Alrashedi, Naif R.; Alshammari, Fahad S.; George, Reny Common fixed points of a pair of \(H^\beta\)-Hausdorff multivalued operators in b-metric space and application to integral equations. (English) Zbl 07568112 J. Math. Ext. 16, No. 11, Paper No. 10, 19 p. (2022). MSC: 47H10 47H20 54H25 PDF BibTeX XML Cite \textit{N. R. Alrashedi} et al., J. Math. Ext. 16, No. 11, Paper No. 10, 19 p. (2022; Zbl 07568112) Full Text: DOI OpenURL
Bonnet-Ben Dhia, Anne-Sophie; Chandler-Wilde, Simon N.; Fliss, Sonia On the half-space matching method for real wavenumber. (English) Zbl 07566729 SIAM J. Appl. Math. 82, No. 4, 1287-1311 (2022). MSC: 35J05 35J25 35P25 45B05 45F15 65N30 65N38 78A45 PDF BibTeX XML Cite \textit{A.-S. Bonnet-Ben Dhia} et al., SIAM J. Appl. Math. 82, No. 4, 1287--1311 (2022; Zbl 07566729) Full Text: DOI OpenURL
Feng, Sheng-Ya; Chang, Der-Chen The singular Fredholm integral operators and related integral equations of Chandrasekhar type. (English) Zbl 07565317 Milman, Mario (ed.) et al., Geometric potential analysis. Selected papers based on the presentations at the special session, virtual, July 15–16 and 19, 2021. Berlin: De Gruyter. Adv. Anal. Geom. 6, 89-104 (2022). MSC: 45B05 26D15 47H10 47N20 PDF BibTeX XML Cite \textit{S.-Y. Feng} and \textit{D.-C. Chang}, Adv. Anal. Geom. 6, 89--104 (2022; Zbl 07565317) Full Text: DOI OpenURL
Adama, Kamate; Mbaiguesse, Djibet; Yiyureboula, Bationo Jeremie; Abbo, Bakari; Pare, Youssouf Analytical solution of some nonlinear fractional integro-differential equations of the Fredholm second kind by a new approximation technique of the numerical sba method. (English) Zbl 07564765 Int. J. Numer. Methods Appl. 21, No. 1, 37-58 (2022). MSC: 65Rxx 97N40 97I50 44Axx 40C10 PDF BibTeX XML Cite \textit{K. Adama} et al., Int. J. Numer. Methods Appl. 21, No. 1, 37--58 (2022; Zbl 07564765) Full Text: DOI OpenURL
Egidi, Nadaniela; Giacomini, Josephin; Maponi, Pierluigi A Fredholm integral operator for the differentiation problem. (English) Zbl 07562963 Comput. Appl. Math. 41, No. 5, Paper No. 220, 21 p. (2022). MSC: 45C05 65D25 PDF BibTeX XML Cite \textit{N. Egidi} et al., Comput. Appl. Math. 41, No. 5, Paper No. 220, 21 p. (2022; Zbl 07562963) Full Text: DOI OpenURL
Waphare, B. B. The linear canonical Hankel type transformations associated with translation and convolution. (English) Zbl 07545966 Asian-Eur. J. Math. 15, No. 6, Article ID 2250114, 12 p. (2022). MSC: 44A05 46F12 PDF BibTeX XML Cite \textit{B. B. Waphare}, Asian-Eur. J. Math. 15, No. 6, Article ID 2250114, 12 p. (2022; Zbl 07545966) Full Text: DOI OpenURL
Chu, Yu-Ming; Ullah, Saif; Ali, Muzaher; Tuzzahrah, Ghulam Fatima; Munir, Taj Numerical investigation of Volterra integral equations of second kind using optimal homotopy asymptotic method. (English) Zbl 07545344 Appl. Math. Comput. 430, Article ID 127304, 14 p. (2022). MSC: 65Rxx 45Dxx 45Bxx PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Appl. Math. Comput. 430, Article ID 127304, 14 p. (2022; Zbl 07545344) Full Text: DOI OpenURL
Shahsavaran, Ahmad; Fotros, Forough An effective and simple scheme for solving nonlinear Fredholm integral equations. (English) Zbl 07545151 Math. Model. Anal. 27, No. 2, 215-231 (2022). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{A. Shahsavaran} and \textit{F. Fotros}, Math. Model. Anal. 27, No. 2, 215--231 (2022; Zbl 07545151) Full Text: DOI OpenURL
Guan, Yu; Fang, Tingting; Zhang, Diankun; Jin, Congming Solving Fredholm integral equations using deep learning. (English) Zbl 07541697 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 87, 10 p. (2022). MSC: 65R20 68T07 45B05 PDF BibTeX XML Cite \textit{Y. Guan} et al., Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 87, 10 p. (2022; Zbl 07541697) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Ghadle, Kirtiwant P. Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-differential equations. (English) Zbl 07541069 Iran. J. Math. Sci. Inform. 17, No. 1, 135-144 (2022). MSC: 26A33 34A12 26D10 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, Iran. J. Math. Sci. Inform. 17, No. 1, 135--144 (2022; Zbl 07541069) Full Text: Link OpenURL
Wang, Tingyu; Layton, Simon K.; Barba, Lorena A. Inexact GMRES iterations and relaxation strategies with fast-multipole boundary element method. (English) Zbl 07539434 Adv. Comput. Math. 48, No. 3, Paper No. 32, 25 p. (2022). MSC: 35Q35 35Q60 76D07 76Z05 78A30 35J05 45B05 65N38 65N35 65F10 65D32 78M16 92C35 PDF BibTeX XML Cite \textit{T. Wang} et al., Adv. Comput. Math. 48, No. 3, Paper No. 32, 25 p. (2022; Zbl 07539434) Full Text: DOI OpenURL
Dalmolin, D.; de Azevedo, F. S.; Sauter, E. Advances in the theory of existence and numerical simulations for the one-dimensional transport equation. (English) Zbl 07537568 Appl. Math. Comput. 428, Article ID 127191, 12 p. (2022). MSC: 82Cxx 65Dxx 65Nxx PDF BibTeX XML Cite \textit{D. Dalmolin} et al., Appl. Math. Comput. 428, Article ID 127191, 12 p. (2022; Zbl 07537568) Full Text: DOI OpenURL
