×

Constrained variational problems governed by second-order Lagrangians. (English) Zbl 1477.49033

The article deals with constrained variational problems. The author considers the optimization of some integral functionals, governed by second-order Lagrangians, subject to ODEs, PDEs or isoperimetric constraints. In this context, using appropriate techniques of calculus of variations and some geometric tools, necessary conditions of optimality are formulated and justified. The results developed in the article are illustrated with some applications as well.

MSC:

49K15 Optimality conditions for problems involving ordinary differential equations
49K20 Optimality conditions for problems involving partial differential equations
49K21 Optimality conditions for problems involving relations other than differential equations
65K10 Numerical optimization and variational techniques
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dirac, PAM; Fock, VA; Podolski, B., On quantum electrodynamics, Phys Z der Sowjetunion, 2, 6, 468-479 (1932) · JFM 58.0936.04
[2] Tomonaga, S., On a relativistically invariant formulation of the quantum theory of wave fields, Prog Theor Phys, 1, 2, 27-42 (1946) · Zbl 0038.13101 · doi:10.1143/PTP.1.27
[3] Petrat, S.; Tumulka, R., Multi-time wave functions for quantum field theory, Ann Phys, 345, 17-54 (2014) · Zbl 1343.81119 · doi:10.1016/j.aop.2014.03.004
[4] Lienert, M.; Nickel, L., A simple explicitly solvable interacting relativistic N-particle model, J Phys A: Math Theor, 48 (2015) · Zbl 1362.81031
[5] Deckert, DA; Nickel, L., Consistency of multi-time Dirac equations with general interaction potentials, J Math Phys, 57 (2016) · Zbl 1350.81006 · doi:10.1063/1.4954947
[6] Keppeler, S, Sieber, M.Particle creation and annihilation at interior boundaries: one-dimensional models, arXiv:1511.03071 · Zbl 1343.81161
[7] Teufel, S, Tumulka, R.New type of Hamiltonians without ultraviolet divergence for quantum field theories, arXiv:1505.04847v1 · Zbl 1338.81296
[8] Friedman, A., The Cauchy problem in several time variables, J Math Mech, 11, 6, 859-889 (1962) · Zbl 0109.31803
[9] Yurchuk, NI., A partially characteristic mixed boundary value problem with Goursat initial conditions for linear equations with two-dimensional time, Differ Equations, 5, 898-910 (1969) · Zbl 0212.44602
[10] Kendall, WS., Contours of Brownian processes with several-dimensional times, Probab Theory Relat Fields, 52, 3, 267-276 (1980) · Zbl 0431.60056
[11] Rochet, JC., The taxation principle and multitime Hamilton-Jacobi equations, J Math Econom, 14, 2, 113-128 (1985) · Zbl 0594.90006 · doi:10.1016/0304-4068(85)90015-1
[12] Saunders, DJ.The Geometry of Jet Bundles. Cambridge: Cambridge University Press; 1989. (London Math. Soc. Lecture Notes Series; vol. 142). · Zbl 0665.58002
[13] Bouziani, A., On the solvability of nonlocal pluriparabolic problems, Electron J Differ Equ, 2001, 21, 1-16 (2001) · Zbl 0968.35067
[14] Khoshnevisan, D.; Xiao, Y.; Zhong, Y., Local times of additive Levy processe, Stoch Process Their Appl, 104, 2, 193-216 (2003) · Zbl 1075.60520 · doi:10.1016/S0304-4149(02)00237-5
[15] Motta, M.; Rampazzo, F., Nonsmooth multi-time Hamilton-Jacobi systems, Indiana Univ Math J, 55, 5, 1573-1614 (2006) · Zbl 1114.49031 · doi:10.1512/iumj.2006.55.2760
[16] Udrişte, C.; Ţevy, I., Multi-time Euler-Lagrange-Hamilton theory, WSEAS Trans Math, 6, 6, 701-709 (2007) · Zbl 1357.49011
[17] Udrişte, C, Matei, L.Lagrange-Hamilton theories. Bucharest: Geometry Balkan Press; 2008. (Monographs and Textbooks; vol. 8). Romanian
[18] Cardin, F.; Viterbo, C., Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math J, 144, 2, 235-284 (2008) · Zbl 1153.37029 · doi:10.1215/00127094-2008-036
[19] Prepeliţă, V., Minimal realization algorithm for multidimensional hybrid systems, WSEAS Trans. Sys, 8, 1, 22-33 (2009) · Zbl 1290.93047
[20] Benrabah, A.; Rebbani, F.; Boussetila, N., A study of the multitime evolution equation with time-nonlocal conditions, Balkan J Geom Appl, 16, 2, 13-24 (2011) · Zbl 1220.35186
[21] Damian, V.Multitime stochastic optimal control [PhD thesis]. Bucharest: University “Politehnica” of Bucharest; 2011
[22] Ghiu, C.Controllability of multitime linear PDEs systems [PhD thesis]. Bucharest: University “Politehnica” of Bucharest; 2013
[23] Treanţă, S., PDEs of Hamilton-Pfaff type via multi-time optimization problems, UPB Sci Bull, Series A: Appl Math Phys, 76, 1, 163-168 (2014) · Zbl 1374.70041
[24] Treanţă, S., On multi-time Hamilton-Jacobi theory via second order Lagrangians, UPB Sci Bull, Series A: Appl Math Phys, 76, 3, 129-140 (2014) · Zbl 1313.35056
[25] Treanţă, S., Multiobjective fractional variational problem on higher-order jet bundles, Commun Math Stat, 4, 3, 323-340 (2016) · Zbl 1367.58008 · doi:10.1007/s40304-016-0087-0
[26] Treanţă, S., Higher-order Hamilton dynamics and Hamilton-Jacobi divergence PDE, Comput Math Appl, 75, 2, 547-560 (2018) · Zbl 1408.37111 · doi:10.1016/j.camwa.2017.09.033
[27] Treanţă, S., Efficiency in generalized V-KT-pseudoinvex control problems, Int J Control (2018)
[28] Mititelu, Şt.; Treanţă, S., Efficiency conditions in vector control problems governed by multiple integrals, J Appl Math Comput, 57, 1-2, 647-665 (2018) · Zbl 1391.49043 · doi:10.1007/s12190-017-1126-z
[29] Miron, R.The geometry of higher order Lagrange spaces. Applications to mechanics and physics. FTPH no. 82. Dordrecht: Kluwer; 1997 · Zbl 0877.53001
[30] Krupka, D.On the higher order Hamilton theory in fibered spaces. Geometrical methods in physics, proceedings of the conference on differential geometry and its applications, Nove Mesto na Morave, Czechoslovakia; 1983 Sep 5-9; J.E. Purkyne Univ., Brno; 1984. p. 167-184 · Zbl 0598.58022
[31] Treanţă, S., Hamilton-Jacobi system of PDEs governed by higher-order Lagrangians, Trans J Math Anal Appl, 5, 1, 1-15 (2017)
[32] Treanţă, S., Gauge Transformation Moments and Generating Functions for Higher-Order Lagrangians, Res Commun Math Math Sci, 8, 1, 1-16 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.