×

Computer algebra solution of the inverse problem in the calculus of variations. (English) Zbl 0995.49022

Summary: The inverse problem in the calculus of variations for a given set of second order ordinary differential equations consists of deciding whether their solutions are those of Euler-Lagrange equations and exhibiting the non-uniqueness of the resulting Lagrangians when they occur.
This paper discusses the use of the REDUCE packages EXCALC, EDS and Dimsym to solve this problem.

MSC:

49N45 Inverse problems in optimal control
49-04 Software, source code, etc. for problems pertaining to calculus of variations and optimal control

Software:

DIMSYM; REDUCE; EXCALC; EDS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, I.; Thompson, G., The inverse problem of the calculus of variations for ordinary differential equations, Memoirs Am. Math. Soc., 98, no. 473 (1992)
[2] Bryant, R. L.; Chern, S. S.; Gardner, R. B.; Goldschmidt, H. L.; Griffiths, P. A., Exterior Differential Systems (1991), Springer: Springer Berlin · Zbl 0726.58002
[3] Crampin, M., Generalized Bianchi identities for horizontal distributions, (Math. Proc. Camb. Phil. Soc., 94 (1983)), 125-132 · Zbl 0521.53023
[4] Crampin, M.; Pirani, F. A.E., Applicable Differential Geometry (1987), CUP · Zbl 0606.53001
[5] Crampin, M.; Prince, G. E., Generalizing gauge freedom for spherically symmetric potentials, J. Phys. A, 18, 2167-2175 (1985) · Zbl 0578.58014
[6] Crampin, M.; Prince, G. E., Alternative Lagrangians for spherically symmetric potentials, J. Math. Phys., 29, 1551-1555 (1988) · Zbl 0658.70023
[7] Crampin, M.; Prince, G. E.; Thompson, G., A geometric version of the Helmholtz conditions in time dependent Lagrangian dynamics, J. Phys. A, 17, 1437-1447 (1984) · Zbl 0545.58020
[8] Crampin, M.; Sarlet, W.; Martínez, E.; Byrnes, G. B.; Prince, G. E., Toward a geometrical understanding of Douglas’s solution of the inverse problem in the calculus of variations, Inverse Problems, 10, 245-260 (1994) · Zbl 0826.58015
[9] Douglas, J., Solution of the inverse problem of the calculus of variations, Trans. Am. Math. Soc., 50, 71-128 (1941) · JFM 67.1038.01
[10] Goldschmidt, H.; Sternberg, S., The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier, 23, 203-267 (1973) · Zbl 0243.49011
[11] Hartley, D., EDS: a REDUCE package for exterior differential systems, Comput. Phys. Commun., 100, 177-194 (1997) · Zbl 0927.65153
[12] Hearn, A. C., (REDUCE Users Manual version 3.6 (1995), The Rand Corporation)
[13] Henneaux, M., On the inverse problem of the calculus of variations, J. Phys. A, 15, L93-L96 (1982) · Zbl 0475.70024
[14] Henneaux, M.; Shepley, L. C., Lagrangians for spherically symmetric potentials, J. Math. Phys., 23, 2101-2107 (1988) · Zbl 0507.70022
[15] Morandi, G.; Ferrario, C.; Lo Vecchio, G.; Marmo, G.; Rubano, C., The inverse problem in the calculus of variations and the geometry of the tangent bundle, Phys. Rep., 188, 147-284 (1990) · Zbl 1211.58008
[16] G.E. Prince, The inverse problem in the calculus of variations and its ramifications, in: Geometric Approaches to Differential Equations, P. Vassiliou, ed., Lecture Notes of the Australian Mathematical Society (CUP), to appear.; G.E. Prince, The inverse problem in the calculus of variations and its ramifications, in: Geometric Approaches to Differential Equations, P. Vassiliou, ed., Lecture Notes of the Australian Mathematical Society (CUP), to appear.
[17] Prince, G. E.; Crampin, M., Projective differential geometry and geodesic conservation laws in general relativity, I: projective actions, Gen. Rel. Grav., 16, 921-942 (1984) · Zbl 0556.53044
[18] Prince, G. E.; Crampin, M., Projective differential geometry and geodesic conservation laws in general relativity, II: conservation laws, Gen. Rel. Grav., 16, 1063-1075 (1984) · Zbl 0556.53045
[19] Prince, G. E.; Byrnes, G. B.; Sherring, J.; Godfrey, S. E., A generalization of the Liouville-Arnol’d theorem, (Math. Proc. Camb. Phil. Soc., 117 (1995)), 353-370 · Zbl 0829.58019
[20] Sarlet, W., The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics, J. Phys. A, 15, 1503-1517 (1982) · Zbl 0537.70018
[21] Schrüfer, E., EXCALC: A System for Doing Calculations in the Calculus of Modern Differential Geometry, (REDUCE 3.6 Miscellaneous Documentation (1995), The Rand Corporation)
[22] Sherring, J., Dimsym: Symmetry Determination and Linear Differential Equations Package, School of Mathematics (1993), La Trobe University: La Trobe University Melbourne, Australia
[23] Sherring, J.; Head, A. K.; Prince, G. E., Math. Comput. Modelling, 25, 153-164 (1997)
[24] Sternberg, S., Differential Geometry (1983), Chelsea: Chelsea New York
[25] Saunders, D. J., The Geometry of Jet Bundles (1989), CUP · Zbl 0665.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.