Delgado, Julio A Poincaré determinant on the torus. (English) Zbl 07535450 J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 29, 13 p. (2022). MSC: 47B10 35S05 58J40 22E30 PDF BibTeX XML Cite \textit{J. Delgado}, J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 29, 13 p. (2022; Zbl 07535450) Full Text: DOI OpenURL
Durmaz, Muhammet Enes; Cakir, Musa; Amirali, Ilhame; Amiraliyev, Gabil M. Numerical solution of singularly perturbed Fredholm integro-differential equations by homogeneous second order difference method. (English) Zbl 1486.65291 J. Comput. Appl. Math. 412, Article ID 114327, 15 p. (2022). MSC: 65R20 45J05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., J. Comput. Appl. Math. 412, Article ID 114327, 15 p. (2022; Zbl 1486.65291) Full Text: DOI OpenURL
Malham, Simon J. A. Integrability of local and non-local non-commutative fourth-order quintic non-linear Schrödinger equations. (English) Zbl 07531633 IMA J. Appl. Math. 87, No. 2, 231-259 (2022). MSC: 35Q55 35Q41 35A22 37K10 45B05 65R20 PDF BibTeX XML Cite \textit{S. J. A. Malham}, IMA J. Appl. Math. 87, No. 2, 231--259 (2022; Zbl 07531633) Full Text: DOI OpenURL
Kaya, Ruşen; Taşeli, Hasan A Rayleigh-Ritz method for numerical solutions of linear Fredholm integral equations of the second kind. (English) Zbl 07531496 J. Math. Chem. 60, No. 6, 1107-1129 (2022). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{R. Kaya} and \textit{H. Taşeli}, J. Math. Chem. 60, No. 6, 1107--1129 (2022; Zbl 07531496) Full Text: DOI OpenURL
Maioli, Alan C.; Schmidt, Alexandre G. M.; Azado, P. C. Quantum scattering by a Viviani’s curve. (English) Zbl 07530309 Z. Angew. Math. Phys. 73, No. 3, Paper No. 115, 12 p. (2022). MSC: 35Q40 45B05 31A10 78A45 PDF BibTeX XML Cite \textit{A. C. Maioli} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 115, 12 p. (2022; Zbl 07530309) Full Text: DOI OpenURL
Qiu, Renjun; Yan, Liang; Duan, Xiaojun Solving Fredholm integral equation of the first kind using Gaussian process regression. (English) Zbl 07529353 Appl. Math. Comput. 425, Article ID 127032, 9 p. (2022). MSC: 65Rxx 45Bxx 65Txx PDF BibTeX XML Cite \textit{R. Qiu} et al., Appl. Math. Comput. 425, Article ID 127032, 9 p. (2022; Zbl 07529353) Full Text: DOI OpenURL
Mohamed, Amany Saad Shifted Jacobi collocation method for Volterra-Fredholm integral equation. (English) Zbl 07527952 Comput. Methods Differ. Equ. 10, No. 2, 408-418 (2022). MSC: 65R20 65M70 33C45 41A25 PDF BibTeX XML Cite \textit{A. S. Mohamed}, Comput. Methods Differ. Equ. 10, No. 2, 408--418 (2022; Zbl 07527952) Full Text: DOI OpenURL
Le Blanc, Richard Entropic convex duality in the determination of data-constrained kernel-based Bayes-Jaynes priors. (English) Zbl 07523740 J. Convex Anal. 29, No. 2, 623-647 (2022). MSC: 62C10 60E05 45B05 PDF BibTeX XML Cite \textit{R. Le Blanc}, J. Convex Anal. 29, No. 2, 623--647 (2022; Zbl 07523740) Full Text: Link OpenURL
Abdel-Aty, M. A.; Abdou, M. A.; Soliman, A. A. Solvability of quadratic integral equations with singular kernel. (English) Zbl 1487.45002 J. Contemp. Math. Anal., Armen. Acad. Sci. 57, No. 1, 12-25 (2022) and Izv. Nats. Akad. Nauk Armen., Mat. 57, No. 1, 3-18 (2022). MSC: 45E05 45B05 65R20 PDF BibTeX XML Cite \textit{M. A. Abdel-Aty} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 57, No. 1, 12--25 (2022; Zbl 1487.45002) Full Text: DOI OpenURL
Nahid, Nilofar; Nelakanti, Gnaneshwar Convergence analysis of Galerkin and multi-Galerkin methods for nonlinear-Hammerstein integral equations on the half-line using Laguerre polynomials. (English) Zbl 07513112 Int. J. Comput. Math. 99, No. 4, 808-836 (2022). MSC: 65R20 45B05 45G10 PDF BibTeX XML Cite \textit{N. Nahid} and \textit{G. Nelakanti}, Int. J. Comput. Math. 99, No. 4, 808--836 (2022; Zbl 07513112) Full Text: DOI OpenURL
Maierhofer, Georg; Huybrechs, Daan Convergence analysis of oversampled collocation boundary element methods in 2D. (English) Zbl 1487.65188 Adv. Comput. Math. 48, No. 2, Paper No. 11, 39 p. (2022). MSC: 65N35 65N38 65N12 45B05 65K10 35J05 PDF BibTeX XML Cite \textit{G. Maierhofer} and \textit{D. Huybrechs}, Adv. Comput. Math. 48, No. 2, Paper No. 11, 39 p. (2022; Zbl 1487.65188) Full Text: DOI OpenURL
Aissaoui, M. Z.; Bounaya, M. C.; Guebbai, H. Analysis of a nonlinear Volterra-Fredholm integro-differential equation. (English) Zbl 07506080 Quaest. Math. 45, No. 2, 307-325 (2022). MSC: 45J05 45G10 45D05 47H10 65R20 PDF BibTeX XML Cite \textit{M. Z. Aissaoui} et al., Quaest. Math. 45, No. 2, 307--325 (2022; Zbl 07506080) Full Text: DOI OpenURL
Cakir, Musa; Gunes, Baransel Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations. (English) Zbl 07501799 Georgian Math. J. 29, No. 2, 193-203 (2022). MSC: 65L05 65L11 65L12 65L20 45D05 PDF BibTeX XML Cite \textit{M. Cakir} and \textit{B. Gunes}, Georgian Math. J. 29, No. 2, 193--203 (2022; Zbl 07501799) Full Text: DOI OpenURL
