×

Approximate Osher-Solomon schemes for hyperbolic systems. (English) Zbl 1402.35019

Ortegón Gallego, Francisco (ed.) et al., Trends in differential equations and applications. Selected papers based on the presentations at the XXIVth congress on differential equations and applications/XIVth congress on applied mathematics, Cádiz, Spain, June 8–12, 2015. Cham: Springer (ISBN 978-3-319-32012-0/hbk; 978-3-319-32013-7/ebook). SEMA SIMAI Springer Series 8, 1-16 (2016).
Summary: The Osher-Solomon scheme is a classical Riemann solver which enjoys a number of interesting features: it is nonlinear, complete, robust, entropy-satisfying, smooth, etc. However, its practical implementation is rather cumbersome, computationally expensive, and applicable only to certain systems (compressible Euler equations for ideal gases or shallow water equations, for example). In this work, a new class of approximate Osher-Solomon schemes for the numerical approximation of general conservative and nonconservative hyperbolic systems is proposed. They are based on viscosity matrices obtained by polynomial or rational approximations to the Jacobian of the flux evaluated at some average states, and only require a bound on the maximal characteristic speeds. These methods are easy to implement and applicable to general hyperbolic systems, while at the same time they maintain the good properties of the original Osher-Solomon solver. The numerical tests indicate that the schemes are robust, running stable and accurate with a satisfactory time step restriction, and the computational cost is very advantageous with respect to schemes using a complete spectral decomposition of the Jacobians.
For the entire collection see [Zbl 1350.35002].

MSC:

35A35 Theoretical approximation in context of PDEs
35L40 First-order hyperbolic systems
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

PVM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balsara, D.S., Spicer, D.S.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270-292 (1999) · Zbl 0936.76051 · doi:10.1006/jcph.1998.6153
[2] Brackbill, J.U., Barnes, J.C.: The effect of nonzero \(\(∇ · B\)\) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426-430 (1980) · Zbl 0429.76079 · doi:10.1016/0021-9991(80)90079-0
[3] Brio, M., Wu, C.C.: An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75, 400-422 (1988) · Zbl 0637.76125 · doi:10.1016/0021-9991(88)90120-9
[4] Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44, 169-184 (1990) · Zbl 0701.65043 · doi:10.1007/BF02241866
[5] Castro Díaz, M.J., Fernández-Nieto, E.D.: A class of computationally fast first order finite volume solvers: PVM methods. SIAM J. Sci. Comput. 34, A2173-A2196 (2012) · Zbl 1253.65167 · doi:10.1137/100795280
[6] Castro, M.J., Gallardo, J.M., Marquina, A.: A class of incomplete Riemann solvers based on uniform rational approximations to the absolute value function. J. Sci. Comput. 60, 363-389 (2014) · Zbl 1299.76181 · doi:10.1007/s10915-013-9800-2
[7] Dumbser, M., Toro, E.F.: On universal Osher-type schemes for general nonlinear hyperbolic conservation laws. Commun. Comput. Phys. 10 635-671 (2011) · Zbl 1373.76125
[8] Gallardo, J.M., Ortega, S., Asunción, M., Mantas, J.M.: Two-dimensional compact third-order polynomial reconstructions. Solving nonconservative hyperbolic systems using GPUs. J. Sci. Comput. 48, 141-163 (2011) · Zbl 1426.76366
[9] Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97-127 (1999) · Zbl 0926.65090 · doi:10.1006/jcph.1998.6165
[10] Newman, D.J.: Rational approximation to | \(x\) | . Mich. Math. J. 11, 11-14 (1964) · Zbl 0138.04402 · doi:10.1307/mmj/1028999029
[11] Orszag, S.A., Tang, C.M.: Small scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 90, 129-143 (1979) · doi:10.1017/S002211207900210X
[12] Osher, S., Solomon, F.: Upwind difference schemes for hyperbolic conservation laws. Math. Comput. 38, 339-374 (1982) · Zbl 0483.65055 · doi:10.1090/S0025-5718-1982-0645656-0
[13] Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357-372 (1981) · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[14] Serna, S.: A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamics equations. J. Comput. Phys. 228, 4232-4247 (2009) · Zbl 1273.76332 · doi:10.1016/j.jcp.2009.03.001
[15] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2009) · Zbl 1227.76006 · doi:10.1007/b79761
[16] Tóth, G.: The \(\(∇ · \mathbf{B} = 0\)\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605-652 (2000) · Zbl 0980.76051 · doi:10.1006/jcph.2000.6519
[17] Zachary, A.L., Malagoli, A., Colella, P.: A higher-order Godunov method for multidimensional magnetohydrodynamics. SIAM J. Sci. Comput. 15, 263-284 (1994) · Zbl 0797.76063 · doi:10.1137/0915019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.