Songsuwan, Nuttanon; Sengsamak, Supida; Jeerawattana, Nutchapol; Jiarasuksakun, Thiradet; Kaemawichanurat, Pawaton On disjoint cross intersecting families of permutations. (English) Zbl 07665549 DML, Discrete Math. Lett. 11, 27-30 (2023). MSC: 05D05 PDF BibTeX XML Cite \textit{N. Songsuwan} et al., DML, Discrete Math. Lett. 11, 27--30 (2023; Zbl 07665549) Full Text: DOI OpenURL
Goryainov, Sergey; Shalaginov, Leonid; Yip, Chi Hoi On eigenfunctions and maximal cliques of generalised Paley graphs of square order. (English) Zbl 07661801 Finite Fields Appl. 87, Article ID 102150, 36 p. (2023). MSC: 05C50 05C25 05D05 51E15 11T30 05E30 30C10 05C69 PDF BibTeX XML Cite \textit{S. Goryainov} et al., Finite Fields Appl. 87, Article ID 102150, 36 p. (2023; Zbl 07661801) Full Text: DOI arXiv OpenURL
Behajaina, Angelot; Maleki, Roghayeh; Razafimahatratra, Andriaherimanana Sarobidy On the intersection density of the symmetric group acting on uniform subsets of small size. (English) Zbl 07661155 Linear Algebra Appl. 664, 61-103 (2023). MSC: 05D05 20C30 05C35 05C69 20B05 PDF BibTeX XML Cite \textit{A. Behajaina} et al., Linear Algebra Appl. 664, 61--103 (2023; Zbl 07661155) Full Text: DOI arXiv OpenURL
Meagher, Karen; Razafimahatratra, Andriaherimanana Sarobidy Some Erdős-Ko-Rado results for linear and affine groups of degree two. (English) Zbl 1502.05091 Art Discrete Appl. Math. 6, No. 1, Paper No. P1.05, 30 p. (2023). MSC: 05C25 05C35 05C69 20B05 20G40 PDF BibTeX XML Cite \textit{K. Meagher} and \textit{A. S. Razafimahatratra}, Art Discrete Appl. Math. 6, No. 1, Paper No. P1.05, 30 p. (2023; Zbl 1502.05091) Full Text: DOI OpenURL
Borg, Peter; Feghali, Carl The Hilton-Spencer cycle theorems via Katona’s shadow intersection theorem. (English) Zbl 07626216 Discuss. Math., Graph Theory 43, No. 1, 277-286 (2023). MSC: 05D05 05C35 05C38 05C69 PDF BibTeX XML Cite \textit{P. Borg} and \textit{C. Feghali}, Discuss. Math., Graph Theory 43, No. 1, 277--286 (2023; Zbl 07626216) Full Text: DOI OpenURL
Razafimahatratra, Andriaherimanana Sarobidy On the intersection density of primitive groups of degree a product of two odd primes. (English) Zbl 07624753 J. Comb. Theory, Ser. A 194, Article ID 105707, 31 p. (2023). MSC: 20Bxx 05C25 05D05 PDF BibTeX XML Cite \textit{A. S. Razafimahatratra}, J. Comb. Theory, Ser. A 194, Article ID 105707, 31 p. (2023; Zbl 07624753) Full Text: DOI arXiv OpenURL
Kiselev, Sergei; Kupavskii, Andrey Sharp bounds for the chromatic number of random Kneser graphs. (English) Zbl 1497.05089 J. Comb. Theory, Ser. B 157, 96-122 (2022). MSC: 05C15 05C80 05D05 PDF BibTeX XML Cite \textit{S. Kiselev} and \textit{A. Kupavskii}, J. Comb. Theory, Ser. B 157, 96--122 (2022; Zbl 1497.05089) Full Text: DOI arXiv OpenURL
Asgarli, Shamil; Yip, Chi Hoi Van Lint-MacWilliams’ conjecture and maximum cliques in Cayley graphs over finite fields. (English) Zbl 1496.05068 J. Comb. Theory, Ser. A 192, Article ID 105667, 23 p. (2022). MSC: 05C25 05D05 51E15 11T30 PDF BibTeX XML Cite \textit{S. Asgarli} and \textit{C. H. Yip}, J. Comb. Theory, Ser. A 192, Article ID 105667, 23 p. (2022; Zbl 1496.05068) Full Text: DOI arXiv OpenURL
Yao, Tian; Lv, Benjian; Wang, Kaishun Extremal \(t\)-intersecting families for direct products. (English) Zbl 1495.05324 Discrete Math. 345, No. 11, Article ID 113026, 9 p. (2022). MSC: 05D05 PDF BibTeX XML Cite \textit{T. Yao} et al., Discrete Math. 345, No. 11, Article ID 113026, 9 p. (2022; Zbl 1495.05324) Full Text: DOI arXiv OpenURL
Borg, Peter; Feghali, Carl The maximum sum of sizes of cross-intersecting families of subsets of a set. (English) Zbl 1495.05322 Discrete Math. 345, No. 11, Article ID 112981, 4 p. (2022). MSC: 05D05 05C35 PDF BibTeX XML Cite \textit{P. Borg} and \textit{C. Feghali}, Discrete Math. 345, No. 11, Article ID 112981, 4 p. (2022; Zbl 1495.05322) Full Text: DOI arXiv OpenURL
Cao, Mengyu; Lv, Benjian; Wang, Kaishun; Zhou, Sanming Nontrivial \(t\)-intersecting families for vector spaces. (English) Zbl 1495.05323 SIAM J. Discrete Math. 36, No. 3, 1823-1847 (2022). MSC: 05D05 PDF BibTeX XML Cite \textit{M. Cao} et al., SIAM J. Discrete Math. 36, No. 3, 1823--1847 (2022; Zbl 1495.05323) Full Text: DOI arXiv OpenURL
Ahanjideh, Milad On the largest intersecting set in \(\mathrm{GL}_2(q)\) and some of its subgroups. (English) Zbl 1490.05260 C. R., Math., Acad. Sci. Paris 360, 497-502 (2022). MSC: 05D05 20G40 05E18 PDF BibTeX XML Cite \textit{M. Ahanjideh}, C. R., Math., Acad. Sci. Paris 360, 497--502 (2022; Zbl 1490.05260) Full Text: DOI arXiv OpenURL