Lyalinov, M. A.; Zhu, N. Y. Scattering of a surface wave in a polygonal domain with impedance boundary. (English) Zbl 07490997 St. Petersbg. Math. J. 33, No. 2, 255-282 (2022) and Algebra Anal. 33, No. 2, 98-135 (2021). MSC: 74J20 PDF BibTeX XML Cite \textit{M. A. Lyalinov} and \textit{N. Y. Zhu}, St. Petersbg. Math. J. 33, No. 2, 255--282 (2022; Zbl 07490997) Full Text: DOI OpenURL
Belhireche, Hanane; Guebbai, Hamza On the mixed nonlinear integro-differential equations with weakly singular kernel. (English) Zbl 07490204 Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022). MSC: 45D05 45B05 65R20 PDF BibTeX XML Cite \textit{H. Belhireche} and \textit{H. Guebbai}, Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022; Zbl 07490204) Full Text: DOI OpenURL
Abed, Ayoob M.; Younis, Muhammed F.; Hamoud, Ahmed A. Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM. (English) Zbl 1484.49057 Nonlinear Funct. Anal. Appl. 27, No. 1, 189-201 (2022). MSC: 49M27 65K10 45J05 65R20 PDF BibTeX XML Cite \textit{A. M. Abed} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 189--201 (2022; Zbl 1484.49057) Full Text: Link OpenURL
Raslan, K. R.; Ali, Khalid K.; Ahmed, Reda Gamal; Al-Jeaid, Hind K.; Abd-Elall Ibrahim, Amira Study of nonlocal boundary value problem for the Fredholm-Volterra integro-differential equation. (English) Zbl 1485.45011 J. Funct. Spaces 2022, Article ID 4773005, 16 p. (2022). MSC: 45J05 34K10 65R20 PDF BibTeX XML Cite \textit{K. R. Raslan} et al., J. Funct. Spaces 2022, Article ID 4773005, 16 p. (2022; Zbl 1485.45011) Full Text: DOI OpenURL
Boichuk, Oleksandr; Feruk, Victor Boundary-value problems for weakly singular integral equations. (English) Zbl 1484.45001 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1379-1395 (2022). MSC: 45B05 45E99 45P05 47G10 15A09 PDF BibTeX XML Cite \textit{O. Boichuk} and \textit{V. Feruk}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1379--1395 (2022; Zbl 1484.45001) Full Text: DOI OpenURL
Ezquerro, J. A.; Hernández-Verón, M. A. Location of solutions of Fredholm-Nemytskii integral equations from a Whittaker-type operator. (English) Zbl 1486.45001 Mediterr. J. Math. 19, No. 1, Paper No. 46, 20 p. (2022). Reviewer: Anna Karczewska (Zielona Gora) MSC: 45B05 45L05 47H10 47H30 47N20 PDF BibTeX XML Cite \textit{J. A. Ezquerro} and \textit{M. A. Hernández-Verón}, Mediterr. J. Math. 19, No. 1, Paper No. 46, 20 p. (2022; Zbl 1486.45001) Full Text: DOI OpenURL
Barrera, D.; Bartoň, M.; Chiarella, I.; Remogna, S. On numerical solution of Fredholm and Hammerstein integral equations via Nyström method and Gaussian quadrature rules for splines. (English) Zbl 1484.65334 Appl. Numer. Math. 174, 71-88 (2022). MSC: 65R20 65D07 45B05 45G10 41A55 65D32 PDF BibTeX XML Cite \textit{D. Barrera} et al., Appl. Numer. Math. 174, 71--88 (2022; Zbl 1484.65334) Full Text: DOI OpenURL
Choudhury, Binayak S.; Metiya, Nikhilesh; Kundu, Sunirmal; Chakraborty, Priyam Existence, uniqueness, Ulam-Hyers-Rassias stability, well-posedness and data dependence property related to a fixed point problem in \(\gamma\)-complete metric spaces with application to integral equations. (English) Zbl 1482.54055 Nonlinear Anal., Model. Control 27, No. 1, 121-141 (2022). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{B. S. Choudhury} et al., Nonlinear Anal., Model. Control 27, No. 1, 121--141 (2022; Zbl 1482.54055) Full Text: DOI OpenURL
Webb, J. R. L. Compactness of nonlinear integral operators with discontinuous and with singular kernels. (English) Zbl 07473008 J. Math. Anal. Appl. 509, No. 2, Article ID 126000, 17 p. (2022). MSC: 47-XX PDF BibTeX XML Cite \textit{J. R. L. Webb}, J. Math. Anal. Appl. 509, No. 2, Article ID 126000, 17 p. (2022; Zbl 07473008) Full Text: DOI OpenURL
Bonnet-Ben Dhia, Anne-Sophie; Chandler-Wilde, Simon N.; Fliss, Sonia; Hazard, Christophe; Perfekt, Karl-Mikael; Tjandrawidjaja, Yohanes The complex-scaled half-space matching method. (English) Zbl 1481.35131 SIAM J. Math. Anal. 54, No. 1, 512-557 (2022). MSC: 35J05 35J25 45B05 45F15 65N30 65N38 PDF BibTeX XML Cite \textit{A.-S. Bonnet-Ben Dhia} et al., SIAM J. Math. Anal. 54, No. 1, 512--557 (2022; Zbl 1481.35131) Full Text: DOI arXiv OpenURL
Abdelkawy, M. A.; Amin, A. Z. M.; Lopes, António M. Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations. (English) Zbl 07453264 Comput. Appl. Math. 41, No. 1, Paper No. 2, 21 p. (2022). MSC: 45B05 35R11 65M70 91G60 PDF BibTeX XML Cite \textit{M. A. Abdelkawy} et al., Comput. Appl. Math. 41, No. 1, Paper No. 2, 21 p. (2022; Zbl 07453264) Full Text: DOI OpenURL
Ramesh Kumar, D. Common solution to a pair of nonlinear Fredholm and Volterra integral equations and nonlinear fractional differential equations. (English) Zbl 07444661 J. Comput. Appl. Math. 404, Article ID 113907, 16 p. (2022). MSC: 47H10 54H25 45B05 34A08 PDF BibTeX XML Cite \textit{D. Ramesh Kumar}, J. Comput. Appl. Math. 404, Article ID 113907, 16 p. (2022; Zbl 07444661) Full Text: DOI OpenURL
