Nicola, Fabio; Trapasso, S. Ivan Wave packet analysis of Feynman path integrals (to appear). (English) Zbl 07555483 Lecture Notes in Mathematics 2305. Cham: Springer (ISBN 978-3-031-06185-1/pbk). (2022). MSC: 81-01 81Q30 81S40 PDF BibTeX XML OpenURL
Grinwald, P. M. Schrödinger’s equation as a consequence of the central limit theorem without assuming prior physical laws. (English) Zbl 07528501 Found. Phys. 52, No. 2, Paper No. 50, 22 p. (2022). MSC: 81Pxx 00Axx 60-XX PDF BibTeX XML Cite \textit{P. M. Grinwald}, Found. Phys. 52, No. 2, Paper No. 50, 22 p. (2022; Zbl 07528501) Full Text: DOI OpenURL
Greenman, Chris D. Time series path integral expansions for stochastic processes. (English) Zbl 1486.92160 J. Stat. Phys. 187, No. 3, Paper No. 24, 25 p. (2022). MSC: 92D25 60J85 60K25 46T12 PDF BibTeX XML Cite \textit{C. D. Greenman}, J. Stat. Phys. 187, No. 3, Paper No. 24, 25 p. (2022; Zbl 1486.92160) Full Text: DOI OpenURL
Infusino, Maria; Kuhlmann, Salma; Kuna, Tobias; Michalski, Patrick Projective limit techniques for the infinite dimensional moment problem. (English) Zbl 07506757 Integral Equations Oper. Theory 94, No. 2, Paper No. 12, 44 p. (2022). Reviewer: Florian-Horia Vasilescu (Villeneuve d’Ascq) MSC: 44A60 46M40 28C20 13J30 14P99 28C15 46T12 PDF BibTeX XML Cite \textit{M. Infusino} et al., Integral Equations Oper. Theory 94, No. 2, Paper No. 12, 44 p. (2022; Zbl 07506757) Full Text: DOI OpenURL
Setare, M. R.; Jalali, A. Holographically description of Kerr-Bolt black hole in terms of the warped conformal field theory. (English) Zbl 1487.83035 Phys. Lett., B 827, Article ID 136892, 5 p. (2022). MSC: 83C40 30F45 46T12 83F05 83D05 83C57 81T20 81T40 PDF BibTeX XML Cite \textit{M. R. Setare} and \textit{A. Jalali}, Phys. Lett., B 827, Article ID 136892, 5 p. (2022; Zbl 1487.83035) Full Text: DOI OpenURL
Wong, B. T. T. Quantization of generalized abelian gauge field theory under rotor model. (English) Zbl 1487.81128 Int. J. Theor. Phys. 61, No. 3, Paper No. 80, 9 p. (2022). MSC: 81T13 81T18 70S15 35G05 35Q61 81S40 47A48 PDF BibTeX XML Cite \textit{B. T. T. Wong}, Int. J. Theor. Phys. 61, No. 3, Paper No. 80, 9 p. (2022; Zbl 1487.81128) Full Text: DOI OpenURL
Ivanov, Grigory; Naszódi, Márton Functional John ellipsoids. (English) Zbl 07495779 J. Funct. Anal. 282, No. 11, Article ID 109441, 44 p. (2022). MSC: 26B25 52A23 52A40 46T12 PDF BibTeX XML Cite \textit{G. Ivanov} and \textit{M. Naszódi}, J. Funct. Anal. 282, No. 11, Article ID 109441, 44 p. (2022; Zbl 07495779) Full Text: DOI OpenURL
D’Hoker, Eric; Schlotterer, Oliver Identities among higher genus modular graph tensors. (English) Zbl 1486.81152 Commun. Number Theory Phys. 16, No. 1, 35-74 (2022). MSC: 81T32 81T18 81S40 30F10 11F06 81T15 PDF BibTeX XML Cite \textit{E. D'Hoker} and \textit{O. Schlotterer}, Commun. Number Theory Phys. 16, No. 1, 35--74 (2022; Zbl 1486.81152) Full Text: DOI arXiv OpenURL
Yousaf, Z.; Bamba, Kazuharu; Bhatti, M. Z.; Farwa, U. Quasi static evolution of compact objects in modified gravity. (English) Zbl 1484.83086 Gen. Relativ. Gravitation 54, No. 1, Paper No. 7, 24 p. (2022). MSC: 83D05 85A15 46T12 83C55 83C40 PDF BibTeX XML Cite \textit{Z. Yousaf} et al., Gen. Relativ. Gravitation 54, No. 1, Paper No. 7, 24 p. (2022; Zbl 1484.83086) Full Text: DOI arXiv OpenURL
Mazzucchi, Sonia Mathematical Feynman path integrals and their applications. 2nd edition. (English) Zbl 1477.81003 Singapore: World Scientific (ISBN 978-981-12-1478-3/hbk; 978-981-12-1480-6/ebook). xiii, 345 p. (2022). MSC: 81-02 81Q30 81S40 58D30 46T12 28C20 PDF BibTeX XML Cite \textit{S. Mazzucchi}, Mathematical Feynman path integrals and their applications. 2nd edition. Singapore: World Scientific (2022; Zbl 1477.81003) Full Text: DOI OpenURL
Mouchet, Amaury Path integrals in a multiply-connected configuration space (50 years after). (English) Zbl 1483.81094 Found. Phys. 51, No. 6, Paper No. 107, 25 p. (2021). MSC: 81S40 46T12 14H45 81V27 14F35 PDF BibTeX XML Cite \textit{A. Mouchet}, Found. Phys. 51, No. 6, Paper No. 107, 25 p. (2021; Zbl 1483.81094) Full Text: DOI arXiv OpenURL
Boonpogkrong, Varayu Path integrals for scalar fields: the Henstock approach. (English) Zbl 07449407 Southeast Asian Bull. Math. 45, No. 4, 445-459 (2021). MSC: 81S40 46T12 PDF BibTeX XML Cite \textit{V. Boonpogkrong}, Southeast Asian Bull. Math. 45, No. 4, 445--459 (2021; Zbl 07449407) OpenURL
Fukushima, Shota Time-slicing approximation of Feynman path integrals on compact manifolds. (English) Zbl 1480.81057 Ann. Henri Poincaré 22, No. 11, 3871-3914 (2021). MSC: 81Q30 35Q41 81Q35 81S40 46E36 58J47 PDF BibTeX XML Cite \textit{S. Fukushima}, Ann. Henri Poincaré 22, No. 11, 3871--3914 (2021; Zbl 1480.81057) Full Text: DOI arXiv OpenURL
Ivanov, Grigory; Tsiutsiurupa, Igor Functional Löwner ellipsoids. (English) Zbl 1476.52005 J. Geom. Anal. 31, No. 11, 11493-11528 (2021). MSC: 52A23 52A40 46T12 26B25 PDF BibTeX XML Cite \textit{G. Ivanov} and \textit{I. Tsiutsiurupa}, J. Geom. Anal. 31, No. 11, 11493--11528 (2021; Zbl 1476.52005) Full Text: DOI arXiv OpenURL
