wenbo Set systems with restricted \(k\)-wise \(\mathcal{L}\)-intersections modulo a prime number. (English) Zbl 1284.05011 Eur. J. Comb. 36, 707-719 (2014). MSC: 05A05 05A20 PDF BibTeX XML Cite \textit{J. Liu} and \textit{W. Yang}, Eur. J. Comb. 36, 707--719 (2014; Zbl 1284.05011) Full Text: DOI
Ahmadi, Bahman; Meagher, Karen A new proof for the Erdős-Ko-Rado theorem for the alternating group. (English) Zbl 1284.05323 Discrete Math. 324, 28-40 (2014). MSC: 05D05 20B30 20D06 PDF BibTeX XML Cite \textit{B. Ahmadi} and \textit{K. Meagher}, Discrete Math. 324, 28--40 (2014; Zbl 1284.05323) Full Text: DOI arXiv
Tanaka, Hajime The Erdős-Ko-Rado basis for a Leonard system. (English) Zbl 1317.05185 Contrib. Discrete Math. 8, No. 2, 41-59 (2013). MSC: 05D05 05E30 33C45 33D45 PDF BibTeX XML Cite \textit{H. Tanaka}, Contrib. Discrete Math. 8, No. 2, 41--59 (2013; Zbl 1317.05185) Full Text: Link arXiv
Ku, Cheng Yeaw; Wong, Kok Bin An analogue of the Hilton-Milner theorem for set partitions. (English) Zbl 1314.05021 J. Comb. Theory, Ser. A 120, No. 7, 1508-1520 (2013). MSC: 05A18 11B73 PDF BibTeX XML Cite \textit{C. Y. Ku} and \textit{K. B. Wong}, J. Comb. Theory, Ser. A 120, No. 7, 1508--1520 (2013; Zbl 1314.05021) Full Text: DOI arXiv
Li, Wei-Tian; Chen, Bor-Liang; Huang, Kuo-Ching; Lih, Ko-Wei Intersecting \(k\)-uniform families containing all the \(k\)-subsets of a given set. (English) Zbl 1295.05250 Electron. J. Comb. 20, No. 3, Research Paper P38, 11 p. (2013). MSC: 05D05 PDF BibTeX XML Cite \textit{W.-T. Li} et al., Electron. J. Comb. 20, No. 3, Research Paper P38, 11 p. (2013; Zbl 1295.05250) Full Text: Link
Guo, Jun; Ma, JianMin; Wang, KaiShun Erdős-Ko-Rado theorems in certain semilattices. (English) Zbl 1290.05145 Sci. China, Math. 56, No. 11, 2393-2407 (2013). Reviewer: S. A. Seyed Fakhari (Tehran) MSC: 05D05 PDF BibTeX XML Cite \textit{J. Guo} et al., Sci. China, Math. 56, No. 11, 2393--2407 (2013; Zbl 1290.05145) Full Text: DOI
De Boeck, Maarten; Storme, Leo Theorems of Erdős-Ko-Rado type in geometrical settings. (English) Zbl 1282.05025 Sci. China, Math. 56, No. 7, 1333-1348 (2013). MSC: 05B25 05D05 05E30 51A50 51E20 52C10 PDF BibTeX XML Cite \textit{M. De Boeck} and \textit{L. Storme}, Sci. China, Math. 56, No. 7, 1333--1348 (2013; Zbl 1282.05025) Full Text: DOI
Wang, Li Intersecting families in classical Coxeter groups. (English) Zbl 1282.05211 Proc. Edinb. Math. Soc., II. Ser. 56, No. 3, 887-98 (2013). MSC: 05E10 20C15 PDF BibTeX XML Cite \textit{L. Wang}, Proc. Edinb. Math. Soc., II. Ser. 56, No. 3, 887--98 (2013; Zbl 1282.05211) Full Text: DOI Link
Borg, Peter Non-trivial intersecting uniform sub-families of hereditary families. (English) Zbl 1277.05159 Discrete Math. 313, No. 17, 1754-1761 (2013). MSC: 05D05 PDF BibTeX XML Cite \textit{P. Borg}, Discrete Math. 313, No. 17, 1754--1761 (2013; Zbl 1277.05159) Full Text: DOI
Wang, Jun; Zhang, Huajun Nontrivial independent sets of bipartite graphs and cross-intersecting families. (English) Zbl 1253.05112 J. Comb. Theory, Ser. A 120, No. 1, 129-141 (2013). MSC: 05C69 05C35 05C65 20B30 05C75 PDF BibTeX XML Cite \textit{J. Wang} and \textit{H. Zhang}, J. Comb. Theory, Ser. A 120, No. 1, 129--141 (2013; Zbl 1253.05112) Full Text: DOI arXiv
Geng, Xing-bo; Li, Yu-shuang Erdős-Ko-Rado theorems of labeled sets. (English) Zbl 1355.05242 Acta Math. Appl. Sin., Engl. Ser. 28, No. 1, 127-130 (2012). MSC: 05D05 05C78 05C35 PDF BibTeX XML Cite \textit{X.-b. Geng} and \textit{Y.-s. Li}, Acta Math. Appl. Sin., Engl. Ser. 28, No. 1, 127--130 (2012; Zbl 1355.05242) Full Text: DOI
Tanaka, Hajime The Erdős-Ko-Rado theorem for twisted Grassmann graphs. (English) Zbl 1299.05313 Combinatorica 32, No. 6, 735-740 (2012). Reviewer: Peter Horak (Tacoma) MSC: 05E30 05D05 PDF BibTeX XML Cite \textit{H. Tanaka}, Combinatorica 32, No. 6, 735--740 (2012; Zbl 1299.05313) Full Text: DOI arXiv
Wang, Li Erdős-Ko-Rado theorem for irreducible imprimitive reflection groups. (English) Zbl 1250.05118 Front. Math. China 7, No. 1, 125-144 (2012). MSC: 05E10 20C15 05D05 PDF BibTeX XML Cite \textit{L. Wang}, Front. Math. China 7, No. 1, 125--144 (2012; Zbl 1250.05118) Full Text: DOI
Choi, Soohak; Kim, Hyun Kwang; Oh, Dong Yeol Structures and lower bounds for binary covering arrays. (English) Zbl 1248.05018 Discrete Math. 312, No. 19, 2958-2968 (2012). MSC: 05B15 05B40 PDF BibTeX XML Cite \textit{S. Choi} et al., Discrete Math. 312, No. 19, 2958--2968 (2012; Zbl 1248.05018) Full Text: DOI arXiv