De Bonis, Maria Carmela; Stanić, Marija P.; Tomović Mladenović, Tatjana V. Nyström methods for approximating the solutions of an integral equation arising from a problem in mathematical biology. (English) Zbl 1482.65233 Appl. Numer. Math. 171, 193-211 (2022). MSC: 65R20 45B05 92-08 PDF BibTeX XML Cite \textit{M. C. De Bonis} et al., Appl. Numer. Math. 171, 193--211 (2022; Zbl 1482.65233) Full Text: DOI OpenURL
Ivanshin, Pyotr N.; Shirokova, Elena A. Construction of complex potentials for multiply connected domains with given boundary circulations and fluxes. (English) Zbl 07543116 J. Integral Equations Appl. 33, No. 4, 451-461 (2021). MSC: 30C20 30-08 PDF BibTeX XML Cite \textit{P. N. Ivanshin} and \textit{E. A. Shirokova}, J. Integral Equations Appl. 33, No. 4, 451--461 (2021; Zbl 07543116) Full Text: DOI OpenURL
Rashid, Saima; Jarad, Fahd; Abualnaja, Khadijah M. On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative. (English) Zbl 07536371 AIMS Math. 6, No. 10, 10920-10946 (2021). MSC: 26A33 26A51 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{S. Rashid} et al., AIMS Math. 6, No. 10, 10920--10946 (2021; Zbl 07536371) Full Text: DOI OpenURL
Seny, Ouedraogo; Francis, Bassono; Rasmane, Yaro; Pare, Youssouf Comparison of three numerical analysis methods on a linear second kind Fredholm integro-differential equation. (English) Zbl 07527585 Adv. Differ. Equ. Control Process. 25, No. 1, 1-10 (2021). MSC: 65R20 45J05 45B05 65L99 PDF BibTeX XML Cite \textit{O. Seny} et al., Adv. Differ. Equ. Control Process. 25, No. 1, 1--10 (2021; Zbl 07527585) Full Text: DOI OpenURL
Ando, Kazunori; Kang, Hyeonbae; Miyanishi, Yoshihisa; Putinar, Mihai Spectral analysis of Neumann-Poincaré operator. (English) Zbl 07523907 Rev. Roum. Math. Pures Appl. 66, No. 3-4, 545-575 (2021). MSC: 31-03 31A10 45B05 47A45 47A70 47B06 74B05 78M22 PDF BibTeX XML Cite \textit{K. Ando} et al., Rev. Roum. Math. Pures Appl. 66, No. 3--4, 545--575 (2021; Zbl 07523907) OpenURL
Mosa, Gamal A.; Abdou, Mohamed A.; Rahby, Ahmed S. Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag. (English) Zbl 1485.65135 AIMS Math. 6, No. 8, 8525-8543 (2021); correction ibid. 7, No. 1, 258-259 (2022). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{G. A. Mosa} et al., AIMS Math. 6, No. 8, 8525--8543 (2021; Zbl 1485.65135) Full Text: DOI OpenURL
Kulikov, Egor Konstantinovich; Makarov, Anton Aleksandrovich On modified spline collocations method for solving the Fredholm integral equation. (Russian. English summary) Zbl 07510833 Differ. Uravn. Protsessy Upr. 2021, No. 4, 211-223 (2021). MSC: 65R20 65D07 45B05 PDF BibTeX XML Cite \textit{E. K. Kulikov} and \textit{A. A. Makarov}, Differ. Uravn. Protsessy Upr. 2021, No. 4, 211--223 (2021; Zbl 07510833) Full Text: Link OpenURL
Phanyaem, Suvimol The integral equation approach for solving the average run length of EWMA procedure for autocorrelated process. (English) Zbl 1486.62321 Thail. Stat. 19, No. 3, 627-641 (2021). MSC: 62P30 45B05 62M10 PDF BibTeX XML Cite \textit{S. Phanyaem}, Thail. Stat. 19, No. 3, 627--641 (2021; Zbl 1486.62321) Full Text: Link OpenURL
Dobrovol’skiĭ, Nikolaĭ Nikolaevich; Skobel’tsyn, Sergeĭ Alekseevich; Tolokonnikov, Lev Alekseevich; Larin, Nikolaĭ Vladimirovich About application of number-theoretic grids in problems of acoustics. (Russian. English summary) Zbl 1485.76069 Chebyshevskiĭ Sb. 22, No. 3(79), 368-382 (2021). MSC: 76M99 76Q05 PDF BibTeX XML Cite \textit{N. N. Dobrovol'skiĭ} et al., Chebyshevskiĭ Sb. 22, No. 3(79), 368--382 (2021; Zbl 1485.76069) Full Text: DOI MNR OpenURL
Shahsavaran, A. Application of Newton-Cotes quadrature rule for nonlinear Hammerstein integral equations. (English) Zbl 07498488 Iran. J. Numer. Anal. Optim. 11, No. 2, 385-399 (2021). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{A. Shahsavaran}, Iran. J. Numer. Anal. Optim. 11, No. 2, 385--399 (2021; Zbl 07498488) Full Text: DOI OpenURL
Atalan, Yunus; Gursoy, Faik; Khan, Abdul Rahim Convergence of S-iterative method to a solution of Fredholm integral equation and data dependency. (English) Zbl 07494025 Facta Univ., Ser. Math. Inf. 36, No. 4, 685-694 (2021). MSC: 65R20 45G10 45B05 PDF BibTeX XML Cite \textit{Y. Atalan} et al., Facta Univ., Ser. Math. Inf. 36, No. 4, 685--694 (2021; Zbl 07494025) Full Text: DOI OpenURL
Kiss, L.; Szeidl, G.; Abderrazek, M. Vibration of an axially loaded heterogeneous pinned-pinned beam with an intermediate roller support. (English) Zbl 07493419 J. Comput. Appl. Mech. 16, No. 2, 99-128 (2021). MSC: 34B27 45C05 74K10 PDF BibTeX XML Cite \textit{L. Kiss} et al., J. Comput. Appl. Mech. 16, No. 2, 99--128 (2021; Zbl 07493419) Full Text: DOI OpenURL
Mirzaei, Seyyed Mahmood; Amirfakhrian, Majid A multidimensional reverse interpolation method and its application in solving the multidimensional Fredholm integral equations. (English) Zbl 07490171 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 160, 13 p. (2021). MSC: 45B05 41A05 PDF BibTeX XML Cite \textit{S. M. Mirzaei} and \textit{M. Amirfakhrian}, Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 160, 13 p. (2021; Zbl 07490171) Full Text: DOI OpenURL