Taherkhani, Ali Size and structure of large \((s,t)\)-union intersecting families. (English) Zbl 1487.05263 Electron. J. Comb. 29, No. 2, Research Paper P2.25, 22 p. (2022). MSC: 05D05 PDF BibTeX XML Cite \textit{A. Taherkhani}, Electron. J. Comb. 29, No. 2, Research Paper P2.25, 22 p. (2022; Zbl 1487.05263) Full Text: DOI arXiv OpenURL
D’haeseleer, Jozefien; Longobardi, Giovanni; Riet, Ago-Erik; Storme, Leo Maximal sets of \(k\)-spaces pairwise intersecting in at least a \((k-2)\)-space. (English) Zbl 1486.05301 Electron. J. Comb. 29, No. 1, Research Paper P1.58, 32 p. (2022). MSC: 05D05 05B25 51E20 PDF BibTeX XML Cite \textit{J. D'haeseleer} et al., Electron. J. Comb. 29, No. 1, Research Paper P1.58, 32 p. (2022; Zbl 1486.05301) Full Text: DOI arXiv OpenURL
Mathew, Rogers; Mishra, Tapas Kumar; Ray, Ritabrata; Srivastava, Shashank Modular and fractional \(L\)-intersecting families of vector spaces. (English) Zbl 1486.05302 Electron. J. Comb. 29, No. 1, Research Paper P1.45, 20 p. (2022). MSC: 05D05 15A03 05A20 PDF BibTeX XML Cite \textit{R. Mathew} et al., Electron. J. Comb. 29, No. 1, Research Paper P1.45, 20 p. (2022; Zbl 1486.05302) Full Text: DOI arXiv OpenURL
Adriaensen, Sam Erdős-Ko-Rado theorems for ovoidal circle geometries and polynomials over finite fields. (English) Zbl 1486.05299 Linear Algebra Appl. 643, 1-38 (2022). MSC: 05D05 05B25 05C50 05E30 51E20 PDF BibTeX XML Cite \textit{S. Adriaensen}, Linear Algebra Appl. 643, 1--38 (2022; Zbl 1486.05299) Full Text: DOI OpenURL
Etzion, Tuvi Non-binary diameter perfect constant-weight codes. (English) Zbl 1489.94198 IEEE Trans. Inf. Theory 68, No. 2, 891-904 (2022). MSC: 94B65 94B60 PDF BibTeX XML Cite \textit{T. Etzion}, IEEE Trans. Inf. Theory 68, No. 2, 891--904 (2022; Zbl 1489.94198) Full Text: DOI arXiv OpenURL
D’haeseleer, Jozefien; Metsch, Klaus; Werner, Daniel On the chromatic number of two generalized Kneser graphs. (English) Zbl 1480.05054 Eur. J. Comb. 101, Article ID 103474, 16 p. (2022). MSC: 05C15 05C25 05D05 PDF BibTeX XML Cite \textit{J. D'haeseleer} et al., Eur. J. Comb. 101, Article ID 103474, 16 p. (2022; Zbl 1480.05054) Full Text: DOI arXiv Link OpenURL
Borg, Peter; Feghali, Carl A short proof of Talbot’s theorem for intersecting separated sets. (English) Zbl 1486.05300 Eur. J. Comb. 101, Article ID 103471, 3 p. (2022). Reviewer: C. P. Anil Kumar (Prayagraj) MSC: 05D05 PDF BibTeX XML Cite \textit{P. Borg} and \textit{C. Feghali}, Eur. J. Comb. 101, Article ID 103471, 3 p. (2022; Zbl 1486.05300) Full Text: DOI arXiv OpenURL
Yao, Tian; Lv, Benjian; Wang, Kaishun Non-trivial \(t\)-intersecting families for symplectic polar spaces. (English) Zbl 1479.05346 Finite Fields Appl. 77, Article ID 101955, 17 p. (2022). MSC: 05D05 05A30 51A50 PDF BibTeX XML Cite \textit{T. Yao} et al., Finite Fields Appl. 77, Article ID 101955, 17 p. (2022; Zbl 1479.05346) Full Text: DOI arXiv OpenURL
Landjev, Ivan; Rousseva, Assia On the maximal cardinality of binary two-weight codes. (English) Zbl 1493.94062 C. R. Acad. Bulg. Sci. 74, No. 10, 1423-1430 (2021). Reviewer: Ivan D. Chipchakov (Sofia) MSC: 94B25 94B65 05A05 05A20 PDF BibTeX XML Cite \textit{I. Landjev} and \textit{A. Rousseva}, C. R. Acad. Bulg. Sci. 74, No. 10, 1423--1430 (2021; Zbl 1493.94062) Full Text: DOI OpenURL
Scott, Alex; Wilmer, Elizabeth Combinatorics in the exterior algebra and the Bollobás two families theorem. (English) Zbl 1483.05193 J. Lond. Math. Soc., II. Ser. 104, No. 4, 1812-1839 (2021). MSC: 05D05 15A75 14N20 PDF BibTeX XML Cite \textit{A. Scott} and \textit{E. Wilmer}, J. Lond. Math. Soc., II. Ser. 104, No. 4, 1812--1839 (2021; Zbl 1483.05193) Full Text: DOI arXiv OpenURL
Guo, Jun Erdős-Ko-Rado theorem for matrices over residue class rings. (English) Zbl 1479.05344 Graphs Comb. 37, No. 6, 2497-2510 (2021). MSC: 05D05 05C50 05C69 05C15 15B33 PDF BibTeX XML Cite \textit{J. Guo}, Graphs Comb. 37, No. 6, 2497--2510 (2021; Zbl 1479.05344) Full Text: DOI OpenURL
Razafimahatratra, Andriaherimanana Sarobidy On complete multipartite derangement graphs. (English) Zbl 1479.05147 Ars Math. Contemp. 21, No. 1, Paper No. 7, 15 p. (2021). MSC: 05C25 05D05 05C35 05C69 20B05 PDF BibTeX XML Cite \textit{A. S. Razafimahatratra}, Ars Math. Contemp. 21, No. 1, Paper No. 7, 15 p. (2021; Zbl 1479.05147) Full Text: DOI arXiv OpenURL