Colosi, Daniele; Oeckl, Robert Locality and general vacua in quantum field theory. (English) Zbl 07413746 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 073, 83 p. (2021). MSC: 81P16 81S10 81S40 81T20 81T70 PDF BibTeX XML Cite \textit{D. Colosi} and \textit{R. Oeckl}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 073, 83 p. (2021; Zbl 07413746) Full Text: DOI arXiv OpenURL
Skliros, Dimitri; Lüst, Dieter Handle operators in string theory. (English) Zbl 1476.81098 Phys. Rep. 897, 1-180 (2021). MSC: 81T30 14D22 81S40 14H55 17B69 81T18 81R10 PDF BibTeX XML Cite \textit{D. Skliros} and \textit{D. Lüst}, Phys. Rep. 897, 1--180 (2021; Zbl 1476.81098) Full Text: DOI arXiv OpenURL
Ivanov, A. V. Notes on functional integration. (English) Zbl 1471.81060 J. Math. Sci., New York 257, No. 4, 518-525 (2021) and Zap. Nauchn. Semin. POMI 487, 140-150 (2019). MSC: 81S40 46N20 55P35 81T18 46F10 81Q05 PDF BibTeX XML Cite \textit{A. V. Ivanov}, J. Math. Sci., New York 257, No. 4, 518--525 (2021; Zbl 1471.81060) Full Text: DOI OpenURL
Holevo, A. S. Structure of a general quantum Gaussian observable. (English. Russian original) Zbl 1468.81044 Proc. Steklov Inst. Math. 313, 70-77 (2021); translation from Tr. Mat. Inst. Steklova 313, 78-86 (2021). MSC: 81Q10 81V73 46T12 81V80 62H05 46G10 81P47 PDF BibTeX XML Cite \textit{A. S. Holevo}, Proc. Steklov Inst. Math. 313, 70--77 (2021; Zbl 1468.81044); translation from Tr. Mat. Inst. Steklova 313, 78--86 (2021) Full Text: DOI arXiv OpenURL
Corcoran, Luke; Loebbert, Florian; Miczajka, Julian; Staudacher, Matthias Minkowski box from Yangian bootstrap. (English) Zbl 1462.81094 J. High Energy Phys. 2021, No. 4, Paper No. 160, 22 p. (2021). MSC: 81Q30 81S40 PDF BibTeX XML Cite \textit{L. Corcoran} et al., J. High Energy Phys. 2021, No. 4, Paper No. 160, 22 p. (2021; Zbl 1462.81094) Full Text: DOI arXiv OpenURL
Lim, Lek-Heng; Wong, Ken Sze-Wai; Ye, Ke The Grassmannian of affine subspaces. (English) Zbl 1485.14096 Found. Comput. Math. 21, No. 2, 537-574 (2021). Reviewer: Emilia Mezzetti (Trieste) MSC: 14M15 22F30 46T12 53C30 57R22 62H10 PDF BibTeX XML Cite \textit{L.-H. Lim} et al., Found. Comput. Math. 21, No. 2, 537--574 (2021; Zbl 1485.14096) Full Text: DOI arXiv OpenURL
Murayama, Taro A third representation of Feynman-Kac-Itô formula with singular magnetic vector potential. (English) Zbl 1480.60143 Lett. Math. Phys. 111, No. 2, Paper No. 33, 21 p. (2021); correction ibid. 111, No. 2, Paper No. 49, 1 p. (2021). MSC: 60H05 60J65 81S40 PDF BibTeX XML Cite \textit{T. Murayama}, Lett. Math. Phys. 111, No. 2, Paper No. 33, 21 p. (2021; Zbl 1480.60143) Full Text: DOI OpenURL
Feichtinger, Hans G.; Nicola, Fabio; Trapasso, S. Ivan On exceptional times for pointwise convergence of integral kernels in Feynman-Trotter path integrals. (English) Zbl 1466.35305 Cicognani, Massimo (ed.) et al., Anomalies in partial differential equations. Based on talks given at the INDAM workshop, University of Rome “La Sapienza”, Rome, Italy, September 9–13, 2019. Cham: Springer. Springer INdAM Ser. 43, 293-311 (2021). MSC: 35Q41 81S40 42A38 PDF BibTeX XML Cite \textit{H. G. Feichtinger} et al., Springer INdAM Ser. 43, 293--311 (2021; Zbl 1466.35305) Full Text: DOI arXiv OpenURL
Kosmala, Tomasz; Riedle, Markus Stochastic integration with respect to cylindrical Lévy processes by \(p\)-summing operators. (English) Zbl 07306271 J. Theor. Probab. 34, No. 1, 477-497 (2021). MSC: 47B10 60G51 46T12 60H15 PDF BibTeX XML Cite \textit{T. Kosmala} and \textit{M. Riedle}, J. Theor. Probab. 34, No. 1, 477--497 (2021; Zbl 07306271) Full Text: DOI arXiv OpenURL
Braglia, Matteo; Hazra, Dhiraj Kumar; Finelli, Fabio; Smoot, George F.; Sriramkumar, L.; Starobinsky, Alexei A. Generating PBHs and small-scale GWs in two-field models of inflation. (English) Zbl 07506298 J. Cosmol. Astropart. Phys. 2020, No. 8, Paper No. 1, 25 p. (2020). MSC: 83E05 83C57 83C56 83C35 47A10 53C21 35B20 46T12 83B05 PDF BibTeX XML Cite \textit{M. Braglia} et al., J. Cosmol. Astropart. Phys. 2020, No. 8, Paper No. 1, 25 p. (2020; Zbl 07506298) Full Text: DOI OpenURL
Trapasso, S. Ivan A time-frequency analysis perspective on Feynman path integrals. (English) Zbl 1484.81065 Boggiatto, Paolo (ed.) et al., Landscapes of time-frequency analysis. Based on talks given at the second international conference on aspects of time-frequency analysis (ATFA 19), Politecnico di Torino, Torino, Italy, June 25–27, 2019. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 175-202 (2020). MSC: 81S40 81Q30 35S05 PDF BibTeX XML Cite \textit{S. I. Trapasso}, in: Landscapes of time-frequency analysis. Based on talks given at the second international conference on aspects of time-frequency analysis (ATFA 19), Politecnico di Torino, Torino, Italy, June 25--27, 2019. Cham: Birkhäuser. 175--202 (2020; Zbl 1484.81065) Full Text: DOI arXiv OpenURL
