Sakly, H.; Matoussi, G. Volume integral equations for electromagnetic scattering by an orthotropic infinite cylinder. (English) Zbl 07739963 J. Math. Anal. Appl. 529, No. 1, Article ID 127670, 19 p. (2024). MSC: 78Axx 47Axx 35Jxx PDF BibTeX XML Cite \textit{H. Sakly} and \textit{G. Matoussi}, J. Math. Anal. Appl. 529, No. 1, Article ID 127670, 19 p. (2024; Zbl 07739963) Full Text: DOI
Bernhoff, Niclas Linearized Boltzmann collision operator. II: Polyatomic molecules modeled by a continuous internal energy variable. (English) Zbl 07735750 Kinet. Relat. Models 16, No. 6, 828-849 (2023). MSC: 82C40 35Q20 35Q70 76P05 47G10 PDF BibTeX XML Cite \textit{N. Bernhoff}, Kinet. Relat. Models 16, No. 6, 828--849 (2023; Zbl 07735750) Full Text: DOI arXiv
Kant, Kapil; Kumar, Rakesh; Chakraborty, Samiran; Nelakanti, Gnaneshwar Discrete Galerkin and iterated discrete Galerkin methods for derivative-dependent Fredholm-Hammerstein integral equations with Green’s kernel. (English) Zbl 07735333 Mediterr. J. Math. 20, No. 5, Paper No. 249, 25 p. (2023). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{K. Kant} et al., Mediterr. J. Math. 20, No. 5, Paper No. 249, 25 p. (2023; Zbl 07735333) Full Text: DOI
Lyu, Zhixin On the approximate conformal mapping of the exterior of a spiral slit onto the exterior of a horizontal slit. (English) Zbl 07730188 Lobachevskii J. Math. 44, No. 4, 1426-1431 (2023). MSC: 30C20 30E10 PDF BibTeX XML Cite \textit{Z. Lyu}, Lobachevskii J. Math. 44, No. 4, 1426--1431 (2023; Zbl 07730188) Full Text: DOI
Maksymuk, O. V.; Sachuk, Yu. V.; Yatsyuk, S. M. Plane contact problems for an elastic foundation with two bedding coefficients. (English. Ukrainian original) Zbl 07729744 J. Math. Sci., New York 273, No. 1, 153-162 (2023); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 3, 130-135 (2020). MSC: 74M15 74G10 74G15 PDF BibTeX XML Cite \textit{O. V. Maksymuk} et al., J. Math. Sci., New York 273, No. 1, 153--162 (2023; Zbl 07729744); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 3, 130--135 (2020) Full Text: DOI
Tidke, Haribhau L.; Patil, Gajanan S. Existence of solutions for nonlinear Volterra Fredholm integrodifferential equation of higher order via \(S\)-iteration method. (English) Zbl 07727257 Adv. Differ. Equ. Control Process. 30, No. 3, 237-276 (2023). MSC: 34A12 45B05 37C25 45D05 39B12 PDF BibTeX XML Cite \textit{H. L. Tidke} and \textit{G. S. Patil}, Adv. Differ. Equ. Control Process. 30, No. 3, 237--276 (2023; Zbl 07727257) Full Text: DOI
Lee, Doo-Sung Electrified eccentric circular disk situated in an infinite hollow cylinder. (English) Zbl 07725553 Appl. Anal. 102, No. 9, 2466-2471 (2023). MSC: 31B15 45B05 PDF BibTeX XML Cite \textit{D.-S. Lee}, Appl. Anal. 102, No. 9, 2466--2471 (2023; Zbl 07725553) Full Text: DOI
Guebbai, Hamza; Ghiat, Morad; Merchela, Wassim; Segni, Sami; Stepanenko, Elena Viktorovna Approximate solution of the nonlinear Fredholm integral equation of the second kind. (Russian. English summary) Zbl 07720907 Vladikavkaz. Mat. Zh. 25, No. 1, 33-47 (2023). MSC: 45B05 45E10 65J10 65R20 35P05 PDF BibTeX XML Cite \textit{H. Guebbai} et al., Vladikavkaz. Mat. Zh. 25, No. 1, 33--47 (2023; Zbl 07720907) Full Text: DOI MNR