Mohamed, A. S. Spectral solutions with error analysis of Volterra-Fredholm integral equation via generalized Lucas collocation method. (English) Zbl 07489957 Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 178, 11 p. (2021). MSC: 34K40 65N35 11B39 PDF BibTeX XML Cite \textit{A. S. Mohamed}, Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 178, 11 p. (2021; Zbl 07489957) Full Text: DOI OpenURL
Erfanian, Majid; Zeidabadi, Hamed Solving of nonlinear Volterra integro-differential equations in the complex plane with periodic quasi-wavelets. (English) Zbl 07489844 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 221, 13 p. (2021). MSC: 65L60 44A45 45B05 65R20 PDF BibTeX XML Cite \textit{M. Erfanian} and \textit{H. Zeidabadi}, Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 221, 13 p. (2021; Zbl 07489844) Full Text: DOI OpenURL
Kadchenko, S. I.; Stavtseva, A. V.; Ryazanova, L. S. Numerical methods for solving spectral problems on quantum graphs. (English) Zbl 07489456 J. Comput. Eng. Math. 8, No. 3, 49-70 (2021). MSC: 65M70 PDF BibTeX XML Cite \textit{S. I. Kadchenko} et al., J. Comput. Eng. Math. 8, No. 3, 49--70 (2021; Zbl 07489456) Full Text: DOI MNR OpenURL
Vu, Ho; Dong, Le Si Existence and uniqueness of solution for two-dimensional fuzzy Volterra-Fredholm integral equation. (English) Zbl 1485.45001 Thai J. Math. 19, No. 4, 1355-1365 (2021). MSC: 45D05 45B05 47H10 26E50 PDF BibTeX XML Cite \textit{H. Vu} and \textit{L. S. Dong}, Thai J. Math. 19, No. 4, 1355--1365 (2021; Zbl 1485.45001) Full Text: Link OpenURL
Beiglo, H.; Gachpazan, M.; Erfanian, M. Solving nonlinear Fredholm integral equations with PQWs in complex plane. (English) Zbl 1482.65231 Int. J. Dyn. Syst. Differ. Equ. 11, No. 1, 18-30 (2021). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{H. Beiglo} et al., Int. J. Dyn. Syst. Differ. Equ. 11, No. 1, 18--30 (2021; Zbl 1482.65231) Full Text: DOI OpenURL
Ali, Faeem; Ali, Javid; Rodríguez-López, Rosana Approximation of fixed points and the solution of a nonlinear integral equation. (English) Zbl 07487954 Nonlinear Funct. Anal. Appl. 26, No. 5, 869-885 (2021). MSC: 47J26 47H09 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{F. Ali} et al., Nonlinear Funct. Anal. Appl. 26, No. 5, 869--885 (2021; Zbl 07487954) Full Text: Link OpenURL
Yuldashev, T. K.; Saburov, Kh. Kh. On a Fredholm integral equations of first kind with nonlinear deviation. (English) Zbl 1481.45001 Azerb. J. Math. 11, No. 2, 137-152 (2021). MSC: 45B05 PDF BibTeX XML Cite \textit{T. K. Yuldashev} and \textit{Kh. Kh. Saburov}, Azerb. J. Math. 11, No. 2, 137--152 (2021; Zbl 1481.45001) Full Text: Link OpenURL
Naskar, Subhadeep; Mandal, S. C. Torsional impact on a penny-shaped crack at the interface of a semi-infinite medium and an elastic layer. (English) Zbl 1484.74064 Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 26, 10 p. (2021). MSC: 74M20 74R10 74H35 PDF BibTeX XML Cite \textit{S. Naskar} and \textit{S. C. Mandal}, Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 26, 10 p. (2021; Zbl 1484.74064) Full Text: DOI OpenURL
Paseban, Hag Shabnam; Osgooei, Elnaz; Ashpazzadeh, Elmira Alpert wavelet system for solving fractional nonlinear Fredholm integro-differential equations. (English) Zbl 07468464 Comput. Methods Differ. Equ. 9, No. 3, 762-773 (2021). MSC: 65Rxx 65Txx 45Bxx PDF BibTeX XML Cite \textit{H. S. Paseban} et al., Comput. Methods Differ. Equ. 9, No. 3, 762--773 (2021; Zbl 07468464) Full Text: DOI OpenURL
Alipour, Maryam; Soradi-Zeid, Samaneh Optimal control of time delay Fredholm integro-differential equations. (English) Zbl 07467884 J. Math. Model. 9, No. 2, 277-291 (2021). MSC: 34K35 49M25 65R99 PDF BibTeX XML Cite \textit{M. Alipour} and \textit{S. Soradi-Zeid}, J. Math. Model. 9, No. 2, 277--291 (2021; Zbl 07467884) Full Text: DOI OpenURL
Vatulyan, A. O.; Nesterov, S. A. On determination of the thermomechanical characteristics of a functionally graded finite cylinder. (English. Russian original) Zbl 1481.74143 Mech. Solids 56, No. 7, 1429-1438 (2021); translation from Prikl. Mat. Mekh. 85, No. 3, 396-408 (2021). MSC: 74F05 74B05 74G75 74G10 74E05 PDF BibTeX XML Cite \textit{A. O. Vatulyan} and \textit{S. A. Nesterov}, Mech. Solids 56, No. 7, 1429--1438 (2021; Zbl 1481.74143); translation from Prikl. Mat. Mekh. 85, No. 3, 396--408 (2021) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Khandagale, Amol D.; Ghadle, Kirtiwant P. Existence and uniqueness of solutions for nonlinear mixed Volterra-Fredholm integro-differential equations. (English) Zbl 1481.65267 J. Adv. Math. Stud. 14, No. 3, 378-389 (2021). MSC: 65R20 45J05 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., J. Adv. Math. Stud. 14, No. 3, 378--389 (2021; Zbl 1481.65267) Full Text: Link OpenURL
Tompé Weimbapou, E.; Abdourahman; Kengne, E. On delta-extension for a Noether operator. (English. Russian original) Zbl 1483.45002 Russ. Math. 65, No. 11, 34-45 (2021); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 11, 40-53 (2021). Reviewer: Deshna Loonker (Jodhpur) MSC: 45B05 45P05 PDF BibTeX XML Cite \textit{E. Tompé Weimbapou} et al., Russ. Math. 65, No. 11, 34--45 (2021; Zbl 1483.45002); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 11, 40--53 (2021) Full Text: DOI OpenURL
