Leuzinger, Enrico A Gauss-Bonnet formula for moduli spaces of Riemann surfaces. (English) Zbl 1335.32009 Geom. Dedicata 180, 373-383 (2016). MSC: 32G15 30F60 53C20 PDF BibTeX XML Cite \textit{E. Leuzinger}, Geom. Dedicata 180, 373--383 (2016; Zbl 1335.32009) Full Text: DOI arXiv OpenURL
Imayoshi, Yoichi; Ito, Manabu; Yamamoto, Hiroshi On the number of holomorphic mappings between Riemann surfaces of finite analytic type. (English) Zbl 1255.30046 Proc. Edinb. Math. Soc., II. Ser. 54, No. 3, 711-730 (2011). Reviewer: Gou Nakamura (Toyota) MSC: 30F99 PDF BibTeX XML Cite \textit{Y. Imayoshi} et al., Proc. Edinb. Math. Soc., II. Ser. 54, No. 3, 711--730 (2011; Zbl 1255.30046) Full Text: DOI OpenURL
Chiappinelli, Raffaele; Furi, Massimo; Pera, Maria Patrizia Topological persistence of the normalized eigenvectors of a perturbed self-adjoint operator. (English) Zbl 1197.47073 Appl. Math. Lett. 23, No. 2, 193-197 (2010). MSC: 47J10 47J07 47J15 PDF BibTeX XML Cite \textit{R. Chiappinelli} et al., Appl. Math. Lett. 23, No. 2, 193--197 (2010; Zbl 1197.47073) Full Text: DOI OpenURL
Serra, Jean Morphological descriptions using three-dimensional wavefronts. (English) Zbl 1398.94019 Image Anal. Stereol. 21, No. 4, 13-21 (2002). MSC: 94A05 86A30 PDF BibTeX XML Cite \textit{J. Serra}, Image Anal. Stereol. 21, No. 4, 13--21 (2002; Zbl 1398.94019) Full Text: DOI OpenURL
Szafraniec, Zbigniew A formula for the Euler characteristic of a real algebraic manifold. (English) Zbl 0824.14046 Manuscr. Math. 85, No. 3-4, 345-360 (1994). Reviewer: R.Gurjar (Bombay) MSC: 14P25 14F45 PDF BibTeX XML Cite \textit{Z. Szafraniec}, Manuscr. Math. 85, No. 3--4, 345--360 (1994; Zbl 0824.14046) Full Text: DOI EuDML OpenURL
Pignoni, Roberto Projections of surfaces with a connected fold curve. (English) Zbl 0767.57020 Topology Appl. 49, No. 1, 55-74 (1993). Reviewer: S.Izumiya (Sapporo) MSC: 57R45 58C25 58K99 PDF BibTeX XML Cite \textit{R. Pignoni}, Topology Appl. 49, No. 1, 55--74 (1993; Zbl 0767.57020) Full Text: DOI OpenURL
Gottlieb, Daniel Henry Zeroes of pullback vector fields and fixed point theory for bodies. (English) Zbl 0682.55003 Algebraic topology, Proc. Int. Conf., Evanston/IL 1988, Contemp. Math. 96, 163-180 (1989). Reviewer: L.Gorniewicz MSC: 55M25 55M20 57R70 57R25 57R45 53C20 PDF BibTeX XML OpenURL
Dragomir, Anca-Dana Exact categories with Serre classes. (English) Zbl 0662.18007 Mathematics and its applications, Proc. 2nd Symp., Timişoara/Rom. 1987, 167-170 (1988). MSC: 18E10 PDF BibTeX XML OpenURL
Dragomir, Anca-Dana Examples of exact categories with Serre class and Euler-Poincaré mapping. (English) Zbl 0631.18006 Seminar Arghiriade 16. Timişoara: Universitatea de Vest din Timişoara, Facultatea de Matematică. 4 p. (1986). Reviewer: H.Kleisli MSC: 18E10 PDF BibTeX XML Cite \textit{A.-D. Dragomir}, Examples of exact categories with Serre class and Euler-Poincaré mapping. Timişoara: Universitatea de Vest din Timişoara, Facultatea de Matematică (1986; Zbl 0631.18006) OpenURL
Dragomir, Anca-Dana The defect and the rank of a morphism in exact categories with Serre class. (English) Zbl 0603.18003 Seminar Arghiriade 14. Timişoara: Universitatea de Vest din Timişoara, Facultatea de Matematică. 3 p. (1985). MSC: 18E10 18F30 PDF BibTeX XML Cite \textit{A.-D. Dragomir}, The defect and the rank of a morphism in exact categories with Serre class. Timişoara: Universitatea de Vest din Timişoara, Facultatea de Matematică (1985; Zbl 0603.18003) OpenURL
Schwab, Emil; Dragomir, Anca-Dana The rank of the composition of two morphisms in exact categories with Serre class. (English) Zbl 0602.18006 An. Științ. Univ. Al. I. Cuza Iași, N. Ser., Secț. Ia 31, Suppl., 90-91 (1985). MSC: 18E10 18F30 PDF BibTeX XML OpenURL
Schwab, Emil; Dragomir, Anca-Dana The rank of the composition of two morphisms in exact categories with Serre class. (English) Zbl 0571.18005 Seminar Arghiriade 13. Timişoara: Universitatea de Vest din Timişoara, Facultatea de Matematică. 5 p. (1983). MSC: 18E10 18F30 PDF BibTeX XML Cite \textit{E. Schwab} and \textit{A.-D. Dragomir}, The rank of the composition of two morphisms in exact categories with Serre class. Timişoara: Universitatea de Vest din Timişoara, Facultatea de Matematică (1983; Zbl 0571.18005) OpenURL
Robinson, Donald W. The Frobenius rank equality for morphisms. (English) Zbl 0425.18006 Linear Algebra Appl. 29, 413-421 (1980). MSC: 18E10 15A24 PDF BibTeX XML Cite \textit{D. W. Robinson}, Linear Algebra Appl. 29, 413--421 (1980; Zbl 0425.18006) Full Text: DOI OpenURL