Bhujel, Manalisha; Hazarika, Bipan Existence of solutions of nonlinear Fredholm-type integral equations in Hölder space. (English) Zbl 07714666 J. Integral Equations Appl. 35, No. 1, 1-10 (2023). MSC: 26B35 45B05 47H08 47H10 PDF BibTeX XML Cite \textit{M. Bhujel} and \textit{B. Hazarika}, J. Integral Equations Appl. 35, No. 1, 1--10 (2023; Zbl 07714666) Full Text: DOI Link
Kulikov, E. K.; Makarov, A. A. A method for solving the Fredholm integral equation of the first kind. (English. Russian original) Zbl 07712789 J. Math. Sci., New York 272, No. 4, 558-565 (2023); translation from Zap. Nauchn. Semin. POMI 514, 113-125 (2022). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{E. K. Kulikov} and \textit{A. A. Makarov}, J. Math. Sci., New York 272, No. 4, 558--565 (2023; Zbl 07712789); translation from Zap. Nauchn. Semin. POMI 514, 113--125 (2022) Full Text: DOI
Mi, Jian; Huang, Jin Collocation method for solving two-dimensional nonlinear Volterra-Fredholm integral equations with convergence analysis. (English) Zbl 07711026 J. Comput. Appl. Math. 428, Article ID 115188, 16 p. (2023). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{J. Mi} and \textit{J. Huang}, J. Comput. Appl. Math. 428, Article ID 115188, 16 p. (2023; Zbl 07711026) Full Text: DOI
Nour, M.-Y.; Lamnii, A.; Zidna, A.; Barrera, D. Non-uniform UE-spline quasi-interpolants and their application to the numerical solution of integral equations. (English) Zbl 07710424 Appl. Numer. Math. 191, 29-44 (2023). Reviewer: Martin D. Buhmann (Gießen) MSC: 41A15 PDF BibTeX XML Cite \textit{M. Y. Nour} et al., Appl. Numer. Math. 191, 29--44 (2023; Zbl 07710424) Full Text: DOI
Momenzade, N.; Vahidi, A. R.; Babolian, E. A numerical method for solving stochastic Volterra-Fredholm integral equation. (English) Zbl 07709518 Iran. J. Math. Sci. Inform. 18, No. 1, 145-164 (2023). MSC: 65C30 60H35 60H05 PDF BibTeX XML Cite \textit{N. Momenzade} et al., Iran. J. Math. Sci. Inform. 18, No. 1, 145--164 (2023; Zbl 07709518) Full Text: Link
Ismaael, Fawzi Muttar An investigation on the existence and uniqueness analysis of the fractional nonlinear integro-differential equations. (English) Zbl 07706120 Nonlinear Funct. Anal. Appl. 28, No. 1, 237-249 (2023). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 26A33 45B05 45D05 47H10 47N20 PDF BibTeX XML Cite \textit{F. M. Ismaael}, Nonlinear Funct. Anal. Appl. 28, No. 1, 237--249 (2023; Zbl 07706120) Full Text: Link
Patel, Subhashree; Laxmi Panigrahi, Bijaya; Nelakanti, Gnaneshwar Multi-projection methods for Fredholm integral equations of the first kind. (English) Zbl 07705593 Int. J. Comput. Math. 100, No. 4, 722-744 (2023). MSC: 65J10 65J20 65J22 PDF BibTeX XML Cite \textit{S. Patel} et al., Int. J. Comput. Math. 100, No. 4, 722--744 (2023; Zbl 07705593) Full Text: DOI
Xiang, Shuhuang; Zhang, Qingyang Asymptotics on the Fredholm integral equation with a highly oscillatory and weakly singular kernel. (English) Zbl 07704202 Appl. Math. Comput. 456, Article ID 128112, 17 p. (2023). MSC: 65Rxx 65Nxx 45Dxx PDF BibTeX XML Cite \textit{S. Xiang} and \textit{Q. Zhang}, Appl. Math. Comput. 456, Article ID 128112, 17 p. (2023; Zbl 07704202) Full Text: DOI