Padmanabhan, T. A class of QFTs with higher derivative field equations leading to standard dispersion relation for the particle excitations. (English) Zbl 1472.81148 Phys. Lett., B 811, Article ID 135912, 5 p. (2020). MSC: 81T10 81T18 81R10 81S40 PDF BibTeX XML Cite \textit{T. Padmanabhan}, Phys. Lett., B 811, Article ID 135912, 5 p. (2020; Zbl 1472.81148) Full Text: DOI arXiv OpenURL
Güneysu, Batu; Keller, Matthias Feynman path integrals for magnetic Schrödinger operators on infinite weighted graphs. (English) Zbl 07317803 J. Anal. Math. 141, No. 2, 751-770 (2020). Reviewer: Takashi Ichinose (Kanazawa) MSC: 47D08 46T12 81S40 PDF BibTeX XML Cite \textit{B. Güneysu} and \textit{M. Keller}, J. Anal. Math. 141, No. 2, 751--770 (2020; Zbl 07317803) Full Text: DOI arXiv OpenURL
Emamirad, Hassan; Rougirel, Arnaud Feynman path formula for the time fractional Schrödinger equation. (English) Zbl 1451.35150 Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3391-3400 (2020). MSC: 35Q41 81Q30 26A33 PDF BibTeX XML Cite \textit{H. Emamirad} and \textit{A. Rougirel}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3391--3400 (2020; Zbl 1451.35150) Full Text: DOI OpenURL
Srikant, Akshay Yelleshpur Spherical contours, IR divergences and the geometry of Feynman parameter integrands at one loop. (English) Zbl 1451.81241 J. High Energy Phys. 2020, No. 7, Paper No. 236, 27 p. (2020). MSC: 81Q30 81S40 81T60 70S15 PDF BibTeX XML Cite \textit{A. Y. Srikant}, J. High Energy Phys. 2020, No. 7, Paper No. 236, 27 p. (2020; Zbl 1451.81241) Full Text: DOI arXiv OpenURL
Gough, John E.; Ratiu, Tudor S.; Smolyanov, Oleg G. Quantum anomalies via differential properties of Lebesgue-Feynman generalized measures. (English. Russian original) Zbl 1453.81031 Proc. Steklov Inst. Math. 310, 98-107 (2020); translation from Tr. Mat. Inst. Steklova 310, 107-118 (2020). MSC: 81Q30 81T18 81T50 34A06 46T12 45F05 PDF BibTeX XML Cite \textit{J. E. Gough} et al., Proc. Steklov Inst. Math. 310, 98--107 (2020; Zbl 1453.81031); translation from Tr. Mat. Inst. Steklova 310, 107--118 (2020) Full Text: DOI OpenURL
Benzair, H.; Merad, M.; Boudjedaa, T. Path integral for quantum dynamics with position-dependent mass within the displacement operator approach. (English) Zbl 1448.81422 Mod. Phys. Lett. A 35, No. 30, Article ID 2050246, 13 p. (2020). MSC: 81S40 81Q30 PDF BibTeX XML Cite \textit{H. Benzair} et al., Mod. Phys. Lett. A 35, No. 30, Article ID 2050246, 13 p. (2020; Zbl 1448.81422) Full Text: DOI OpenURL
Rajeev, Karthik; Padmanabhan, T. Exploring the Rindler vacuum and the Euclidean plane. (English) Zbl 1452.81154 J. Math. Phys. 61, No. 6, 062302, 27 p. (2020). MSC: 81T20 81T18 46T12 PDF BibTeX XML Cite \textit{K. Rajeev} and \textit{T. Padmanabhan}, J. Math. Phys. 61, No. 6, 062302, 27 p. (2020; Zbl 1452.81154) Full Text: DOI arXiv OpenURL
Capobianco, Guillermo; Reartes, Walter Holomorphic path integrals in tangent space for flat manifolds. (English) Zbl 1448.53090 J. Geom. Symmetry Phys. 55, 21-37 (2020). MSC: 53Z05 81S40 PDF BibTeX XML Cite \textit{G. Capobianco} and \textit{W. Reartes}, J. Geom. Symmetry Phys. 55, 21--37 (2020; Zbl 1448.53090) Full Text: DOI arXiv Euclid OpenURL
Hartung, Tobias; Jansen, Karl Integrating gauge fields in the \(\zeta\)-formulation of Feynman’s path integral. (English) Zbl 1442.81052 Boggiatto, Paolo (ed.) et al., Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2–6, 2018. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 241-258 (2020). MSC: 81T13 81T15 81S40 35S30 14G10 PDF BibTeX XML Cite \textit{T. Hartung} and \textit{K. Jansen}, in: Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2--6, 2018. Cham: Birkhäuser. 241--258 (2020; Zbl 1442.81052) Full Text: DOI arXiv OpenURL
Albeverio, S.; Cangiotti, N.; Mazzucchi, S. A rigorous mathematical construction of Feynman path integrals for the Schrödinger equation with magnetic field. (English) Zbl 1465.46079 Commun. Math. Phys. 377, No. 2, 1461-1503 (2020). Reviewer: Stefan Groote (Tartu) MSC: 46T12 46G12 81S40 81Q05 81Q20 46N50 PDF BibTeX XML Cite \textit{S. Albeverio} et al., Commun. Math. Phys. 377, No. 2, 1461--1503 (2020; Zbl 1465.46079) Full Text: DOI arXiv OpenURL
Nicola, Fabio; Trapasso, S. Ivan On the pointwise convergence of the integral kernels in the Feynman-Trotter formula. (English) Zbl 1450.81051 Commun. Math. Phys. 376, No. 3, 2277-2299 (2020). Reviewer: Michael Perelmuter (Kyïv) MSC: 81S40 35S05 42B35 47A58 47D08 PDF BibTeX XML Cite \textit{F. Nicola} and \textit{S. I. Trapasso}, Commun. Math. Phys. 376, No. 3, 2277--2299 (2020; Zbl 1450.81051) Full Text: DOI arXiv OpenURL
Clavier, Pierre; Guo, Li; Paycha, Sylvie; Zhang, Bin Locality and renormalization: universal properties and integrals on trees. (English) Zbl 1439.81078 J. Math. Phys. 61, No. 2, 022301, 19 p. (2020). MSC: 81T18 81T15 17B81 81S40 81R05 PDF BibTeX XML Cite \textit{P. Clavier} et al., J. Math. Phys. 61, No. 2, 022301, 19 p. (2020; Zbl 1439.81078) Full Text: DOI arXiv OpenURL
