Guan, Hongbo; Yang, Yong; Zhu, Huiqing A locking-free nonconforming FEM for optimal control problems governed by linear elasticity equations. (English) Zbl 1489.65160 J. Comput. Appl. Math. 413, Article ID 114299, 11 p. (2022). MSC: 65N30 35L65 49M41 74B05 PDF BibTeX XML Cite \textit{H. Guan} et al., J. Comput. Appl. Math. 413, Article ID 114299, 11 p. (2022; Zbl 1489.65160) Full Text: DOI OpenURL
Guan, Zhen; Wang, Jungang; Nie, Yufeng Unconditionally optimal error estimates of two linearized Galerkin FEMs for the two-dimensional nonlinear fractional Rayleigh-Stokes problem. (English) Zbl 07351712 Comput. Math. Appl. 93, 78-93 (2021). MSC: 65M06 65M12 35R11 26A33 65M15 PDF BibTeX XML Cite \textit{Z. Guan} et al., Comput. Math. Appl. 93, 78--93 (2021; Zbl 07351712) Full Text: DOI OpenURL
Sun, Weiwei; Wu, Chengda New analysis of Galerkin-mixed FEMs for incompressible miscible flow in porous media. (English) Zbl 1452.65359 Math. Comput. 90, No. 327, 81-102 (2021). MSC: 65N30 65M22 65N12 65M15 65H10 35K61 76S05 35Q35 PDF BibTeX XML Cite \textit{W. Sun} and \textit{C. Wu}, Math. Comput. 90, No. 327, 81--102 (2021; Zbl 1452.65359) Full Text: DOI arXiv OpenURL
Cao, Luling; He, Yinnian; Li, Jian; Yang, Di Decoupled modified characteristic FEMs for fully evolutionary Navier-Stokes-Darcy model with the Beavers-Joseph interface condition. (English) Zbl 1452.65227 J. Comput. Appl. Math. 383, Article ID 113128, 19 p. (2021). MSC: 65M60 65M25 65M15 65M12 76S05 76D05 35Q30 PDF BibTeX XML Cite \textit{L. Cao} et al., J. Comput. Appl. Math. 383, Article ID 113128, 19 p. (2021; Zbl 1452.65227) Full Text: DOI OpenURL
Guan, Hongbo; Hong, Yapeng; Bi, Congcong Global superconvergence analysis of a nonconforming FEM for Neumann boundary OCPs with elliptic equations. (English) Zbl 1480.65334 Int. J. Comput. Math. 97, No. 12, 2451-2461 (2020). MSC: 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{H. Guan} et al., Int. J. Comput. Math. 97, No. 12, 2451--2461 (2020; Zbl 1480.65334) Full Text: DOI OpenURL
Zhou, Boya; Li, Dongfang Newton linearized methods for semilinear parabolic equations. (English) Zbl 1474.65378 Numer. Math., Theory Methods Appl. 13, No. 4, 928-945 (2020). MSC: 65M60 65M12 35K58 65M15 PDF BibTeX XML Cite \textit{B. Zhou} and \textit{D. Li}, Numer. Math., Theory Methods Appl. 13, No. 4, 928--945 (2020; Zbl 1474.65378) Full Text: DOI OpenURL
Guan, Hongbo; Shi, Dongyang An efficient NFEM for optimal control problems governed by a bilinear state equation. (English) Zbl 1442.49035 Comput. Math. Appl. 77, No. 7, 1821-1827 (2019). MSC: 49M25 65N30 PDF BibTeX XML Cite \textit{H. Guan} and \textit{D. Shi}, Comput. Math. Appl. 77, No. 7, 1821--1827 (2019; Zbl 1442.49035) Full Text: DOI OpenURL
Xu, Chao; Shi, Dongyang Superconvergence analysis of low order nonconforming finite element methods for variational inequality problem with displacement obstacle. (English) Zbl 1429.65279 Appl. Math. Comput. 348, 1-11 (2019). MSC: 65N30 35J86 65K15 65N12 49J40 PDF BibTeX XML Cite \textit{C. Xu} and \textit{D. Shi}, Appl. Math. Comput. 348, 1--11 (2019; Zbl 1429.65279) Full Text: DOI OpenURL