Hashemian, Ali; Sliusarenko, Hanna; Remogna, Sara; Barrera, Domingo; Bartoň, Michael Solving boundary value problems via the Nyström method using spline Gauss rules. (English) Zbl 07703975 Comput. Math. Appl. 143, 33-47 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{A. Hashemian} et al., Comput. Math. Appl. 143, 33--47 (2023; Zbl 07703975) Full Text: DOI
Yadav, Abhishek; Setia, Amit; Agarwal, Ravi P. Error analysis of Chebyshev polynomial-based numerical method for system of hypersingular integral equations. (English) Zbl 07700520 Comput. Appl. Math. 42, No. 5, Paper No. 213, 24 p. (2023). MSC: 45B05 45E05 45F15 PDF BibTeX XML Cite \textit{A. Yadav} et al., Comput. Appl. Math. 42, No. 5, Paper No. 213, 24 p. (2023; Zbl 07700520) Full Text: DOI
Rathore, Ajay Singh; Shanthi, Vembu; Ramos, Higinio A fitted numerical method for a singularly perturbed Fredholm integro-differential equation with discontinuous source term. (English) Zbl 07699000 Appl. Numer. Math. 185, 88-100 (2023). MSC: 65L11 65R20 45B05 PDF BibTeX XML Cite \textit{A. S. Rathore} et al., Appl. Numer. Math. 185, 88--100 (2023; Zbl 07699000) Full Text: DOI
Arnrich, Steffen; Kalies, Grit A natural regularization of the adsorption integral equation with Langmuir-kernel. (English) Zbl 1516.45001 J. Math. Chem. 61, No. 6, 1248-1274 (2023). MSC: 45B05 45E10 45Q05 42A38 PDF BibTeX XML Cite \textit{S. Arnrich} and \textit{G. Kalies}, J. Math. Chem. 61, No. 6, 1248--1274 (2023; Zbl 1516.45001) Full Text: DOI
Beyrami, Hossein; Lotfi, Taher A novel method with error analysis for the numerical solution of a logarithmic singular Fredholm integral equation. (English) Zbl 07692616 Afr. Mat. 34, No. 2, Paper No. 33, 10 p. (2023). MSC: 45Exx 45Bxx PDF BibTeX XML Cite \textit{H. Beyrami} and \textit{T. Lotfi}, Afr. Mat. 34, No. 2, Paper No. 33, 10 p. (2023; Zbl 07692616) Full Text: DOI
Panda, Abhilipsa; Mohapatra, Jugal A robust finite difference method for the solutions of singularly perturbed Fredholm integro-differential equations. (English) Zbl 1511.65156 Mediterr. J. Math. 20, No. 4, Paper No. 198, 19 p. (2023). MSC: 65R30 34K26 45J05 PDF BibTeX XML Cite \textit{A. Panda} and \textit{J. Mohapatra}, Mediterr. J. Math. 20, No. 4, Paper No. 198, 19 p. (2023; Zbl 1511.65156) Full Text: DOI
Kharat, V. V.; Tate, Shivaji; Gophane, M. T.; Gandhi, M. A. Some results on \(\psi\)-Hilfer Volterra-Fredholm fractional integro-differential equations. (English) Zbl 1516.45009 J. Adv. Math. Stud. 16, No. 1, 66-76 (2023). MSC: 45J05 45D05 45B05 26A33 PDF BibTeX XML Cite \textit{V. V. Kharat} et al., J. Adv. Math. Stud. 16, No. 1, 66--76 (2023; Zbl 1516.45009) Full Text: Link
Durmaz, Muhammet Enes; Amirali, Ilhame; Amiraliyev, Gabil M. An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition. (English) Zbl 1512.65301 J. Appl. Math. Comput. 69, No. 1, 505-528 (2023). MSC: 65R20 65L11 45J05 45B05 65L12 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., J. Appl. Math. Comput. 69, No. 1, 505--528 (2023; Zbl 1512.65301) Full Text: DOI