Ichinose, Wataru On the Feynman path integral for the magnetic Schrödinger equation with a polynomially growing electromagnetic potential. (English) Zbl 1436.81048 Rev. Math. Phys. 32, No. 1, Article ID 2050003, 37 p. (2020). MSC: 81Q30 81Q05 35Q40 81S40 81V10 46E35 PDF BibTeX XML Cite \textit{W. Ichinose}, Rev. Math. Phys. 32, No. 1, Article ID 2050003, 37 p. (2020; Zbl 1436.81048) Full Text: DOI arXiv OpenURL
Sampedro, Juan Carlos On the space of infinite dimensional integrable functions. (English) Zbl 1451.46041 J. Math. Anal. Appl. 488, No. 1, Article ID 124043, 27 p. (2020). MSC: 46G12 28C20 PDF BibTeX XML Cite \textit{J. C. Sampedro}, J. Math. Anal. Appl. 488, No. 1, Article ID 124043, 27 p. (2020; Zbl 1451.46041) Full Text: DOI OpenURL
King, S. D.; Nijhoff, F. W. Quantum variational principle and quantum multiform structure: the case of quadratic Lagrangians. (English) Zbl 1441.81100 Nucl. Phys., B 947, Article ID 114686, 39 p. (2019). Reviewer: Panagiotis Koumantos (Athens) MSC: 81Q30 46T12 70S05 81Q80 81S40 35Q53 37K10 37K60 PDF BibTeX XML Cite \textit{S. D. King} and \textit{F. W. Nijhoff}, Nucl. Phys., B 947, Article ID 114686, 39 p. (2019; Zbl 1441.81100) Full Text: DOI arXiv OpenURL
Bogdanskiĭ, Yu. V. Infinite-dimensional version of the Friedrichs inequality. (English. Russian original) Zbl 1437.58010 Ukr. Math. J. 70, No. 11, 1700-1709 (2019); translation from Ukr. Mat. Zh. 70, No. 11, 1476-1483 (2018). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 58C35 28C20 46G12 46T12 PDF BibTeX XML Cite \textit{Yu. V. Bogdanskiĭ}, Ukr. Math. J. 70, No. 11, 1700--1709 (2019; Zbl 1437.58010); translation from Ukr. Mat. Zh. 70, No. 11, 1476--1483 (2018) Full Text: DOI OpenURL
Castellani, Leonardo History operators in quantum mechanics. (English) Zbl 1447.81033 Int. J. Quantum Inf. 17, No. 8, Article ID 1941001, 17 p. (2019). MSC: 81P40 81P05 81P15 81Q30 81S40 81V80 PDF BibTeX XML Cite \textit{L. Castellani}, Int. J. Quantum Inf. 17, No. 8, Article ID 1941001, 17 p. (2019; Zbl 1447.81033) Full Text: DOI arXiv OpenURL
Ai, Wen-Yuan; Garbrecht, Björn; Tamarit, Carlos Functional methods for false-vacuum decay in real time. (English) Zbl 1431.81103 J. High Energy Phys. 2019, No. 12, Paper No. 95, 70 p. (2019). MSC: 81T16 81S40 PDF BibTeX XML Cite \textit{W.-Y. Ai} et al., J. High Energy Phys. 2019, No. 12, Paper No. 95, 70 p. (2019; Zbl 1431.81103) Full Text: DOI arXiv OpenURL
Linker, Patrick; Ozel, Cenap A special form of the path integral for the master constraint of loop quantum gravity. (English) Zbl 1432.81050 JP J. Geom. Topol. 22, No. 1, 65-72 (2019). MSC: 81S40 81Q30 81V70 83C45 PDF BibTeX XML Cite \textit{P. Linker} and \textit{C. Ozel}, JP J. Geom. Topol. 22, No. 1, 65--72 (2019; Zbl 1432.81050) Full Text: DOI OpenURL
Baverez, Guillaume Modular bootstrap agrees with the path integral in the large moduli limit. (English) Zbl 1428.81126 Electron. J. Probab. 24, Paper No. 144, 22 p. (2019). MSC: 81T40 46T12 81S40 60D05 PDF BibTeX XML Cite \textit{G. Baverez}, Electron. J. Probab. 24, Paper No. 144, 22 p. (2019; Zbl 1428.81126) Full Text: DOI arXiv Euclid OpenURL
Arias-Tamargo, G.; Rodriguez-Gomez, D.; Russo, J. G. The large charge limit of scalar field theories, and the Wilson-Fisher fixed point at \(\varepsilon = 0\). (English) Zbl 1427.81112 J. High Energy Phys. 2019, No. 10, Paper No. 201, 13 p. (2019). MSC: 81T40 81T17 81T18 81S40 PDF BibTeX XML Cite \textit{G. Arias-Tamargo} et al., J. High Energy Phys. 2019, No. 10, Paper No. 201, 13 p. (2019; Zbl 1427.81112) Full Text: DOI arXiv OpenURL
Nicola, Fabio; Ivan Trapasso, S. Approximation of Feynman path integrals with non-smooth potentials. (English) Zbl 1427.81065 J. Math. Phys. 60, No. 10, 102103, 13 p. (2019). MSC: 81S40 81Q30 41A58 PDF BibTeX XML Cite \textit{F. Nicola} and \textit{S. Ivan Trapasso}, J. Math. Phys. 60, No. 10, 102103, 13 p. (2019; Zbl 1427.81065) Full Text: DOI arXiv OpenURL
Forlano, Justin; Trenberth, William J. On the transport of Gaussian measures under the one-dimensional fractional nonlinear Schrödinger equations. (English) Zbl 1427.35253 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 7, 1987-2025 (2019). MSC: 35Q55 35R11 46T12 PDF BibTeX XML Cite \textit{J. Forlano} and \textit{W. J. Trenberth}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 7, 1987--2025 (2019; Zbl 1427.35253) Full Text: DOI arXiv OpenURL
Mnev, Pavel Quantum field theory: Batalin-Vilkovisky formalism and its applications. (English) Zbl 1485.81003 University Lecture Series 72. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5271-1/pbk; 978-1-4704-5368-8/ebook). ix, 186 p. (2019). MSC: 81-01 81T18 81T13 58A50 53D55 81S40 PDF BibTeX XML Cite \textit{P. Mnev}, Quantum field theory: Batalin-Vilkovisky formalism and its applications. Providence, RI: American Mathematical Society (AMS) (2019; Zbl 1485.81003) Full Text: DOI OpenURL
Kumano-go, Naoto Phase space Feynman path integrals of parabolic type with smooth functional derivatives. (English) Zbl 1423.81124 Bull. Sci. Math. 153, 1-27 (2019). MSC: 81S40 81S30 35S05 35K10 35K25 81Q30 PDF BibTeX XML Cite \textit{N. Kumano-go}, Bull. Sci. Math. 153, 1--27 (2019; Zbl 1423.81124) Full Text: DOI OpenURL