Zhang, Peng-Li; Zhang, Xiao-Dong The spectral radii of intersecting uniform hypergraphs. (English) Zbl 1476.05147 Commun. Appl. Math. Comput. 3, No. 2, 243-256 (2021). MSC: 05C65 05C50 PDF BibTeX XML Cite \textit{P.-L. Zhang} and \textit{X.-D. Zhang}, Commun. Appl. Math. Comput. 3, No. 2, 243--256 (2021; Zbl 1476.05147) Full Text: DOI OpenURL
Keller, Nathan; Lifshitz, Noam The junta method for hypergraphs and the Erdős-Chvátal simplex conjecture. (English) Zbl 1476.05146 Adv. Math. 392, Article ID 107991, 95 p. (2021). MSC: 05C65 05C70 05C35 05D05 06E30 PDF BibTeX XML Cite \textit{N. Keller} and \textit{N. Lifshitz}, Adv. Math. 392, Article ID 107991, 95 p. (2021; Zbl 1476.05146) Full Text: DOI OpenURL
Fallat, Shaun; Meagher, Karen; Shirazi, Mahsa N. The Erdős-Ko-Rado theorem for 2-intersecting families of perfect matchings. (English) Zbl 1473.05299 Algebr. Comb. 4, No. 4, 575-598 (2021). MSC: 05D05 05C70 05E30 PDF BibTeX XML Cite \textit{S. Fallat} et al., Algebr. Comb. 4, No. 4, 575--598 (2021; Zbl 1473.05299) Full Text: DOI arXiv OpenURL
Cao, Mengyu; Lv, Benjian; Wang, Kaishun The structure of large non-trivial \(t\)-intersecting families of finite sets. (English) Zbl 1469.05160 Eur. J. Comb. 97, Article ID 103373, 13 p. (2021). MSC: 05D05 PDF BibTeX XML Cite \textit{M. Cao} et al., Eur. J. Comb. 97, Article ID 103373, 13 p. (2021; Zbl 1469.05160) Full Text: DOI arXiv OpenURL
Frankl, Peter; Kupavskii, Andrey Beyond the Erdős matching conjecture. (English) Zbl 1466.05206 Eur. J. Comb. 95, Article ID 103338, 12 p. (2021). MSC: 05D05 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{A. Kupavskii}, Eur. J. Comb. 95, Article ID 103338, 12 p. (2021; Zbl 1466.05206) Full Text: DOI arXiv OpenURL
Behajaina, Angelot; Maleki, Roghayeh; Rasoamanana, Aina Toky; Razafimahatratra, A. Sarobidy 3-setwise intersecting families of the symmetric group. (English) Zbl 1466.05203 Discrete Math. 344, No. 8, Article ID 112467, 15 p. (2021). MSC: 05D05 05E10 05A05 PDF BibTeX XML Cite \textit{A. Behajaina} et al., Discrete Math. 344, No. 8, Article ID 112467, 15 p. (2021; Zbl 1466.05203) Full Text: DOI arXiv OpenURL
Meagher, Karen; Razafimahatratra, Andriaherimanana Sarobidy; Spiga, Pablo On triangles in derangement graphs. (English) Zbl 1459.05122 J. Comb. Theory, Ser. A 180, Article ID 105390, 27 p. (2021). MSC: 05C25 05C69 05D05 PDF BibTeX XML Cite \textit{K. Meagher} et al., J. Comb. Theory, Ser. A 180, Article ID 105390, 27 p. (2021; Zbl 1459.05122) Full Text: DOI arXiv OpenURL
Frankl, Peter On the size of shadow-added intersecting families. (English) Zbl 1458.05248 Eur. J. Comb. 92, Article ID 103243, 10 p. (2021). MSC: 05D05 PDF BibTeX XML Cite \textit{P. Frankl}, Eur. J. Comb. 92, Article ID 103243, 10 p. (2021; Zbl 1458.05248) Full Text: DOI OpenURL
Wang, Larry X. W. Restricted intersecting families on simplicial complex. (English) Zbl 1456.05185 Adv. Appl. Math. 124, Article ID 102144, 16 p. (2021). MSC: 05E45 05D05 PDF BibTeX XML Cite \textit{L. X. W. Wang}, Adv. Appl. Math. 124, Article ID 102144, 16 p. (2021; Zbl 1456.05185) Full Text: DOI OpenURL
Meagher, Karen; Sin, Peter All 2-transitive groups have the EKR-module property. (English) Zbl 1448.05228 J. Comb. Theory, Ser. A 177, Article ID 105322, 21 p. (2021). MSC: 05E18 05D05 05C69 05A05 20B30 PDF BibTeX XML Cite \textit{K. Meagher} and \textit{P. Sin}, J. Comb. Theory, Ser. A 177, Article ID 105322, 21 p. (2021; Zbl 1448.05228) Full Text: DOI arXiv OpenURL
Liu, Xuemei; Fan, Qianyu New research on the Erdős-Ko-Rado theorem based on symplectic spaces over finite fields. (English) Zbl 07478559 Ars Comb. 152, 215-234 (2020). MSC: 51D25 20G40 PDF BibTeX XML Cite \textit{X. Liu} and \textit{Q. Fan}, Ars Comb. 152, 215--234 (2020; Zbl 07478559) OpenURL
Wang, Jun; Zhang, Huajun Intersecting families in \(\begin{pmatrix}[m]\\ \ell\end{pmatrix}\cup\begin{pmatrix}[n]\\ k\end{pmatrix}\). (English) Zbl 1467.90056 J. Comb. Optim. 40, No. 4, 1020-1029 (2020). MSC: 90C27 PDF BibTeX XML Cite \textit{J. Wang} and \textit{H. Zhang}, J. Comb. Optim. 40, No. 4, 1020--1029 (2020; Zbl 1467.90056) Full Text: DOI OpenURL
Kim, Younjin Erdős-Ko-Rado type theorems for simplicial complexes via algebraic shifting. (English) Zbl 1456.05167 J. Korean Math. Soc. 57, No. 6, 1323-1333 (2020). MSC: 05D05 05E45 PDF BibTeX XML Cite \textit{Y. Kim}, J. Korean Math. Soc. 57, No. 6, 1323--1333 (2020; Zbl 1456.05167) Full Text: DOI OpenURL