Kumar, Saurabh; Gupta, Vikas An approach based on fractional-order Lagrange polynomials for the numerical approximation of fractional order non-linear Volterra-Fredholm integro-differential equations. (English) Zbl 07676658 J. Appl. Math. Comput. 69, No. 1, 251-272 (2023). MSC: 65Mxx 26Axx 65Rxx PDF BibTeX XML Cite \textit{S. Kumar} and \textit{V. Gupta}, J. Appl. Math. Comput. 69, No. 1, 251--272 (2023; Zbl 07676658) Full Text: DOI
Hamoud, Ahmed A.; Mohammed, Nedal M. Existence and uniqueness results for fractional Volterra-Fredholm integro differential equations with integral boundary conditions. (English) Zbl 1516.45006 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75-86 (2023). Reviewer: Vitaliy Volchkov (Donetsk) MSC: 45J05 45D05 45B05 45M20 45M10 26A33 47N20 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{N. M. Mohammed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75--86 (2023; Zbl 1516.45006) Full Text: Link
Mahmoodi, Darani Narges Hybrid collocation method for some classes of second-kind nonlinear weakly singular integral equations. (English) Zbl 07665303 Comput. Methods Differ. Equ. 11, No. 1, 183-196 (2023). MSC: 65L05 34K06 34K28 PDF BibTeX XML Cite \textit{D. N. Mahmoodi}, Comput. Methods Differ. Equ. 11, No. 1, 183--196 (2023; Zbl 07665303) Full Text: DOI
Allakhyarova, N. E. Eigenvalues of Fredholm type limit integral equations in the space of Bohr almost periodic functions. (English) Zbl 07663830 J. Contemp. Appl. Math. 13, No. 1, 71-82 (2023). MSC: 45B05 45C05 PDF BibTeX XML Cite \textit{N. E. Allakhyarova}, J. Contemp. Appl. Math. 13, No. 1, 71--82 (2023; Zbl 07663830) Full Text: Link
Mitrovic, Zoran; Mani, Gunaseelan; Gnanaprakasam, Arul Joseph; George, Reny The existence of a solution of a nonlinear Fredholm integral equations over bicomplex \(b\)-metric spaces. (English) Zbl 1516.54040 Gulf J. Math. 14, No. 1, 69-83 (2023). MSC: 54H25 54E40 45B05 45G10 PDF BibTeX XML Cite \textit{Z. Mitrovic} et al., Gulf J. Math. 14, No. 1, 69--83 (2023; Zbl 1516.54040) Full Text: DOI
Liang, Hui; Stynes, Martin Regularity of the solution of a nonlinear Volterra integral equation of the second kind. (English) Zbl 1506.45002 Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2211-2223 (2023). Reviewer: Alexander N. Tynda (Penza) MSC: 45D05 45B05 45G05 PDF BibTeX XML Cite \textit{H. Liang} and \textit{M. Stynes}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2211--2223 (2023; Zbl 1506.45002) Full Text: DOI
Patra, Asim An epidemiology model involving high-order linear Fredholm integro-differential-difference equations via a novel balancing collocation technique. (English) Zbl 07614143 J. Comput. Appl. Math. 421, Article ID 114851, 26 p. (2023). MSC: 65R20 45J05 45B05 30D15 65L10 PDF BibTeX XML Cite \textit{A. Patra}, J. Comput. Appl. Math. 421, Article ID 114851, 26 p. (2023; Zbl 07614143) Full Text: DOI
Saemi, Fereshteh; Ebrahimi, Hamideh; Shafiee, Mahmoud; Hosseini, Kamyar A detailed study on 2D Volterra-Fredholm integro-differential equations involving the Caputo fractional derivative. (English) Zbl 07604641 J. Comput. Appl. Math. 420, Article ID 114820, 12 p. (2023). MSC: 65R20 45D05 45B05 65M70 65L60 PDF BibTeX XML Cite \textit{F. Saemi} et al., J. Comput. Appl. Math. 420, Article ID 114820, 12 p. (2023; Zbl 07604641) Full Text: DOI