Das, Ashok Field theory. A path integral approach. 3rd edition. (English) Zbl 1418.81004 World Scientific Lecture Notes in Physics 83. Hackensack, NJ: World Scientific (ISBN 978-981-12-0254-4/hbk; 978-981-12-0266-7/pbk; 978-981-12-0256-8/ebook). xiv, 474 p. (2019). MSC: 81-02 81S40 81T18 PDF BibTeX XML Cite \textit{A. Das}, Field theory. A path integral approach. 3rd edition. Hackensack, NJ: World Scientific (2019; Zbl 1418.81004) Full Text: DOI OpenURL
Bolokhov, T. A. Regularization of propagators and logarithms in the background field method in four dimensions. (English. Russian original) Zbl 1419.81027 J. Math. Sci., New York 238, No. 6, 804-818 (2019); translation from Zap. Nauchn. Semin. POMI 465, 61-81 (2017). MSC: 81T10 83C47 46T12 PDF BibTeX XML Cite \textit{T. A. Bolokhov}, J. Math. Sci., New York 238, No. 6, 804--818 (2019; Zbl 1419.81027); translation from Zap. Nauchn. Semin. POMI 465, 61--81 (2017) Full Text: DOI arXiv OpenURL
Cho, Dong Hyun; Park, Suk Bong Conditional Fourier-Feynman transforms with drift on a function space. (English) Zbl 1427.46029 J. Funct. Spaces 2019, Article ID 9483724, 16 p. (2019). MSC: 46G12 81S40 PDF BibTeX XML Cite \textit{D. H. Cho} and \textit{S. B. Park}, J. Funct. Spaces 2019, Article ID 9483724, 16 p. (2019; Zbl 1427.46029) Full Text: DOI OpenURL
Nicola, Fabio On the time slicing approximation of Feynman path integrals for non-smooth potentials. (English) Zbl 1417.81145 J. Anal. Math. 137, No. 2, 529-558 (2019). MSC: 81S40 81Q30 41A65 46E35 PDF BibTeX XML Cite \textit{F. Nicola}, J. Anal. Math. 137, No. 2, 529--558 (2019; Zbl 1417.81145) Full Text: DOI arXiv OpenURL
Ma, Chao; Ma, Qinghua; Yao, Haixiang; Hou, Tiancheng An accurate European option pricing model under fractional stable process based on Feynman path integral. (English) Zbl 07548363 Physica A 494, 87-117 (2018). MSC: 91G20 46T12 60G22 PDF BibTeX XML Cite \textit{C. Ma} et al., Physica A 494, 87--117 (2018; Zbl 07548363) Full Text: DOI OpenURL
Boukabcha, H.; Hachama, M.; Diaf, A. Ro-vibrational energies of the shifted Deng-Fan oscillator potential with Feynman path integral formalism. (English) Zbl 1426.82033 Appl. Math. Comput. 321, 121-129 (2018). MSC: 82C10 81S40 PDF BibTeX XML Cite \textit{H. Boukabcha} et al., Appl. Math. Comput. 321, 121--129 (2018; Zbl 1426.82033) Full Text: DOI OpenURL
Mohameden, Hammah; Ouerdiane, Habib Feynman integrals for a new class of time-dependent exponentially growing potentials. (English) Zbl 1404.81109 Khrennikov, Andrei (ed.) et al., Quantum foundations, probability and information. Cham: Springer (ISBN 978-3-319-74970-9/hbk; 978-3-319-74971-6/ebook). STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, 169-196 (2018). MSC: 81Q30 81S40 60H40 46G20 46F25 PDF BibTeX XML Cite \textit{H. Mohameden} and \textit{H. Ouerdiane}, in: Quantum foundations, probability and information. Cham: Springer. 169--196 (2018; Zbl 1404.81109) Full Text: DOI OpenURL
Benzair, H.; Merad, M.; Boudjedaa, T. Electron propagator with vector and scalar energy-dependent potentials in \((2+1)\)-dimensional space-time. (English) Zbl 1403.81032 Int. J. Mod. Phys. A 33, No. 32, Article ID 1850186, 25 p. (2018). MSC: 81S40 81Q60 81Q05 81R20 81Q30 47A10 PDF BibTeX XML Cite \textit{H. Benzair} et al., Int. J. Mod. Phys. A 33, No. 32, Article ID 1850186, 25 p. (2018; Zbl 1403.81032) Full Text: DOI OpenURL
Ichinose, Wataru Notes on the Feynman path integral for the Dirac equation. (English) Zbl 1402.81158 J. Pseudo-Differ. Oper. Appl. 9, No. 4, 789-809 (2018). MSC: 81Q30 35Q40 PDF BibTeX XML Cite \textit{W. Ichinose}, J. Pseudo-Differ. Oper. Appl. 9, No. 4, 789--809 (2018; Zbl 1402.81158) Full Text: DOI arXiv OpenURL
Bogdanskii, Yu. V.; Moravetskaya, E. V. Transitivity of the surface measures on Banach manifolds with uniform structures. (English. Russian original) Zbl 1416.46071 Ukr. Math. J. 69, No. 10, 1507-1519 (2018); translation from Ukr. Mat. Zh. 69, No. 10, 1299-1309 (2017). MSC: 46T12 58C35 PDF BibTeX XML Cite \textit{Yu. V. Bogdanskii} and \textit{E. V. Moravetskaya}, Ukr. Math. J. 69, No. 10, 1507--1519 (2018; Zbl 1416.46071); translation from Ukr. Mat. Zh. 69, No. 10, 1299--1309 (2017) Full Text: DOI OpenURL
Gill, Tepper L. Banach spaces for the Schwartz distributions. (English) Zbl 1411.46022 Real Anal. Exch. 43, No. 1, 1-36 (2018). MSC: 46E30 26A39 PDF BibTeX XML Cite \textit{T. L. Gill}, Real Anal. Exch. 43, No. 1, 1--36 (2018; Zbl 1411.46022) Full Text: arXiv OpenURL
Aurell, Erik Global estimates of errors in quantum computation by the Feynman-Vernon formalism. (English) Zbl 1394.81070 J. Stat. Phys. 171, No. 5, 745-767 (2018). MSC: 81P68 81S40 81S22 81R30 94B70 PDF BibTeX XML Cite \textit{E. Aurell}, J. Stat. Phys. 171, No. 5, 745--767 (2018; Zbl 1394.81070) Full Text: DOI arXiv OpenURL