Abtahi, Seiyed Hadi; Rahimi, Hamidreza; Mosleh, Maryam Solving fuzzy Volterra-Fredholm integral equation by fuzzy artificial neural network. (English) Zbl 07455687 Math. Found. Comput. 4, No. 3, 209-219 (2021). MSC: 45D05 26E50 65R20 68T99 PDF BibTeX XML Cite \textit{S. H. Abtahi} et al., Math. Found. Comput. 4, No. 3, 209--219 (2021; Zbl 07455687) Full Text: DOI OpenURL
El-Shenawy, Atallah The approximate solution of the elastic torsion problem of uniform bar with arbitrary cross-section. (English) Zbl 1480.74179 J. Eng. Math. 131, Paper No. 2, 10 p. (2021). MSC: 74K10 74G10 PDF BibTeX XML Cite \textit{A. El-Shenawy}, J. Eng. Math. 131, Paper No. 2, 10 p. (2021; Zbl 1480.74179) Full Text: DOI OpenURL
Negarchi, Neda; Zolfegharifar, Sayyed Yaghoub Solving the optimal control of Volterra-Fredholm integro-differential equation via Müntz polynomials. (English) Zbl 07451179 Jordan J. Math. Stat. 14, No. 3, 453-466 (2021). MSC: 49-XX 45A05 45J05 PDF BibTeX XML Cite \textit{N. Negarchi} and \textit{S. Y. Zolfegharifar}, Jordan J. Math. Stat. 14, No. 3, 453--466 (2021; Zbl 07451179) Full Text: DOI OpenURL
Stanzhytskyi, O. M.; Karakenovar, S. G.; Uteshova, R. E. Averaging method and boundary value problems for systems of Fredholm integro-differential equations. (English) Zbl 07446955 Nonlinear Dyn. Syst. Theory 21, No. 1, 100-113 (2021). MSC: 45B05 45J05 PDF BibTeX XML Cite \textit{O. M. Stanzhytskyi} et al., Nonlinear Dyn. Syst. Theory 21, No. 1, 100--113 (2021; Zbl 07446955) Full Text: Link OpenURL
Esmaeili, H.; Mirzaee, F.; Moazami, D. A discrete collocation scheme to solve Fredholm integral equations of the second kind in high dimensions using radial kernels. (English) Zbl 1476.65339 S\(\vec{\text{e}}\)MA J. 78, No. 1, 93-117 (2021). MSC: 65R20 45A05 45B05 41A63 PDF BibTeX XML Cite \textit{H. Esmaeili} et al., S\(\vec{\text{e}}\)MA J. 78, No. 1, 93--117 (2021; Zbl 1476.65339) Full Text: DOI OpenURL
Ivanshin, Pyotr N. Construction of complex potentials for multiply connected domain. (English) Zbl 1482.30023 J. Appl. Anal. 27, No. 2, 209-217 (2021). MSC: 30C30 30C20 PDF BibTeX XML Cite \textit{P. N. Ivanshin}, J. Appl. Anal. 27, No. 2, 209--217 (2021; Zbl 1482.30023) Full Text: DOI arXiv OpenURL
Perfilieva, Irina; Tam, Pham Thi Minh Fuzzy transform for fuzzy Fredholm integral equation. (English) Zbl 1480.45004 Phuong, Nguyen Hoang (ed.) et al., Soft computing: biomedical and related applications. Cham: Springer. Stud. Comput. Intell. 981, 233-249 (2021). MSC: 45B05 26E50 PDF BibTeX XML Cite \textit{I. Perfilieva} and \textit{P. T. M. Tam}, Stud. Comput. Intell. 981, 233--249 (2021; Zbl 1480.45004) Full Text: DOI OpenURL
Zhou, Cai-lian; Xu, Song; Xie, Lie-jun Linear Fredholm integro-differential-difference equations and their effective computation. (English) Zbl 07439460 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 3, 475-486 (2021). MSC: 34K06 39A06 45A05 45B05 65D15 PDF BibTeX XML Cite \textit{C.-l. Zhou} et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 3, 475--486 (2021; Zbl 07439460) Full Text: DOI OpenURL
Rahmoune, Azedine On the numerical solution of integral equations of the second kind over infinite intervals. (English) Zbl 07435207 J. Appl. Math. Comput. 66, No. 1-2, 129-148 (2021). MSC: 65Rxx PDF BibTeX XML Cite \textit{A. Rahmoune}, J. Appl. Math. Comput. 66, No. 1--2, 129--148 (2021; Zbl 07435207) Full Text: DOI OpenURL
Zakian, Pooya Stochastic finite cell method for structural mechanics. (English) Zbl 1480.74298 Comput. Mech. 68, No. 1, 185-210 (2021). MSC: 74S60 74S05 74K99 PDF BibTeX XML Cite \textit{P. Zakian}, Comput. Mech. 68, No. 1, 185--210 (2021; Zbl 1480.74298) Full Text: DOI OpenURL
Özdemir, İsmet An existence theorem for some nonlinear Volterra-Fredholm integral equations in the space of continuous tempered functions. (English) Zbl 1477.45003 Numer. Funct. Anal. Optim. 42, No. 11, 1287-1307 (2021). MSC: 45G10 45B05 45D05 47H08 47H10 PDF BibTeX XML Cite \textit{İ. Özdemir}, Numer. Funct. Anal. Optim. 42, No. 11, 1287--1307 (2021; Zbl 1477.45003) Full Text: DOI OpenURL
Ersoy, Merve Temizer; Furkan, Hasan On Fredholm-type integral equations in topological Hölder spaces. (English) Zbl 1478.45001 Numer. Funct. Anal. Optim. 42, No. 10, 1209-1221 (2021). Reviewer: Andreas Kleefeld (Jülich) MSC: 45B05 45G10 47H10 PDF BibTeX XML Cite \textit{M. T. Ersoy} and \textit{H. Furkan}, Numer. Funct. Anal. Optim. 42, No. 10, 1209--1221 (2021; Zbl 1478.45001) Full Text: DOI OpenURL
Behera, S.; Saha Ray, S. Euler wavelets method for solving fractional-order linear Volterra-Fredholm integro-differential equations with weakly singular kernels. (English) Zbl 1476.65335 Comput. Appl. Math. 40, No. 6, Paper No. 192, 30 p. (2021). MSC: 65R20 65T60 26A33 45B05 45D05 PDF BibTeX XML Cite \textit{S. Behera} and \textit{S. Saha Ray}, Comput. Appl. Math. 40, No. 6, Paper No. 192, 30 p. (2021; Zbl 1476.65335) Full Text: DOI OpenURL