Zhang, Zongbiao; Li, Meng; Wang, Zhongchi A linearized Crank-Nicolson Galerkin FEMs for the nonlinear fractional Ginzburg-Landau equation. (English) Zbl 1432.65151 Appl. Anal. 98, No. 15, 2648-2667 (2019). MSC: 65M60 65M06 35R11 35Q56 65M12 65M15 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Appl. Anal. 98, No. 15, 2648--2667 (2019; Zbl 1432.65151) Full Text: DOI OpenURL
Li, Dongfang; Liao, Hong-Lin; Sun, Weiwei; Wang, Jilu; Zhang, Jiwei Analysis of \(L1\)-Galerkin FEMs for time-fractional nonlinear parabolic problems. (English) Zbl 1488.65431 Commun. Comput. Phys. 24, No. 1, 86-103 (2018). MSC: 65M60 65M06 65N30 35K55 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{D. Li} et al., Commun. Comput. Phys. 24, No. 1, 86--103 (2018; Zbl 1488.65431) Full Text: DOI arXiv OpenURL
Shi, Dongyang; Mu, Pengcong; Yang, Huaijun Superconvergence analysis of a two-grid method for semilinear parabolic equations. (English) Zbl 1457.65091 Appl. Math. Lett. 84, 34-41 (2018). MSC: 65M55 65M60 65M06 65M12 35K58 PDF BibTeX XML Cite \textit{D. Shi} et al., Appl. Math. Lett. 84, 34--41 (2018; Zbl 1457.65091) Full Text: DOI OpenURL
Zhang, Houchao; Wang, Junjun Superconvergence analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. (English) Zbl 1390.65086 Numer. Methods Partial Differ. Equations 34, No. 2, 799-820 (2018). MSC: 65M06 65M60 65M12 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{J. Wang}, Numer. Methods Partial Differ. Equations 34, No. 2, 799--820 (2018; Zbl 1390.65086) Full Text: DOI OpenURL
Wu, Chengda; Sun, Weiwei Analysis of Galerkin FEMs for mixed formulation of time-dependent Ginzburg-Landau equations under temporal gauge. (English) Zbl 1394.65134 SIAM J. Numer. Anal. 56, No. 3, 1291-1312 (2018). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65N12 65N30 35K61 35Q56 65N15 65M06 PDF BibTeX XML Cite \textit{C. Wu} and \textit{W. Sun}, SIAM J. Numer. Anal. 56, No. 3, 1291--1312 (2018; Zbl 1394.65134) Full Text: DOI OpenURL
Li, Meng; Huang, Chengming; Zhang, Zongbiao Unconditional error analysis of Galerkin FEMs for nonlinear fractional Schrödinger equation. (English) Zbl 1448.65167 Appl. Anal. 97, No. 2, 295-315 (2018). MSC: 65M60 65N30 65M06 65M15 35R11 26A33 35Q55 PDF BibTeX XML Cite \textit{M. Li} et al., Appl. Anal. 97, No. 2, 295--315 (2018; Zbl 1448.65167) Full Text: DOI OpenURL
Gao, Huadong Efficient numerical solution of dynamical Ginzburg-Landau equations under the Lorentz gauge. (English) Zbl 1488.65419 Commun. Comput. Phys. 22, No. 1, 182-201 (2017). MSC: 65M60 65M06 65N30 65M12 65M15 78A30 35Q56 PDF BibTeX XML Cite \textit{H. Gao}, Commun. Comput. Phys. 22, No. 1, 182--201 (2017; Zbl 1488.65419) Full Text: DOI OpenURL
Dhillon, Daljit Singh J.; Milinkovitch, Michel C.; Zwicker, Matthias Bifurcation analysis of reaction diffusion systems on arbitrary surfaces. (English) Zbl 1372.92015 Bull. Math. Biol. 79, No. 4, 788-827 (2017). MSC: 92C15 92-08 35K57 PDF BibTeX XML Cite \textit{D. S. J. Dhillon} et al., Bull. Math. Biol. 79, No. 4, 788--827 (2017; Zbl 1372.92015) Full Text: DOI arXiv Link OpenURL