Loboda, A. A. Itô method for proving the Feynman-Kac formula for the Euclidean analog of the stochastic Schrödinger equation. (English. Russian original) Zbl 1393.60068 Differ. Equ. 54, No. 4, 557-561 (2018); translation from Differ. Uravn. 54, No. 4, 561-564 (2018). MSC: 60H15 81S40 PDF BibTeX XML Cite \textit{A. A. Loboda}, Differ. Equ. 54, No. 4, 557--561 (2018; Zbl 1393.60068); translation from Differ. Uravn. 54, No. 4, 561--564 (2018) Full Text: DOI OpenURL
Ablinger, J.; Blümlein, J.; De Freitas, A.; van Hoeij, M.; Imamoglu, E.; Raab, C. G.; Radu, C.-S.; Schneider, C. Iterated elliptic and hypergeometric integrals for Feynman diagrams. (English) Zbl 1394.81164 J. Math. Phys. 59, No. 6, 062305, 54 p. (2018). Reviewer: T. C. Mohan (Chennai) MSC: 81S40 81V05 81T15 81T18 33C75 PDF BibTeX XML Cite \textit{J. Ablinger} et al., J. Math. Phys. 59, No. 6, 062305, 54 p. (2018; Zbl 1394.81164) Full Text: DOI arXiv Link OpenURL
Dubravina, V. A. Representation of solutions of evolution equations on a ramified surface by Feynman formulae. (English. Russian original) Zbl 1393.81022 Izv. Math. 82, No. 3, 494-511 (2018); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 82, No. 3, 49-68 (2018). MSC: 81S40 81Q30 46T12 PDF BibTeX XML Cite \textit{V. A. Dubravina}, Izv. Math. 82, No. 3, 494--511 (2018; Zbl 1393.81022); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 82, No. 3, 49--68 (2018) Full Text: DOI OpenURL
Zhou, Yajun Wick rotations, Eichler integrals, and multi-loop Feynman diagrams. (English) Zbl 1393.81029 Commun. Number Theory Phys. 12, No. 1, 127-192 (2018). MSC: 81T18 81S40 81Q30 11F99 81T10 PDF BibTeX XML Cite \textit{Y. Zhou}, Commun. Number Theory Phys. 12, No. 1, 127--192 (2018; Zbl 1393.81029) Full Text: DOI arXiv OpenURL
Charbonnier, Séverin; Eynard, Bertrand; David, François Large Strebel graphs and \((3,2)\) Liouville CFT. (English) Zbl 1392.81200 Ann. Henri Poincaré 19, No. 6, 1611-1645 (2018). MSC: 81T40 81T18 81S40 81V17 83C45 05C12 PDF BibTeX XML Cite \textit{S. Charbonnier} et al., Ann. Henri Poincaré 19, No. 6, 1611--1645 (2018; Zbl 1392.81200) Full Text: DOI arXiv OpenURL
Ostrovsky, Dmitry A theory of intermittency differentiation of 1D infinitely divisible multiplicative chaos measures. (English) Zbl 1386.37081 Ann. Henri Poincaré 19, No. 4, 1043-1079 (2018). Reviewer: Kun Soo Chang (Seoul) MSC: 37N20 81S40 81Q50 PDF BibTeX XML Cite \textit{D. Ostrovsky}, Ann. Henri Poincaré 19, No. 4, 1043--1079 (2018; Zbl 1386.37081) Full Text: DOI arXiv OpenURL
O’Carroll, Michael; Faria da Veiga, Paulo A. Scaled lattice fermion fields, stability bounds, and regularity. (English) Zbl 1384.81074 J. Math. Phys. 59, No. 2, 022301, 28 p. (2018). Reviewer: Adrian Tanasa (Talence) MSC: 81T13 81T25 81S40 46T12 81T27 82B30 30H20 PDF BibTeX XML Cite \textit{M. O'Carroll} and \textit{P. A. Faria da Veiga}, J. Math. Phys. 59, No. 2, 022301, 28 p. (2018; Zbl 1384.81074) Full Text: DOI OpenURL
Gordon, James; Semenoff, Gordon W. Erratum: “World-line instantons and the Schwinger effect as a Wentzel-Kramers-Brillouin exact path integral” [J. Math. Phys. 56, 022111 (2015)]. (English) Zbl 1380.81457 J. Math. Phys. 59, No. 1, 019901, 3 p. (2018). MSC: 81V10 81T18 81S40 81T10 81T15 81Q20 78A30 PDF BibTeX XML Cite \textit{J. Gordon} and \textit{G. W. Semenoff}, J. Math. Phys. 59, No. 1, 019901, 3 p. (2018; Zbl 1380.81457) Full Text: DOI OpenURL
Botelho, Luiz C. L. A note on Feynman path integral for electromagnetic external fields. (English) Zbl 1383.81123 Int. J. Theor. Phys. 56, No. 8, 2535-2539 (2017). MSC: 81S40 81V10 81P20 60H40 PDF BibTeX XML Cite \textit{L. C. L. Botelho}, Int. J. Theor. Phys. 56, No. 8, 2535--2539 (2017; Zbl 1383.81123) Full Text: DOI arXiv OpenURL
Lopushansky, Oleh Paley-Wiener isomorphism over infinite-dimensional unitary groups. (English) Zbl 1393.22011 Result. Math. 72, No. 4, 2101-2120 (2017). Reviewer: K. Parthasarathy (Chennai) MSC: 22E66 46T12 46G20 PDF BibTeX XML Cite \textit{O. Lopushansky}, Result. Math. 72, No. 4, 2101--2120 (2017; Zbl 1393.22011) Full Text: DOI arXiv OpenURL
Sen, Ashoke Equivalence of two contour prescriptions in superstring perturbation theory. (English) Zbl 1378.83089 J. High Energy Phys. 2017, No. 4, Paper No. 25, 10 p. (2017). MSC: 83E30 81S40 81U20 81Q15 81Q30 PDF BibTeX XML Cite \textit{A. Sen}, J. High Energy Phys. 2017, No. 4, Paper No. 25, 10 p. (2017; Zbl 1378.83089) Full Text: DOI arXiv OpenURL
Meyer, Christoph Transforming differential equations of multi-loop Feynman integrals into canonical form. (English) Zbl 1378.81064 J. High Energy Phys. 2017, No. 4, Paper No. 6, 43 p. (2017). MSC: 81S40 81T20 81V05 PDF BibTeX XML Cite \textit{C. Meyer}, J. High Energy Phys. 2017, No. 4, Paper No. 6, 43 p. (2017; Zbl 1378.81064) Full Text: DOI arXiv OpenURL
Hartung, Tobias Regularizing Feynman path integrals using the generalized Kontsevich-Vishik trace. (English) Zbl 1377.81088 J. Math. Phys. 58, No. 12, 123505, 19 p. (2017). MSC: 81S40 81Q30 35S30 30B40 81T10 PDF BibTeX XML Cite \textit{T. Hartung}, J. Math. Phys. 58, No. 12, 123505, 19 p. (2017; Zbl 1377.81088) Full Text: DOI arXiv OpenURL