Dobrovol’skiĭ, Nikolaĭ Nikolaevich; Skobel’tsyn, Sergeĭ Alekseevich; Tolokonnikov, Lev Alekseevich; Larin, Nikolaĭ Vladimirovich Application of number-theoretic grids in problems of sound diffraction by elastic bodies. (Russian. English summary) Zbl 07735540 Chebyshevskiĭ Sb. 23, No. 5(86), 206-226 (2022). MSC: 76Q05 76M15 74F10 PDF BibTeX XML Cite \textit{N. N. Dobrovol'skiĭ} et al., Chebyshevskiĭ Sb. 23, No. 5(86), 206--226 (2022; Zbl 07735540) Full Text: DOI MNR
Dobrovol’skiĭ, Nikolaĭ Mikhaĭlovich; Podolyan, Alena Sergeevna Algebraic grids and their application to the numerical solution of linear integral equations. (Russian. English summary) Zbl 07734463 Chebyshevskiĭ Sb. 23, No. 4(85), 162-169 (2022). MSC: 65-XX 45-XX PDF BibTeX XML Cite \textit{N. M. Dobrovol'skiĭ} and \textit{A. S. Podolyan}, Chebyshevskiĭ Sb. 23, No. 4(85), 162--169 (2022; Zbl 07734463) Full Text: DOI MNR
Orevkov, Stepan Yu. Counting lattice triangulations: Fredholm equations in combinatorics. (English. Russian original) Zbl 07733510 Sb. Math. 213, No. 11, 1530-1558 (2022); translation from Mat. Sb. 213, No. 11, 50-78 (2022). MSC: 05A15 45B05 PDF BibTeX XML Cite \textit{S. Yu. Orevkov}, Sb. Math. 213, No. 11, 1530--1558 (2022; Zbl 07733510); translation from Mat. Sb. 213, No. 11, 50--78 (2022) Full Text: DOI arXiv MNR
Garif’yanov, F. N.; Strezhneva, E. V. On a Carleman problem in the case of a doubly periodic group. (English) Zbl 07724916 Probl. Anal. Issues Anal. 11(29), No. 3, 45-55 (2022). MSC: 30F10 45B05 PDF BibTeX XML Cite \textit{F. N. Garif'yanov} and \textit{E. V. Strezhneva}, Probl. Anal. Issues Anal. 11(29), No. 3, 45--55 (2022; Zbl 07724916) Full Text: DOI MNR
Kiss, L. P.; Szeidl, G.; Messaoudi, A. Stability of heterogeneous beams with three supports through Green functions. (English) Zbl 07721537 Meccanica 57, No. 6, 1369-1390 (2022). MSC: 74G60 74K10 74E05 74G15 PDF BibTeX XML Cite \textit{L. P. Kiss} et al., Meccanica 57, No. 6, 1369--1390 (2022; Zbl 07721537) Full Text: DOI
Ibrahim, Amira Abd-Elall; Zaghrout, Afaf A. S.; Raslan, K. R.; Ali, Khalid K. On the analytical and numerical study for fractional \(q\)-integrodifferential equations. (English) Zbl 1512.65304 Bound. Value Probl. 2022, Paper No. 98, 15 p. (2022). MSC: 65R20 45J05 45B05 PDF BibTeX XML Cite \textit{A. A. E. Ibrahim} et al., Bound. Value Probl. 2022, Paper No. 98, 15 p. (2022; Zbl 1512.65304) Full Text: DOI
Mouley, Jyotirmoy; Mandal, Birendra Nath An efficient wavelet-based numerical method to solve nonlinear Fredholm integral equation of second kind with smooth kernel. (English) Zbl 07694608 J. Math. Model. 10, No. 2, 299-313 (2022). MSC: 45-XX 45Gxx 45G10 PDF BibTeX XML Cite \textit{J. Mouley} and \textit{B. N. Mandal}, J. Math. Model. 10, No. 2, 299--313 (2022; Zbl 07694608) Full Text: DOI
Mirsaburova, U. M. A problem with a displacement on the internal characteristics in an unbounded domain for the Gellerstedt equation with singular coefficients. (English) Zbl 07669434 Uzb. Math. J. 66, No. 3, 96-100 (2022). MSC: 35M10 PDF BibTeX XML Cite \textit{U. M. Mirsaburova}, Uzb. Math. J. 66, No. 3, 96--100 (2022; Zbl 07669434)