Creusé, Emmanuel; Nicaise, Serge; Tang, Zuqi Helmholtz decomposition of vector fields with mixed boundary conditions and an application to a posteriori finite element error analysis of the Maxwell system. (English) Zbl 1309.35158 Math. Methods Appl. Sci. 38, No. 4, 738-750 (2015). MSC: 35Q61 65M15 65M60 78M10 PDF BibTeX XML Cite \textit{E. Creusé} et al., Math. Methods Appl. Sci. 38, No. 4, 738--750 (2015; Zbl 1309.35158) Full Text: DOI HAL OpenURL
Shi, Dongyang; Yao, Changhui Nonconforming finite element approximation of time-dependent Maxwell’s equations in Debye medium. (English) Zbl 1315.78010 Numer. Methods Partial Differ. Equations 30, No. 5, 1654-1673 (2014). Reviewer: Teodora-Liliana Rădulescu (Craiova) MSC: 78M10 35Q61 78M20 78M30 PDF BibTeX XML Cite \textit{D. Shi} and \textit{C. Yao}, Numer. Methods Partial Differ. Equations 30, No. 5, 1654--1673 (2014; Zbl 1315.78010) Full Text: DOI OpenURL
Kowollik, D.; Tini, V.; Reese, S.; Haupt, M. 3D fluid-structure interaction analysis of a typical liquid rocket engine cycle based on a novel viscoplastic damage model. (English) Zbl 1352.74382 Int. J. Numer. Methods Eng. 94, No. 13, 1165-1190 (2013). MSC: 74S05 74F10 PDF BibTeX XML Cite \textit{D. Kowollik} et al., Int. J. Numer. Methods Eng. 94, No. 13, 1165--1190 (2013; Zbl 1352.74382) Full Text: DOI OpenURL
Lopes, N. D.; Pereira, P. J. S.; Trabucho, Luís A numerical analysis of a class of generalized Boussinesq-type equations using continuous/discontinuous FEM. (English) Zbl 1253.76062 Int. J. Numer. Methods Fluids 69, No. 7, 1186-1218 (2012). MSC: 76M10 65M60 76D99 PDF BibTeX XML Cite \textit{N. D. Lopes} et al., Int. J. Numer. Methods Fluids 69, No. 7, 1186--1218 (2012; Zbl 1253.76062) Full Text: DOI OpenURL
Kim, Hyun-Gyu; Chew, Huck Beng; Kim, Kyung-Suk Inverse extraction of cohesive zone laws by field projection method using numerical auxiliary fields. (English) Zbl 1253.74104 Int. J. Numer. Methods Eng. 91, No. 5, 516-530 (2012). MSC: 74S05 74M25 65N30 PDF BibTeX XML Cite \textit{H.-G. Kim} et al., Int. J. Numer. Methods Eng. 91, No. 5, 516--530 (2012; Zbl 1253.74104) Full Text: DOI OpenURL
Xu, Xianmin; Henao, Duvan An efficient numerical method for cavitation in nonlinear elasticity. (English) Zbl 1276.74007 Math. Models Methods Appl. Sci. 21, No. 8, 1733-1760 (2011). MSC: 74B20 74S05 65N30 35Q74 PDF BibTeX XML Cite \textit{X. Xu} and \textit{D. Henao}, Math. Models Methods Appl. Sci. 21, No. 8, 1733--1760 (2011; Zbl 1276.74007) Full Text: DOI OpenURL
Gunzburger, Max D. Finite element methods for viscous incompressible flows. (English) Zbl 0697.76031 Computer Science and Scientific Computing. Boston, MA etc.: Academic Press. xvii, 269 p. $44.50 (1989). Reviewer: W.Schönauer MSC: 76D05 65N30 76-02 65M60 35Q30 PDF BibTeX XML Cite \textit{M. D. Gunzburger}, Finite element methods for viscous incompressible flows. Boston, MA etc.: Academic Press (1989; Zbl 0697.76031) OpenURL