Nagao, Keiichi; Nielsen, Holger Bech Erratum: “Momentum and Hamiltonian in complex action theory”. (English) Zbl 1376.81030 Int. J. Mod. Phys. A 32, No. 32, Article ID 1792003, 2 p. (2017). MSC: 81Q30 81S40 53D05 70S05 PDF BibTeX XML Cite \textit{K. Nagao} and \textit{H. B. Nielsen}, Int. J. Mod. Phys. A 32, No. 32, Article ID 1792003, 2 p. (2017; Zbl 1376.81030) Full Text: DOI OpenURL
Montaldi, J.; Smolyanov, O. G. Feynman path integrals and Lebesgue-Feynman measures. (English. Russian original) Zbl 1377.81089 Dokl. Math. 96, No. 1, 368-372 (2017); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 475, No. 5, 490-495 (2016). MSC: 81S40 81Q30 46T12 PDF BibTeX XML Cite \textit{J. Montaldi} and \textit{O. G. Smolyanov}, Dokl. Math. 96, No. 1, 368--372 (2017; Zbl 1377.81089); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 475, No. 5, 490--495 (2016) Full Text: DOI arXiv OpenURL
Sokolovski, D. Asking photons where they have been in plain language. (English) Zbl 1372.81016 Phys. Lett., A 381, No. 4, 227-232 (2017). MSC: 81P15 81S40 PDF BibTeX XML Cite \textit{D. Sokolovski}, Phys. Lett., A 381, No. 4, 227--232 (2017; Zbl 1372.81016) Full Text: DOI arXiv OpenURL
Patriarca, Marco; Sodano, Pasquale Classical and quantum Brownian motion in an electromagnetic field. (English) Zbl 1371.81195 Fortschr. Phys. 65, No. 6-8, 1600058, 9 p. (2017). MSC: 81S25 60J65 78A25 60H40 82C26 81S40 81R30 PDF BibTeX XML Cite \textit{M. Patriarca} and \textit{P. Sodano}, Fortschr. Phys. 65, No. 6--8, 1600058, 9 p. (2017; Zbl 1371.81195) Full Text: DOI arXiv OpenURL
Shankar, Ramamurti Quantum field theory and condensed matter. An introduction. (English) Zbl 1402.81004 Cambridge: Cambridge University Press (ISBN 978-0-521-59210-9/hbk; 978-1-139-04434-9/ebook). xiv, 439 p. (2017). Reviewer: T. C. Mohan (Chennai) MSC: 81-01 80-01 82-01 81T18 81S40 81V70 81R25 81T17 81T13 82B30 82B10 82B27 00A79 PDF BibTeX XML Cite \textit{R. Shankar}, Quantum field theory and condensed matter. An introduction. Cambridge: Cambridge University Press (2017; Zbl 1402.81004) Full Text: DOI OpenURL
Kromer, Eduard; Overbeck, Ludger; Röder, Jasmin A. L. Path-dependent BSDEs with jumps and their connection to PPIDEs. (English) Zbl 1370.60099 Stoch. Dyn. 17, No. 5, Article ID 1750036, 37 p. (2017). MSC: 60H10 60H20 60H05 60H30 PDF BibTeX XML Cite \textit{E. Kromer} et al., Stoch. Dyn. 17, No. 5, Article ID 1750036, 37 p. (2017; Zbl 1370.60099) Full Text: DOI OpenURL
Perepelkin, E. E.; Sadovnikov, B. I.; Inozemtseva, N. G. Riemann surface and quantization. (English) Zbl 1364.81163 Ann. Phys. 376, 194-217 (2017). MSC: 81S10 81Q30 81S40 PDF BibTeX XML Cite \textit{E. E. Perepelkin} et al., Ann. Phys. 376, 194--217 (2017; Zbl 1364.81163) Full Text: DOI arXiv OpenURL
Saller, Heinrich Operational symmetries. Basic operations in physics. (English) Zbl 1381.81007 Cham: Springer (ISBN 978-3-319-58663-2/hbk; 978-3-319-58664-9/ebook). xi, 574 p. (2017). Reviewer: Dimitar A. Kolev (Sofia) MSC: 81-02 81R10 81V15 81V25 83C20 81Q30 37N20 58D30 00A79 17B10 22E60 22E05 32M05 16W25 81R40 81R50 17B37 20G42 PDF BibTeX XML Cite \textit{H. Saller}, Operational symmetries. Basic operations in physics. Cham: Springer (2017; Zbl 1381.81007) Full Text: DOI OpenURL
Fujiwara, Daisuke Rigorous time slicing approach to Feynman path integrals. (English) Zbl 1388.81002 Mathematical Physics Studies. Tokyo: Springer (ISBN 978-4-431-56551-2/hbk; 978-4-431-56553-6/ebook). ix, 333 p. (2017). Reviewer: Byoung Soo Kim (Seoul) MSC: 81-02 81Q30 81Q05 35Q40 81S40 00A79 PDF BibTeX XML Cite \textit{D. Fujiwara}, Rigorous time slicing approach to Feynman path integrals. Tokyo: Springer (2017; Zbl 1388.81002) Full Text: DOI OpenURL
Satoh, Satoshi; Kappen, Hilbert J.; Saeki, Masami An iterative method for nonlinear stochastic optimal control based on path integrals. (English) Zbl 1359.93541 IEEE Trans. Autom. Control 62, No. 1, 262-276 (2017). MSC: 93E20 49M20 46T12 PDF BibTeX XML Cite \textit{S. Satoh} et al., IEEE Trans. Autom. Control 62, No. 1, 262--276 (2017; Zbl 1359.93541) Full Text: DOI OpenURL
Botelho, Luiz C. L. Lecture notes in topics in path integrals and string representations. (English) Zbl 1375.81002 Hackensack, NJ: World Scientific (ISBN 978-981-3143-46-3/hbk; 978-981-3143-48-7/ebook). xiii, 227 p. (2017). Reviewer: Vladimir Dzhunushaliev (Almaty) MSC: 81-01 81-02 81V05 81T18 81T30 81T08 81Q05 81S40 PDF BibTeX XML Cite \textit{L. C. L. Botelho}, Lecture notes in topics in path integrals and string representations. Hackensack, NJ: World Scientific (2017; Zbl 1375.81002) Full Text: DOI OpenURL
Colosi, Daniele; Dohse, Max The \(S\)-matrix in Schrödinger representation for curved spacetimes in general boundary quantum field theory. (English) Zbl 1360.83022 J. Geom. Phys. 114, 65-84 (2017). MSC: 83C47 83C05 81T20 81S40 PDF BibTeX XML Cite \textit{D. Colosi} and \textit{M. Dohse}, J. Geom. Phys. 114, 65--84 (2017; Zbl 1360.83022) Full Text: DOI arXiv OpenURL