Hao, Shanshan; Cai, Bingling; Kang, Na The Erdös-Ko-Rado theorem for finite affine symplectic space. (Chinese. English summary) Zbl 1449.05237 J. Hebei Norm. Univ., Nat. Sci. Ed. 44, No. 1, 1-5 (2020). MSC: 05D05 05B25 PDF BibTeX XML Cite \textit{S. Hao} et al., J. Hebei Norm. Univ., Nat. Sci. Ed. 44, No. 1, 1--5 (2020; Zbl 1449.05237) Full Text: DOI OpenURL
Liu, Xizhi Structural results for conditionally intersecting families and some applications. (English) Zbl 1441.05217 Electron. J. Comb. 27, No. 2, Research Paper P2.33, 13 p. (2020). MSC: 05D05 05C65 05C35 PDF BibTeX XML Cite \textit{X. Liu}, Electron. J. Comb. 27, No. 2, Research Paper P2.33, 13 p. (2020; Zbl 1441.05217) Full Text: DOI arXiv OpenURL
Ellis, David; Kalai, Gil; Narayanan, Bhargav On symmetric intersecting families. (English) Zbl 1437.05229 Eur. J. Comb. 86, Article ID 103094, 13 p. (2020). MSC: 05D05 PDF BibTeX XML Cite \textit{D. Ellis} et al., Eur. J. Comb. 86, Article ID 103094, 13 p. (2020; Zbl 1437.05229) Full Text: DOI arXiv Backlinks: MO OpenURL
Frankl, Peter; Kupavskii, Andrey Sharp results concerning disjoint cross-intersecting families. (English) Zbl 1437.05230 Eur. J. Comb. 86, Article ID 103089, 10 p. (2020). MSC: 05D05 05A20 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{A. Kupavskii}, Eur. J. Comb. 86, Article ID 103089, 10 p. (2020; Zbl 1437.05230) Full Text: DOI arXiv OpenURL
Tokushige, Norihide When are stars the largest cross-intersecting families? (English) Zbl 1429.05200 Discrete Math. 343, No. 2, Article ID 111645, 14 p. (2020). MSC: 05D05 PDF BibTeX XML Cite \textit{N. Tokushige}, Discrete Math. 343, No. 2, Article ID 111645, 14 p. (2020; Zbl 1429.05200) Full Text: DOI arXiv OpenURL
Fishel, Susanna; Hurlbert, Glenn; Kamat, Vikram; Meagher, Karen Erdős-Ko-Rado theorems on the weak Bruhat lattice. (English) Zbl 1464.05344 Discrete Appl. Math. 266, 65-75 (2019). MSC: 05D05 05C35 PDF BibTeX XML Cite \textit{S. Fishel} et al., Discrete Appl. Math. 266, 65--75 (2019; Zbl 1464.05344) Full Text: DOI arXiv OpenURL
Hamm, A.; Kahn, J. On Erdős-Ko-Rado for random hypergraphs. I. (English) Zbl 1436.05109 Comb. Probab. Comput. 28, No. 6, 881-916 (2019). MSC: 05D05 05D40 05C65 05C80 PDF BibTeX XML Cite \textit{A. Hamm} and \textit{J. Kahn}, Comb. Probab. Comput. 28, No. 6, 881--916 (2019; Zbl 1436.05109) Full Text: DOI arXiv OpenURL
Hamm, A.; Kahn, J. On Erdős-Ko-Rado for random hypergraphs. II. (English) Zbl 1434.05153 Comb. Probab. Comput. 28, No. 1, 61-80 (2019). MSC: 05D40 05D05 05C65 PDF BibTeX XML Cite \textit{A. Hamm} and \textit{J. Kahn}, Comb. Probab. Comput. 28, No. 1, 61--80 (2019; Zbl 1434.05153) Full Text: DOI arXiv OpenURL
Zhang, Huajun On the maximum size of subfamilies of labeled set with given matching number. (English) Zbl 1431.05143 J. Comb. Optim. 38, No. 4, 1296-1304 (2019). MSC: 05D05 06A07 PDF BibTeX XML Cite \textit{H. Zhang}, J. Comb. Optim. 38, No. 4, 1296--1304 (2019; Zbl 1431.05143) Full Text: DOI OpenURL
Ellis, David; Keller, Nathan; Lifshitz, Noam Stability versions of Erdős-Ko-Rado type theorems via isoperimetry. (English) Zbl 1429.05198 J. Eur. Math. Soc. (JEMS) 21, No. 12, 3857-3902 (2019). MSC: 05D05 05D40 PDF BibTeX XML Cite \textit{D. Ellis} et al., J. Eur. Math. Soc. (JEMS) 21, No. 12, 3857--3902 (2019; Zbl 1429.05198) Full Text: DOI arXiv OpenURL
Kupavskii, Andrey Degree versions of theorems on intersecting families via stability. (English) Zbl 1421.05090 J. Comb. Theory, Ser. A 168, 272-287 (2019). MSC: 05D05 PDF BibTeX XML Cite \textit{A. Kupavskii}, J. Comb. Theory, Ser. A 168, 272--287 (2019; Zbl 1421.05090) Full Text: DOI arXiv OpenURL
Spiga, Pablo The Erdős-Ko-Rado theorem for the derangement graph of the projective general linear group acting on the projective space. (English) Zbl 1416.05276 J. Comb. Theory, Ser. A 166, 59-90 (2019). MSC: 05D05 05C69 PDF BibTeX XML Cite \textit{P. Spiga}, J. Comb. Theory, Ser. A 166, 59--90 (2019; Zbl 1416.05276) Full Text: DOI Link OpenURL
Gerbner, Dániel; Methuku, Abhishek; Nagy, Dániel T.; Patkos, Balazs; Vizer, Máté Stability results for vertex Turán problems in Kneser graphs. (English) Zbl 1410.05213 Electron. J. Comb. 26, No. 2, Research Paper P2.13, 12 p. (2019). MSC: 05D05 05C12 05C35 PDF BibTeX XML Cite \textit{D. Gerbner} et al., Electron. J. Comb. 26, No. 2, Research Paper P2.13, 12 p. (2019; Zbl 1410.05213) Full Text: arXiv Link OpenURL