Jiang, Xiaoying; Xu, Xiang On implied volatility recovery of a time-fractional Black-Scholes equation for double barrier options. (English) Zbl 1484.91518 Appl. Anal. 100, No. 15, 3145-3160 (2021). Reviewer: Deshna Loonker (Jodhpur) MSC: 91G60 65M06 65R20 35R11 45Q05 91G20 45B05 PDF BibTeX XML Cite \textit{X. Jiang} and \textit{X. Xu}, Appl. Anal. 100, No. 15, 3145--3160 (2021; Zbl 1484.91518) Full Text: DOI OpenURL
Javed, Khalil; Uddin, Fahim; Işık, Hüseyin; Al-shami, Tareq M.; Adeel, Faizan; Arshad, Muhammad Some new aspects of metric fixed point theory. (English) Zbl 1477.54091 Adv. Math. Phys. 2021, Article ID 9839311, 8 p. (2021). MSC: 54H25 PDF BibTeX XML Cite \textit{K. Javed} et al., Adv. Math. Phys. 2021, Article ID 9839311, 8 p. (2021; Zbl 1477.54091) Full Text: DOI OpenURL
Allouch, C.; Remogna, S.; Sbibih, D.; Tahrichi, M. Superconvergent methods based on quasi-interpolating operators for Fredholm integral equations of the second kind. (English) Zbl 07424125 Appl. Math. Comput. 404, Article ID 126227, 14 p. (2021). MSC: 65Dxx PDF BibTeX XML Cite \textit{C. Allouch} et al., Appl. Math. Comput. 404, Article ID 126227, 14 p. (2021; Zbl 07424125) Full Text: DOI OpenURL
Zhu, Xianghe; Peng, Chaoquan; Guo, Jun The direct scattering problem for penetrable obstacles included in a cavity. (English) Zbl 1479.35255 Indian J. Pure Appl. Math. 52, No. 2, 313-322 (2021). MSC: 35J05 45B05 35P25 PDF BibTeX XML Cite \textit{X. Zhu} et al., Indian J. Pure Appl. Math. 52, No. 2, 313--322 (2021; Zbl 1479.35255) Full Text: DOI OpenURL
Sozaeva, L. T.; Kagermazov, A. Kh. Application of the A. N. Tikhonov regularization to restoring microstructural characteristics of hail clouds. (English. Russian original) Zbl 1473.86027 J. Math. Sci., New York 259, No. 3, 334-340 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 165, 73-79 (2019). MSC: 86A22 86A10 86-08 PDF BibTeX XML Cite \textit{L. T. Sozaeva} and \textit{A. Kh. Kagermazov}, J. Math. Sci., New York 259, No. 3, 334--340 (2021; Zbl 1473.86027); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 165, 73--79 (2019) Full Text: DOI OpenURL
Shamas, Iqra; Ur Rehman, Saif; Aydi, Hassen; Mahmood, Tayyab; Ameer, Eskandar Unique fixed-point results in fuzzy metric spaces with an application to Fredholm integral equations. (English) Zbl 07413390 J. Funct. Spaces 2021, Article ID 4429173, 12 p. (2021). MSC: 54H25 54A40 54E40 45B05 PDF BibTeX XML Cite \textit{I. Shamas} et al., J. Funct. Spaces 2021, Article ID 4429173, 12 p. (2021; Zbl 07413390) Full Text: DOI OpenURL
Aydi, Hassen; Aslam, Muhammad; Sagheer, Dur-e-Shehwar; Batul, Samina; Ali, Rashid; Ameer, Eskandar Kannan-type contractions on new extended \(b\)-metric spaces. (English) Zbl 07413386 J. Funct. Spaces 2021, Article ID 7613684, 12 p. (2021). MSC: 54H25 54E40 45B05 PDF BibTeX XML Cite \textit{H. Aydi} et al., J. Funct. Spaces 2021, Article ID 7613684, 12 p. (2021; Zbl 07413386) Full Text: DOI OpenURL
Qi, Hui; Chu, Fuqing; Guo, Jing; Sun, Ruochen Dynamic analysis for a vertical interface crack and the nearby circular cavity located at the piezoelectric bi-material half-space under SH-waves. (English) Zbl 1476.74083 Acta Mech. 232, No. 3, 1113-1129 (2021). MSC: 74J20 74R10 74F15 74S70 74H35 PDF BibTeX XML Cite \textit{H. Qi} et al., Acta Mech. 232, No. 3, 1113--1129 (2021; Zbl 1476.74083) Full Text: DOI OpenURL
Ren, Kui; Zhao, Hongkai; Zhong, Yimin Separability of the kernel function in an integral formulation for the anisotropic radiative transfer equation. (English) Zbl 1475.45002 SIAM J. Math. Anal. 53, No. 5, 5613-5645 (2021). MSC: 45B05 85A25 33C55 35Q79 65R20 PDF BibTeX XML Cite \textit{K. Ren} et al., SIAM J. Math. Anal. 53, No. 5, 5613--5645 (2021; Zbl 1475.45002) Full Text: DOI arXiv OpenURL
Ezquerro, J. A.; Hernández-Verón, M. A. Restricted global convergence domains for integral equations of the Fredholm-Hammerstein type. (English) Zbl 1470.65213 Singh, Harendra (ed.) et al., Topics in integral and integro-differential equations. Theory and applications. Cham: Springer. Stud. Syst. Decis. Control 340, 125-148 (2021). MSC: 65R20 45B05 47H30 65J15 PDF BibTeX XML Cite \textit{J. A. Ezquerro} and \textit{M. A. Hernández-Verón}, Stud. Syst. Decis. Control 340, 125--148 (2021; Zbl 1470.65213) Full Text: DOI OpenURL
Laipanova, A. M. On analogue of the Tricomi problem for a third-order equation of mixed type. (Russian. English summary) Zbl 1476.35148 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 13, No. 2, 17-23 (2021). MSC: 35M12 PDF BibTeX XML Cite \textit{A. M. Laipanova}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 13, No. 2, 17--23 (2021; Zbl 1476.35148) Full Text: DOI MNR OpenURL
Ogata, Hidenori A numerical method for Fredholm integral equations of the second kind by the IMT-type DE rules. (English) Zbl 1470.65217 Japan J. Ind. Appl. Math. 38, No. 3, 715-729 (2021). MSC: 65R20 45B05 65D32 PDF BibTeX XML Cite \textit{H. Ogata}, Japan J. Ind. Appl. Math. 38, No. 3, 715--729 (2021; Zbl 1470.65217) Full Text: DOI OpenURL