Fine, Dana S.; Sawin, Stephen Path integrals, supersymmetric quantum mechanics, and the Atiyah-Singer index theorem for twisted Dirac. (English) Zbl 1361.81055 J. Math. Phys. 58, No. 1, 012102, 30 p. (2017). Reviewer: Vassilis G. Papanicolaou (Athena) MSC: 81Q30 81Q60 81S40 81R25 81Q35 19K56 35K08 35J05 81Q10 PDF BibTeX XML Cite \textit{D. S. Fine} and \textit{S. Sawin}, J. Math. Phys. 58, No. 1, 012102, 30 p. (2017; Zbl 1361.81055) Full Text: DOI arXiv OpenURL
Modanese, Giovanni Ultra-light and strong: the massless harmonic oscillator and its singular path integral. (English) Zbl 1356.81135 Int. J. Geom. Methods Mod. Phys. 14, No. 1, Article ID 1750010, 10 p. (2017). MSC: 81Q30 81Q05 82C31 PDF BibTeX XML Cite \textit{G. Modanese}, Int. J. Geom. Methods Mod. Phys. 14, No. 1, Article ID 1750010, 10 p. (2017; Zbl 1356.81135) Full Text: DOI arXiv OpenURL
Hu, Yaozhong; Lê, Khoa Nonlinear Young integrals and differential systems in Hölder media. (English) Zbl 1356.60086 Trans. Am. Math. Soc. 369, No. 3, 1935-2002 (2017). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 60H05 60H15 60H10 60H30 60H07 60G60 60G15 60G17 60J60 PDF BibTeX XML Cite \textit{Y. Hu} and \textit{K. Lê}, Trans. Am. Math. Soc. 369, No. 3, 1935--2002 (2017; Zbl 1356.60086) Full Text: DOI arXiv Link OpenURL
Wosiek, Jacek Beyond complex Langevin equations: from simple examples to positive representation of Feynman path integrals directly in the Minkowski time. (English) Zbl 1388.81451 J. High Energy Phys. 2016, No. 4, Paper No. 146, 19 p. (2016). MSC: 81T25 81T18 81S40 PDF BibTeX XML Cite \textit{J. Wosiek}, J. High Energy Phys. 2016, No. 4, Paper No. 146, 19 p. (2016; Zbl 1388.81451) Full Text: DOI arXiv OpenURL
Kordas, G.; Kalantzis, D.; Karanikas, A. I. Coherent-state path integrals in the continuum: the \(SU(2)\) case. (English) Zbl 1380.81134 Ann. Phys. 372, 226-237 (2016). MSC: 81Q30 81V10 PDF BibTeX XML Cite \textit{G. Kordas} et al., Ann. Phys. 372, 226--237 (2016; Zbl 1380.81134) Full Text: DOI arXiv OpenURL
Boudjedaa, B.; Chetouani, L. Feynman propagator for a spinless relativistic particle in Feshbach-Villars representation. (English) Zbl 1380.81100 Rep. Math. Phys. 77, No. 1, 69-86 (2016). MSC: 81Q05 81Q10 15A66 81V70 81Q30 81S40 PDF BibTeX XML Cite \textit{B. Boudjedaa} and \textit{L. Chetouani}, Rep. Math. Phys. 77, No. 1, 69--86 (2016; Zbl 1380.81100) Full Text: DOI OpenURL
Bogner, Christian MPL – a program for computations with iterated integrals on moduli spaces of curves of genus zero. (English) Zbl 1375.81164 Comput. Phys. Commun. 203, 339-353 (2016). MSC: 81S40 68W30 81-04 65Y15 PDF BibTeX XML Cite \textit{C. Bogner}, Comput. Phys. Commun. 203, 339--353 (2016; Zbl 1375.81164) Full Text: DOI arXiv OpenURL
Pang, Tao An introduction to quantum Monte Carlo methods. (English) Zbl 1380.65013 IOP Concise Physics. San Rafael, CA: Morgan & Claypool Publishers; London: IOP Publishing (ISBN 978-1-68174-045-4; 978-1-68174-109-3/ebook). xi, 77 p., not consecutively paged (2016). Reviewer: Jaromír Antoch (Praha) MSC: 65C05 81Q30 81V25 81V45 00A79 65-02 65C10 82B20 81V70 81Q05 PDF BibTeX XML Cite \textit{T. Pang}, An introduction to quantum Monte Carlo methods. San Rafael, CA: Morgan \& Claypool Publishers; London: IOP Publishing (2016; Zbl 1380.65013) Full Text: DOI OpenURL
Sokolovski, D. Weak measurements measure probability amplitudes (and very little else). (English) Zbl 1364.81032 Phys. Lett., A 380, No. 18-19, 1593-1599 (2016). MSC: 81P15 81S40 PDF BibTeX XML Cite \textit{D. Sokolovski}, Phys. Lett., A 380, No. 18--19, 1593--1599 (2016; Zbl 1364.81032) Full Text: DOI arXiv OpenURL
Botelho, Luiz C. L. A note on the stochastic nature of Feynman quantum paths. (English) Zbl 1358.81108 Int. J. Theor. Phys. 55, No. 11, 4665-4670 (2016). MSC: 81Q30 81S40 81P20 81P05 PDF BibTeX XML Cite \textit{L. C. L. Botelho}, Int. J. Theor. Phys. 55, No. 11, 4665--4670 (2016; Zbl 1358.81108) Full Text: DOI arXiv OpenURL
Cerveró, Jose M.; Polo, Pablo P. The one dimensional Schrödinger equation: symmetries, solutions and Feynman propagators. (English) Zbl 1349.81082 Eur. J. Phys. 37, No. 5, Article ID 055401 16 p. (2016). MSC: 81Q05 81Q30 81R05 PDF BibTeX XML Cite \textit{J. M. Cerveró} and \textit{P. P. Polo}, Eur. J. Phys. 37, No. 5, Article ID 055401 16 p. (2016; Zbl 1349.81082) Full Text: DOI OpenURL
Murayama, Taro A probabilistic approach to the zero-mass limit problem for three magnetic relativistic Schrödinger heat semigroups. (English) Zbl 1350.60066 Tsukuba J. Math. 40, No. 1, 1-28 (2016). MSC: 60H30 60G51 60F17 60H05 60J65 60G48 35S10 81S40 PDF BibTeX XML Cite \textit{T. Murayama}, Tsukuba J. Math. 40, No. 1, 1--28 (2016; Zbl 1350.60066) Full Text: DOI arXiv OpenURL
Matone, Marco Dual representation for the generating functional of the Feynman path-integral. (English) Zbl 1345.81070 Nucl. Phys., B 910, 309-335 (2016). MSC: 81S40 81Q30 81T18 35J08 PDF BibTeX XML Cite \textit{M. Matone}, Nucl. Phys., B 910, 309--335 (2016; Zbl 1345.81070) Full Text: DOI arXiv OpenURL