Galishnikova, T. N.; Il’inskii, A. S. Wave diffraction on a dielectric cylinder in a free space. (English. Russian original) Zbl 1512.78017 Comput. Math. Model. 33, No. 2, 95-106 (2022); translation from Prikl. Mat. Inf. 70, 4-14 (2022). MSC: 78A45 78A30 78M22 78M15 65R20 45F15 45B05 35Q61 PDF BibTeX XML Cite \textit{T. N. Galishnikova} and \textit{A. S. Il'inskii}, Comput. Math. Model. 33, No. 2, 95--106 (2022; Zbl 1512.78017); translation from Prikl. Mat. Inf. 70, 4--14 (2022) Full Text: DOI
Farshadmoghadam, Farnaz; Azodi, Haman Deilami; Yaghouti, Mohammad Reza An improved radial basis functions method for the high-order Volterra-Fredholm integro-differential equations. (English) Zbl 1510.65326 Math. Sci., Springer 16, No. 4, 445-458 (2022). MSC: 65R20 45J05 65D12 65D32 PDF BibTeX XML Cite \textit{F. Farshadmoghadam} et al., Math. Sci., Springer 16, No. 4, 445--458 (2022; Zbl 1510.65326) Full Text: DOI
Al-Bugami, Abeer M. Two-dimensional Fredholm integro-differential equation with singular kernel and its numerical solutions. (English) Zbl 1517.65132 Adv. Math. Phys. 2022, Article ID 2501947, 8 p. (2022). MSC: 65R20 45B05 45J05 PDF BibTeX XML Cite \textit{A. M. Al-Bugami}, Adv. Math. Phys. 2022, Article ID 2501947, 8 p. (2022; Zbl 1517.65132) Full Text: DOI
Mokhtar, Mahmoud M.; El Dewaik, M. H.; Mohamed, Amany S. Semi-analytic Fibonacci polynomial solution for Volterra-Fredholm integral equation with error analysis. (English) Zbl 1511.65150 Fractals 30, No. 8, Article ID 2240230, 10 p. (2022). MSC: 65R20 45D05 45B05 11B39 PDF BibTeX XML Cite \textit{M. M. Mokhtar} et al., Fractals 30, No. 8, Article ID 2240230, 10 p. (2022; Zbl 1511.65150) Full Text: DOI
Mirsaburova, U. M. A problem with displacement on internal characteristics in an unbounded domain for the Gellerstedt equation with a singular coefficient. (English. Russian original) Zbl 1509.35164 Russ. Math. 66, No. 9, 58-70 (2022); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 9, 70-82 (2022). MSC: 35M12 35A01 35A02 PDF BibTeX XML Cite \textit{U. M. Mirsaburova}, Russ. Math. 66, No. 9, 58--70 (2022; Zbl 1509.35164); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 9, 70--82 (2022) Full Text: DOI
Hesameddini, Esmail; Shahbazi, Mehdi Application of Bernstein polynomials for solving Fredholm integro-differential-difference equations. (English) Zbl 07657205 Appl. Math., Ser. B (Engl. Ed.) 37, No. 4, 475-493 (2022). MSC: 65R20 65M12 54H25 45E10 PDF BibTeX XML Cite \textit{E. Hesameddini} and \textit{M. Shahbazi}, Appl. Math., Ser. B (Engl. Ed.) 37, No. 4, 475--493 (2022; Zbl 07657205) Full Text: DOI
Lemita, Samir; Touati, Sami; Derbal, Kheireddine The approximate solution of nonlinear Fredholm implicit integro-differential equation in the complex plane. (English) Zbl 1506.45001 Asian-Eur. J. Math. 15, No. 7, Article ID 2250131, 11 p. (2022). MSC: 45B05 45L05 65R20 47G20 PDF BibTeX XML Cite \textit{S. Lemita} et al., Asian-Eur. J. Math. 15, No. 7, Article ID 2250131, 11 p. (2022; Zbl 1506.45001) Full Text: DOI