Feng, Sheng-Ya; Chang, Der-Chen Boundedness and approximation of the Chandrasekhar integral operators in \(L^P\) spaces. (English) Zbl 07399393 J. Nonlinear Var. Anal. 5, No. 5, 683-707 (2021). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{S.-Y. Feng} and \textit{D.-C. Chang}, J. Nonlinear Var. Anal. 5, No. 5, 683--707 (2021; Zbl 07399393) Full Text: DOI OpenURL
Nedaiasl, Khadijeh Sinc projection solutions of Fredholm integral equations. (English) Zbl 1474.65511 Baumann, Gerd (ed.), New sinc methods of numerical analysis. Festschrift in honor of Frank Stenger’s 80th birthday. Based on the presentations at the symposium, Rhodes, Greece, September 13–18, 2018. Cham: Birkhäuser. Trends Math., 35-53 (2021). MSC: 65R20 45B05 45G10 PDF BibTeX XML Cite \textit{K. Nedaiasl}, in: New sinc methods of numerical analysis. Festschrift in honor of Frank Stenger's 80th birthday. Based on the presentations at the symposium, Rhodes, Greece, September 13--18, 2018. Cham: Birkhäuser. 35--53 (2021; Zbl 1474.65511) Full Text: DOI OpenURL
Bian, Pei-Liang; Qing, Hai; Gao, Cun-Fa One-dimensional stress-driven nonlocal integral model with bi-Helmholtz kernel: close form solution and consistent size effect. (English) Zbl 1485.74054 Appl. Math. Modelling 89, Part 1, 400-412 (2021). MSC: 74K10 74H45 74G60 74M25 PDF BibTeX XML Cite \textit{P.-L. Bian} et al., Appl. Math. Modelling 89, Part 1, 400--412 (2021; Zbl 1485.74054) Full Text: DOI OpenURL
Cimen, Erkan; Cakir, Musa A uniform numerical method for solving singularly perturbed Fredholm integro-differential problem. (English) Zbl 1476.65336 Comput. Appl. Math. 40, No. 2, Paper No. 42, 14 p. (2021). MSC: 65R20 45J05 45B05 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{E. Cimen} and \textit{M. Cakir}, Comput. Appl. Math. 40, No. 2, Paper No. 42, 14 p. (2021; Zbl 1476.65336) Full Text: DOI OpenURL
Xu, Minqiang; Niu, Jing; Tohidi, Emran; Hou, Jinjiao; Jiang, Danhua A new least-squares-based reproducing kernel method for solving regular and weakly singular Volterra-Fredholm integral equations with smooth and nonsmooth solutions. (English) Zbl 07394281 Math. Methods Appl. Sci. 44, No. 13, 10772-10784 (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{M. Xu} et al., Math. Methods Appl. Sci. 44, No. 13, 10772--10784 (2021; Zbl 07394281) Full Text: DOI OpenURL
Ersoy, Merve Temizer Solutions of Fredholm type integral equations via the classical Schauder fixed point theorem. (English) Zbl 1480.45003 J. Integral Equations Appl. 33, No. 2, 259-270 (2021). Reviewer: Alexandru Mihai Bica (Oradea) MSC: 45B05 45G10 47H10 55M20 PDF BibTeX XML Cite \textit{M. T. Ersoy}, J. Integral Equations Appl. 33, No. 2, 259--270 (2021; Zbl 1480.45003) Full Text: DOI OpenURL
Laadjal, Zaid; Ma, Qing-Hua Existence and uniqueness of solutions for nonlinear Volterra-Fredholm integro-differential equation of fractional order with boundary conditions. (English) Zbl 1473.45011 Math. Methods Appl. Sci. 44, No. 10, 8215-8227 (2021). MSC: 45J05 45B05 45D05 26A33 PDF BibTeX XML Cite \textit{Z. Laadjal} and \textit{Q.-H. Ma}, Math. Methods Appl. Sci. 44, No. 10, 8215--8227 (2021; Zbl 1473.45011) Full Text: DOI OpenURL
Nair, M. T. Regularization of ill-posed operator equations: an overview. (English) Zbl 1468.65051 J. Anal. 29, No. 2, 519-541 (2021). MSC: 65J10 65R30 45B05 45E99 PDF BibTeX XML Cite \textit{M. T. Nair}, J. Anal. 29, No. 2, 519--541 (2021; Zbl 1468.65051) Full Text: DOI OpenURL
Chen, Shuli; Wang, Zewen; Chen, Guolin Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem. (English) Zbl 1471.35344 Inverse Probl. Imaging 15, No. 4, 619-639 (2021). MSC: 35R60 35R30 35K15 PDF BibTeX XML Cite \textit{S. Chen} et al., Inverse Probl. Imaging 15, No. 4, 619--639 (2021; Zbl 1471.35344) Full Text: DOI OpenURL
Nurmagambetov, Dias An optimal control problem solution for chemical reactor. (English) Zbl 1470.92409 Appl. Appl. Math. 16, No. 1, 451-462 (2021). MSC: 92E20 49J15 93C10 PDF BibTeX XML Cite \textit{D. Nurmagambetov}, Appl. Appl. Math. 16, No. 1, 451--462 (2021; Zbl 1470.92409) Full Text: Link OpenURL
Verlan, A. F.; Malachivskyy, P. S.; Pizyur, Ya. V. Solving the problem of interpreting observations using the spline approximation of the scanned function. (English. Ukrainian original) Zbl 07378096 Cybern. Syst. Anal. 57, No. 4, 584-591 (2021); translation from Kibern. Sist. Anal. 57, No. 4, 95-103 (2021). MSC: 65Dxx 41Axx 41-XX PDF BibTeX XML Cite \textit{A. F. Verlan} et al., Cybern. Syst. Anal. 57, No. 4, 584--591 (2021; Zbl 07378096); translation from Kibern. Sist. Anal. 57, No. 4, 95--103 (2021) Full Text: DOI OpenURL
Curbera, Guillermo P.; Okada, Susumu; Ricker, Werner J. Non-extendability of the finite Hilbert transform. (English) Zbl 1477.44003 Monatsh. Math. 195, No. 4, 649-657 (2021). MSC: 44A15 46E30 47A53 47B34 PDF BibTeX XML Cite \textit{G. P. Curbera} et al., Monatsh. Math. 195, No. 4, 649--657 (2021; Zbl 1477.44003) Full Text: DOI arXiv OpenURL