Huang, Li-Ping; Lv, Benjian; Wang, Kaishun Erdős-Ko-Rado theorem, Grassmann graphs and \(p^s\)-Kneser graphs for vector spaces over a residue class ring. (English) Zbl 1407.05231 J. Comb. Theory, Ser. A 164, 125-158 (2019). MSC: 05D05 PDF BibTeX XML Cite \textit{L.-P. Huang} et al., J. Comb. Theory, Ser. A 164, 125--158 (2019; Zbl 1407.05231) Full Text: DOI OpenURL
Meagher, Karen An Erdős-Ko-Rado theorem for the group \(\mathrm{PSU}(3, q)\). (English) Zbl 1407.05232 Des. Codes Cryptography 87, No. 4, 717-744 (2019). MSC: 05D05 05C35 05C69 20B05 PDF BibTeX XML Cite \textit{K. Meagher}, Des. Codes Cryptography 87, No. 4, 717--744 (2019; Zbl 1407.05232) Full Text: DOI arXiv OpenURL
Gerbner, Dániel; Patkós, Balázs Extremal finite set theory. (English) Zbl 1409.05002 Discrete Mathematics and Its Applications. Boca Raton, FL: CRC Press (ISBN 978-1-138-19784-8/hbk; 978-1-032-47600-1/pbk; 978-0-429-44080-9/ebook). xvi, 335 p. (2019). Reviewer: Ko-Wei Lih (Taipei) MSC: 05-02 05D05 05C35 06A07 PDF BibTeX XML Cite \textit{D. Gerbner} and \textit{B. Patkós}, Extremal finite set theory. Boca Raton, FL: CRC Press (2019; Zbl 1409.05002) Full Text: DOI OpenURL
Niu, Min-Yao; Wang, Gang; Gao, You; Fu, Fang-Wei Subspace code based on flats in affine space over finite fields. (English) Zbl 1420.94117 Discrete Math. Algorithms Appl. 10, No. 6, Article ID 1850078, 12 p. (2018). MSC: 94B65 94A60 PDF BibTeX XML Cite \textit{M.-Y. Niu} et al., Discrete Math. Algorithms Appl. 10, No. 6, Article ID 1850078, 12 p. (2018; Zbl 1420.94117) Full Text: DOI OpenURL
Li, Shuchao; Zhang, Huihui On set systems with restricted \(k\)-wise \(L\)-intersection modulo a prime, and beyond. (English) Zbl 1400.05253 J. Comb. Des. 26, No. 6, 267-279 (2018). MSC: 05D05 11F75 11B05 PDF BibTeX XML Cite \textit{S. Li} and \textit{H. Zhang}, J. Comb. Des. 26, No. 6, 267--279 (2018; Zbl 1400.05253) Full Text: DOI OpenURL
Mammoliti, Adam; Britz, Thomas On Mubayi’s conjecture and conditionally intersecting sets. (English) Zbl 1396.05112 SIAM J. Discrete Math. 32, No. 3, 2361-2380 (2018). MSC: 05D05 05C35 05C65 PDF BibTeX XML Cite \textit{A. Mammoliti} and \textit{T. Britz}, SIAM J. Discrete Math. 32, No. 3, 2361--2380 (2018; Zbl 1396.05112) Full Text: DOI arXiv OpenURL
Frankl, Peter An exact result for \((0, \pm 1)\)-vectors. (English) Zbl 1394.05135 Optim. Lett. 12, No. 5, 1011-1017 (2018). MSC: 05D05 05C65 PDF BibTeX XML Cite \textit{P. Frankl}, Optim. Lett. 12, No. 5, 1011--1017 (2018; Zbl 1394.05135) Full Text: DOI Link OpenURL
Alishahi, Meysam; Taherkhani, Ali Extremal \(G\)-free induced subgraphs of Kneser graphs. (English) Zbl 1392.05108 J. Comb. Theory, Ser. A 159, 269-282 (2018). MSC: 05D05 05C35 PDF BibTeX XML Cite \textit{M. Alishahi} and \textit{A. Taherkhani}, J. Comb. Theory, Ser. A 159, 269--282 (2018; Zbl 1392.05108) Full Text: DOI arXiv OpenURL
Frankl, Peter; Kupavskii, Andrey Families of vectors without antipodal pairs. (English) Zbl 1413.05369 Stud. Sci. Math. Hung. 55, No. 2, 231-237 (2018). Reviewer: Peter Horák (Tacoma) MSC: 05D05 05C65 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{A. Kupavskii}, Stud. Sci. Math. Hung. 55, No. 2, 231--237 (2018; Zbl 1413.05369) Full Text: DOI arXiv Link OpenURL
Liu, Jiu Qiang; Zhang, Sheng Gui; Xiao, Ji Meng A common generalization to theorems on set systems with \(\mathcal L\)-intersections. (English) Zbl 1391.05250 Acta Math. Sin., Engl. Ser. 34, No. 7, 1087-1100 (2018). MSC: 05D05 PDF BibTeX XML Cite \textit{J. Q. Liu} et al., Acta Math. Sin., Engl. Ser. 34, No. 7, 1087--1100 (2018; Zbl 1391.05250) Full Text: DOI arXiv OpenURL
Long, Ling; Plaza, Rafael; Sin, Peter; Xiang, Qing Characterization of intersecting families of maximum size in \(\mathrm{PSL}(2,q)\). (English) Zbl 1385.05070 J. Comb. Theory, Ser. A 157, 461-499 (2018). MSC: 05D05 20B30 20D06 PDF BibTeX XML Cite \textit{L. Long} et al., J. Comb. Theory, Ser. A 157, 461--499 (2018; Zbl 1385.05070) Full Text: DOI arXiv OpenURL
Borg, Peter Intersecting families, cross-intersecting families, and a proof of a conjecture of Feghali, Johnson and Thomas. (English) Zbl 1383.05303 Discrete Math. 341, No. 5, 1331-1335 (2018). MSC: 05D05 05C35 PDF BibTeX XML Cite \textit{P. Borg}, Discrete Math. 341, No. 5, 1331--1335 (2018; Zbl 1383.05303) Full Text: DOI arXiv OpenURL