Tahami, Mahdieh; Hemmat, Ataollah Askari Two-dimensional wavelet with matrix dilation \(M=2I\) and its application in solving integral equations. (English) Zbl 1513.65546 Kragujevac J. Math. 46, No. 4, 649-666 (2022). MSC: 65T60 42C40 65R20 45B05 PDF BibTeX XML Cite \textit{M. Tahami} and \textit{A. A. Hemmat}, Kragujevac J. Math. 46, No. 4, 649--666 (2022; Zbl 1513.65546) Full Text: Link
Barootkoob, Sedigheh; Karapinar, Erdal; Lakzian, Hosein; Chanda, Ankush Extensions of Meir-Keeler contraction via \(w\)-distances with an application. (English) Zbl 07637431 Kragujevac J. Math. 46, No. 4, 533-547 (2022). MSC: 54H25 54E40 54E50 45B05 45G10 PDF BibTeX XML Cite \textit{S. Barootkoob} et al., Kragujevac J. Math. 46, No. 4, 533--547 (2022; Zbl 07637431) Full Text: Link
Çakır, Musa; Güneş, Baransel A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh. (English) Zbl 1513.65513 Hacet. J. Math. Stat. 51, No. 3, 787-799 (2022). MSC: 65R20 45J05 45D05 45B05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. Çakır} and \textit{B. Güneş}, Hacet. J. Math. Stat. 51, No. 3, 787--799 (2022; Zbl 1513.65513) Full Text: DOI
Bekkouche, M. Moumen; Mansouri, I.; Ahmed, A. A. Azeb Numerical solution of fractional boundary value problem with Caputo-Fabrizio and its fractional integral. (English) Zbl 1509.34007 J. Appl. Math. Comput. 68, No. 6, 4305-4316 (2022). MSC: 34A08 34B15 45D05 65R20 26A33 PDF BibTeX XML Cite \textit{M. M. Bekkouche} et al., J. Appl. Math. Comput. 68, No. 6, 4305--4316 (2022; Zbl 1509.34007) Full Text: DOI
Allouch, Chafik; Arrai, Mohamed; Bouda, Hamza Richardson extrapolation of Kantorovich and degenerate kernel methods for Fredholm integral equations of the second kind. (English) Zbl 1513.45034 Khayyam J. Math. 8, No. 2, 204-218 (2022). MSC: 45L05 45B05 65R20 PDF BibTeX XML Cite \textit{C. Allouch} et al., Khayyam J. Math. 8, No. 2, 204--218 (2022; Zbl 1513.45034) Full Text: DOI
Akbar, Muhammad; Nawaz, Rashid; Ayaz, Muhammad; Ahsan, Sumbal; Ahmad, Hijaz Analytical approach to approximate the solution of Volterra and Fredholm integral equations. (English) Zbl 1503.65316 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 255, 10 p. (2022). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{M. Akbar} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 255, 10 p. (2022; Zbl 1503.65316) Full Text: DOI
Allouch, Chafik; Sbibih, Driss; Tahrichi, Mohamed Spectral approximation methods for Fredholm integral equations with non-smooth kernels. (English) Zbl 1505.65313 Math. Model. Anal. 27, No. 4, 652-667 (2022). Reviewer: Josef Kofroň (Praha) MSC: 65R20 45B05 45L05 PDF BibTeX XML Cite \textit{C. Allouch} et al., Math. Model. Anal. 27, No. 4, 652--667 (2022; Zbl 1505.65313) Full Text: DOI
Smirnov, Yu. G.; Petrova, Yu. A. Numerical and analytical study of the problem of electromagnetic oscillations in open inhomogeneous resonators. (English. Russian original) Zbl 1502.35159 Differ. Equ. 58, No. 9, 1258-1266 (2022); translation from Differ. Uravn. 58, No. 9, 1266-1273 (2022). MSC: 35Q60 78A25 78A45 35R09 45E05 45K05 45B05 35P15 65N25 65F15 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{Yu. A. Petrova}, Differ. Equ. 58, No. 9, 1258--1266 (2022; Zbl 1502.35159); translation from Differ. Uravn. 58, No. 9, 1266--1273 (2022) Full Text: DOI