Kwan, Matthew; Sudakov, Benny; Vieira, Pedro Non-trivially intersecting multi-part families. (English) Zbl 1381.05081 J. Comb. Theory, Ser. A 156, 44-60 (2018). MSC: 05D05 PDF BibTeX XML Cite \textit{M. Kwan} et al., J. Comb. Theory, Ser. A 156, 44--60 (2018; Zbl 1381.05081) Full Text: DOI arXiv OpenURL
Xiao, Jimeng; Liu, Jiuqiang; Zhang, Shenggui Families of vector spaces with \(r\)-wise \(\mathcal{L}\)-intersections. (English) Zbl 1380.05191 Discrete Math. 341, No. 4, 1041-1054 (2018). MSC: 05D05 PDF BibTeX XML Cite \textit{J. Xiao} et al., Discrete Math. 341, No. 4, 1041--1054 (2018; Zbl 1380.05191) Full Text: DOI OpenURL
Wang, Jun; Zhang, Huajun Intersecting families in symmetric unions of direct products of set families. (English) Zbl 1379.05117 SIAM J. Discrete Math. 32, No. 1, 372-381 (2018). MSC: 05D05 06A07 05C69 05C76 PDF BibTeX XML Cite \textit{J. Wang} and \textit{H. Zhang}, SIAM J. Discrete Math. 32, No. 1, 372--381 (2018; Zbl 1379.05117) Full Text: DOI OpenURL
Frankl, Peter; Han, Jie; Huang, Hao; Zhao, Yi A degree version of the Hilton-Milner theorem. (English) Zbl 1377.05189 J. Comb. Theory, Ser. A 155, 493-502 (2018). MSC: 05D05 05D15 PDF BibTeX XML Cite \textit{P. Frankl} et al., J. Comb. Theory, Ser. A 155, 493--502 (2018; Zbl 1377.05189) Full Text: DOI arXiv OpenURL
Kupavskii, Andrey; Zakharov, Dmitriy Regular bipartite graphs and intersecting families. (English) Zbl 1377.05190 J. Comb. Theory, Ser. A 155, 180-189 (2018). MSC: 05D05 PDF BibTeX XML Cite \textit{A. Kupavskii} and \textit{D. Zakharov}, J. Comb. Theory, Ser. A 155, 180--189 (2018; Zbl 1377.05190) Full Text: DOI arXiv OpenURL
Frankl, Peter; Kupavskii, Andrey Erdős-Ko-Rado theorem for \(\{0,\pm 1\}\)-vectors. (English) Zbl 1441.05215 J. Comb. Theory, Ser. A 155, 157-179 (2018). MSC: 05D05 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{A. Kupavskii}, J. Comb. Theory, Ser. A 155, 157--179 (2018; Zbl 1441.05215) Full Text: DOI arXiv OpenURL
Ihringer, Ferdinand; Metsch, Klaus Large \(\{0,1,\ldots,t\}\)-cliques in dual polar graphs. (English) Zbl 1373.05139 J. Comb. Theory, Ser. A 154, 285-322 (2018). MSC: 05C69 05C35 PDF BibTeX XML Cite \textit{F. Ihringer} and \textit{K. Metsch}, J. Comb. Theory, Ser. A 154, 285--322 (2018; Zbl 1373.05139) Full Text: DOI arXiv OpenURL
Keller, Nathan; Lifshitz, Noam The junta method in extremal hypergraph theory and Chvátal’s conjecture. (English) Zbl 1379.05083 Drmota, Michael (ed.) et al., Extended abstracts of the ninth European conference on combinatorics, graph theory and applications, EuroComb 2017, Vienna, Austria, August 28 – September 1, 2017. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 61, 711-717 (2017). MSC: 05C65 05C35 05A05 PDF BibTeX XML Cite \textit{N. Keller} and \textit{N. Lifshitz}, Electron. Notes Discrete Math. 61, 711--717 (2017; Zbl 1379.05083) Full Text: DOI arXiv OpenURL
Adachi, Saori; Nozaki, Hiroshi On the largest subsets avoiding the diameter of \((0,\pm 1)\)-vectors. (English) Zbl 1380.05190 Ars Math. Contemp. 13, No. 1, 1-13 (2017). Reviewer: Martin Balko (Praha) MSC: 05D05 05C69 PDF BibTeX XML Cite \textit{S. Adachi} and \textit{H. Nozaki}, Ars Math. Contemp. 13, No. 1, 1--13 (2017; Zbl 1380.05190) Full Text: DOI arXiv OpenURL
Suda, Sho; Tanaka, Hajime; Tokushige, Norihide A semidefinite programming approach to a cross-intersection problem with measures. (English) Zbl 1375.05261 Math. Program. 166, No. 1-2 (A), 113-130 (2017). MSC: 05D05 90C22 90C27 05C50 05C69 05C35 PDF BibTeX XML Cite \textit{S. Suda} et al., Math. Program. 166, No. 1--2 (A), 113--130 (2017; Zbl 1375.05261) Full Text: DOI arXiv OpenURL
Frankl, Peter; Kupavskii, Andrey Intersection theorems for \(\{0,\pm1\}\)-vectors and \(s\)-cross-intersecting families. (English) Zbl 1395.05177 Mosc. J. Comb. Number Theory 7, No. 2, 3-21 (2017); correction ibid. 8, No. 4, 389-391 (2019). Reviewer: Peter Borg (Malta) MSC: 05D05 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{A. Kupavskii}, Mosc. J. Comb. Number Theory 7, No. 2, 3--21 (2017; Zbl 1395.05177) Full Text: arXiv Link OpenURL
Godsil, Chris; Meagher, Karen An algebraic proof of the Erdős-Ko-Rado theorem for intersecting families of perfect matchings. (English) Zbl 1370.05102 Ars Math. Contemp. 12, No. 2, 205-217 (2017). MSC: 05C35 05C69 PDF BibTeX XML Cite \textit{C. Godsil} and \textit{K. Meagher}, Ars Math. Contemp. 12, No. 2, 205--217 (2017; Zbl 1370.05102) Full Text: DOI arXiv OpenURL
Liu, Jiuqiang; Liu, Xiaodong Set systems with positive intersection sizes. (English) Zbl 1367.05204 Discrete Math. 340, No. 10, 2333-2340 (2017). MSC: 05D05 05A05 PDF BibTeX XML Cite \textit{J. Liu} and \textit{X. Liu}, Discrete Math. 340, No. 10, 2333--2340 (2017; Zbl 1367.05204) Full Text: DOI OpenURL
Filmus, Yuval The weighted complete intersection theorem. (English) Zbl 1366.05111 J. Comb. Theory, Ser. A 151, 84-101 (2017). MSC: 05D05 05C35 PDF BibTeX XML Cite \textit{Y. Filmus}, J. Comb. Theory, Ser. A 151, 84--101 (2017; Zbl 1366.05111) Full Text: DOI OpenURL
Fakhari, Seyed Amin Seyed Erdős-Ko-Rado type theorems for simplicial complexes. (English) Zbl 1366.05126 Electron. J. Comb. 24, No. 2, Research Paper P2.38, 11 p. (2017). MSC: 05E45 05D05 05C70 PDF BibTeX XML Cite \textit{S. A. S. Fakhari}, Electron. J. Comb. 24, No. 2, Research Paper P2.38, 11 p. (2017; Zbl 1366.05126) Full Text: Link OpenURL
Frankl, Peter; Kupavskii, Andrey A size-sensitive inequality for cross-intersecting families. (English) Zbl 1358.05295 Eur. J. Comb. 62, 263-271 (2017). MSC: 05D05 05A20 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{A. Kupavskii}, Eur. J. Comb. 62, 263--271 (2017; Zbl 1358.05295) Full Text: DOI arXiv OpenURL
Kostochka, Alexandr; Mubayi, Dhruv The structure of large intersecting families. (English) Zbl 1358.05039 Proc. Am. Math. Soc. 145, No. 6, 2311-2321 (2017). MSC: 05B07 05C65 05C70 05D05 05D15 PDF BibTeX XML Cite \textit{A. Kostochka} and \textit{D. Mubayi}, Proc. Am. Math. Soc. 145, No. 6, 2311--2321 (2017; Zbl 1358.05039) Full Text: DOI arXiv OpenURL
Lee, Sang June; Siggers, Mark; Tokushige, Norihide Towards extending the Ahlswede-Khachatrian theorem to cross \(t\)-intersecting families. (English) Zbl 1358.05298 Discrete Appl. Math. 216, Part 3, 627-645 (2017). MSC: 05D05 PDF BibTeX XML Cite \textit{S. J. Lee} et al., Discrete Appl. Math. 216, Part 3, 627--645 (2017; Zbl 1358.05298) Full Text: DOI arXiv OpenURL
Frankl, Peter; Tokushige, Norihide A note on Huang-Zhao theorem on intersecting families with large minimum degree. (English) Zbl 1357.05064 Discrete Math. 340, No. 5, 1098-1103 (2017). MSC: 05C35 05C07 05C65 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{N. Tokushige}, Discrete Math. 340, No. 5, 1098--1103 (2017; Zbl 1357.05064) Full Text: DOI OpenURL
Guo, Jun; Xu, Qiuli The Erdős-Ko-Rado theorem for finite affine spaces. (English) Zbl 1356.05153 Linear Multilinear Algebra 65, No. 3, 593-599 (2017). MSC: 05D05 PDF BibTeX XML Cite \textit{J. Guo} and \textit{Q. Xu}, Linear Multilinear Algebra 65, No. 3, 593--599 (2017; Zbl 1356.05153) Full Text: DOI OpenURL
Aharoni, Ron; Howard, David Cross-intersecting pairs of hypergraphs. (English) Zbl 1355.05176 J. Comb. Theory, Ser. A 148, 15-26 (2017). MSC: 05C65 05C70 05C15 PDF BibTeX XML Cite \textit{R. Aharoni} and \textit{D. Howard}, J. Comb. Theory, Ser. A 148, 15--26 (2017; Zbl 1355.05176) Full Text: DOI arXiv OpenURL
Pyaderkin, M. M. On the stability of some Erdős-Ko-Rado type results. (English) Zbl 1355.05190 Discrete Math. 340, No. 4, 822-831 (2017). MSC: 05C69 05C80 PDF BibTeX XML Cite \textit{M. M. Pyaderkin}, Discrete Math. 340, No. 4, 822--831 (2017; Zbl 1355.05190) Full Text: DOI arXiv OpenURL
Adachi, Saori; Hayashi, Rina; Nozaki, Hiroshi; Yamamoto, Chika Maximal \(m\)-distance sets containing the representation of the Hamming graph \(H(n, m)\). (English) Zbl 1351.05156 Discrete Math. 340, No. 3, 430-442 (2017). MSC: 05C62 05C12 PDF BibTeX XML Cite \textit{S. Adachi} et al., Discrete Math. 340, No. 3, 430--442 (2017; Zbl 1351.05156) Full Text: DOI arXiv OpenURL
Wang, Jun; Zhang, Huajun Intersecting \(k\)-uniform families containing a given family. (English) Zbl 1351.05012 Discrete Math. 340, No. 2, 140-144 (2017). MSC: 05A05 PDF BibTeX XML Cite \textit{J. Wang} and \textit{H. Zhang}, Discrete Math. 340, No. 2, 140--144 (2017; Zbl 1351.05012) Full Text: DOI OpenURL
Han, Jie; Kohayakawa, Yoshiharu The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton-Milner family. (English) Zbl 1350.05169 Proc. Am. Math. Soc. 145, No. 1, 73-87 (2017). MSC: 05D05 PDF BibTeX XML Cite \textit{J. Han} and \textit{Y. Kohayakawa}, Proc. Am. Math. Soc. 145, No. 1, 73--87 (2017; Zbl 1350.05169) Full Text: DOI arXiv OpenURL
Mubayi, Dhruv; Verstraëte, Jacques A survey of Turán problems for expansions. (English) Zbl 1354.05068 Beveridge, Andrew (ed.) et al., Recent trends in combinatorics. Cham: Springer (ISBN 978-3-319-24296-5/hbk; 978-3-319-24298-9/ebook). The IMA Volumes in Mathematics and its Applications 159, 117-143 (2016). MSC: 05C35 05C65 05D05 05D40 PDF BibTeX XML Cite \textit{D. Mubayi} and \textit{J. Verstraëte}, IMA Vol. Math. Appl. 159, 117--143 (2016; Zbl 1354.05068) Full Text: DOI arXiv OpenURL
Li, Shuchao; Zhang, Huihui Set systems with \(L\)-intersections and \(k\)-wise \(L\)-intersecting families. (English) Zbl 1355.05243 J. Comb. Des. 24, No. 11, 514-529 (2016). MSC: 05D05 11F75 11B05 PDF BibTeX XML Cite \textit{S. Li} and \textit{H. Zhang}, J. Comb. Des. 24, No. 11, 514--529 (2016; Zbl 1355.05243) Full Text: DOI OpenURL
Hoppen, Carlos; Lefmann, Hanno; Odermann, Knut A coloring problem for intersecting vector spaces. (English) Zbl 1343.05154 Discrete Math. 339, No. 12, 2941-2954 (2016). MSC: 05D05 05C15 PDF BibTeX XML Cite \textit{C. Hoppen} et al., Discrete Math. 339, No. 12, 2941--2954 (2016; Zbl 1343.05154) Full Text: DOI OpenURL
Devlin, Pat; Kahn, Jeff On “stability” in the Erdős-Ko-Rado theorem. (English) Zbl 1338.05130 SIAM J. Discrete Math. 30, No. 2, 1283-1289 (2016). MSC: 05C35 05D40 05C80 05C65 05C69 PDF BibTeX XML Cite \textit{P. Devlin} and \textit{J. Kahn}, SIAM J. Discrete Math. 30, No. 2, 1283--1289 (2016; Zbl 1338.05130) Full Text: DOI arXiv OpenURL
Borg, Peter; Meagher, Karen The Katona cycle proof of the Erdős-Ko-Rado theorem and its possibilities. (English) Zbl 1408.05132 J. Algebr. Comb. 43, No. 4, 915-939 (2016). MSC: 05D05 05A05 PDF BibTeX XML Cite \textit{P. Borg} and \textit{K. Meagher}, J. Algebr. Comb. 43, No. 4, 915--939 (2016; Zbl 1408.05132) Full Text: DOI Backlinks: MO OpenURL
Bond, Benjamin EKR sets for large \(n\) and \(r\). (English) Zbl 1409.05204 Graphs Comb. 32, No. 2, 495-510 (2016). MSC: 05D05 PDF BibTeX XML Cite \textit{B. Bond}, Graphs Comb. 32, No. 2, 495--510 (2016; Zbl 1409.05204) Full Text: DOI arXiv OpenURL
Das, Shagnik; Tran, Tuan Removal and stability for Erdős-Ko-Rado. (English) Zbl 1336.05141 SIAM J. Discrete Math. 30, No. 2, 1102-1114 (2016). MSC: 05D05 05C80 PDF BibTeX XML Cite \textit{S. Das} and \textit{T. Tran}, SIAM J. Discrete Math. 30, No. 2, 1102--1114 (2016; Zbl 1336.05141) Full Text: DOI arXiv OpenURL
De Boeck, Maarten The second largest Erdős-Ko-Rado sets of generators of the hyperbolic quadrics \(\mathcal{Q}^+(4n + 1, q)\). (English) Zbl 1338.05032 Adv. Geom. 16, No. 2, 253-263 (2016). MSC: 05B25 51A50 51E20 52C10 PDF BibTeX XML Cite \textit{M. De Boeck}, Adv. Geom. 16, No. 2, 253--263 (2016; Zbl 1338.05032) Full Text: DOI arXiv OpenURL
Frankl, Peter; Tokushige, Norihide Intersection problems in the \(q\)-ary cube. (English) Zbl 1334.05174 J. Comb. Theory, Ser. A 141, 90-126 (2016). MSC: 05D05 PDF BibTeX XML Cite \textit{P. Frankl} and \textit{N. Tokushige}, J. Comb. Theory, Ser. A 141, 90--126 (2016; Zbl 1334.05174) Full Text: DOI OpenURL
Fakhari, S. A. Seyed Intersecting faces of a simplicial complex via algebraic shifting. (English) Zbl 1322.05137 Discrete Math. 339, No. 1, 78-83 (2016). MSC: 05E45 05C35 13C14 PDF BibTeX XML Cite \textit{S. A. S. Fakhari}, Discrete Math. 339, No. 1, 78--83 (2016; Zbl 1322.05137) Full Text: DOI arXiv OpenURL
Frankl, Peter; Kohayakawa, Yoshiharu; Rödl, Vojtěch A note on supersaturated set systems. (English) Zbl 1321.05284 Eur. J. Comb. 51, 190-199 (2016). MSC: 05D05 05A15 05A20 PDF BibTeX XML Cite \textit{P. Frankl} et al., Eur. J. Comb. 51, 190--199 (2016; Zbl 1321.05284) Full Text: DOI OpenURL
Tran, Tuan; Das, Shagnik A simple removal lemma for large nearly-intersecting families. (English) Zbl 1346.05130 Nešetril, Jaroslav (ed.) et al., Extended abstracts of the eight European conference on combinatorics, graph theory and applications, EuroComb 2015, Bergen, Norway, August 31 – September 4, 2015. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 49, 93-99, electronic only (2015). MSC: 05C35 PDF BibTeX XML Cite \textit{T. Tran} and \textit{S. Das}, Electron. Notes Discrete Math. 49, 93--99 (2015; Zbl 1346.05130) Full Text: DOI OpenURL
Bardestani, Mohammad; Mallahi-Karai, Keivan On the Erdős-Ko-Rado property for finite groups. (English) Zbl 1326.05160 J. Algebr. Comb. 42, No. 1, 111-128 (2015). MSC: 05D05 05E18 05A05 20D05 20D10 20D15 20G40 PDF BibTeX XML Cite \textit{M. Bardestani} and \textit{K. Mallahi-Karai}, J. Algebr. Comb. 42, No. 1, 111--128 (2015; Zbl 1326.05160) Full Text: DOI arXiv OpenURL