Lakhal, Aissa; Nadir, Mostefa; Nadir, Mohamed Nasseh Application of Chebyshev polynomials to Volterra-Fredholm integral equations. (English) Zbl 1513.65525 Aust. J. Math. Anal. Appl. 19, No. 2, Article No. 8, 8 p. (2022). MSC: 65R20 45D05 45B05 45E05 45L05 PDF BibTeX XML Cite \textit{A. Lakhal} et al., Aust. J. Math. Anal. Appl. 19, No. 2, Article No. 8, 8 p. (2022; Zbl 1513.65525) Full Text: Link
Farina, Leandro; Lang, Guillaume; Martin, P. A. Love-Lieb integral equations: applications, theory, approximations, and computations. (English) Zbl 1502.45002 SIAM Rev. 64, No. 4, 831-865 (2022). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45B05 45H05 45M05 65R20 PDF BibTeX XML Cite \textit{L. Farina} et al., SIAM Rev. 64, No. 4, 831--865 (2022; Zbl 1502.45002) Full Text: DOI arXiv
Bellour, Azzeddine; Sbibih, Driss; Zidna, Ahmed Superconvergent methods based on cubic splines for solving linear integral equations. (English) Zbl 1507.65298 Barrera, Domingo (ed.) et al., Mathematical and computational methods for modelling, approximation and simulation. Selected papers based on the presentations at the lectures presented at the international conference, MACMAS 2019, Granada, Spain, September 9–11, 2019. Cham: Springer. SEMA SIMAI Springer Ser. 29, 121-142 (2022). MSC: 65R20 45A05 45B05 65D07 65D32 PDF BibTeX XML Cite \textit{A. Bellour} et al., SEMA SIMAI Springer Ser. 29, 121--142 (2022; Zbl 1507.65298) Full Text: DOI
Allouch, Chafik; Hamzaoui, Ikram; Sbibih, Driss Richardson extrapolation of Nyström method associated with a sextic spline quasi-interpolant. (English) Zbl 1507.65295 Barrera, Domingo (ed.) et al., Mathematical and computational methods for modelling, approximation and simulation. Selected papers based on the presentations at the lectures presented at the international conference, MACMAS 2019, Granada, Spain, September 9–11, 2019. Cham: Springer. SEMA SIMAI Springer Ser. 29, 105-119 (2022). MSC: 65R20 45B05 65D07 65D32 PDF BibTeX XML Cite \textit{C. Allouch} et al., SEMA SIMAI Springer Ser. 29, 105--119 (2022; Zbl 1507.65295) Full Text: DOI
Tuan, Trinh Operational properties of the Hartley convolution and its applications. (English) Zbl 1510.44007 Mediterr. J. Math. 19, No. 6, Paper No. 266, 39 p. (2022). MSC: 44A35 26D10 45E10 45J05 65R10 PDF BibTeX XML Cite \textit{T. Tuan}, Mediterr. J. Math. 19, No. 6, Paper No. 266, 39 p. (2022; Zbl 1510.44007) Full Text: DOI
Jerez-Hanckes, Carlos; Pinto, José Spectral Galerkin method for solving Helmholtz boundary integral equations on smooth screens. (English) Zbl 1502.65203 IMA J. Numer. Anal. 42, No. 4, 3571-3608 (2022). MSC: 65N30 65N35 35J05 65R20 45B05 65D30 78A45 35Q60 PDF BibTeX XML Cite \textit{C. Jerez-Hanckes} and \textit{J. Pinto}, IMA J. Numer. Anal. 42, No. 4, 3571--3608 (2022; Zbl 1502.65203) Full Text: DOI
Yaghoobnia, A. R.; Ezzati, R. Numerical solution of Volterra-Fredholm integral equation systems by operational matrices of integration based on Bernstein multi-scaling polynomials. (English) Zbl 1513.65538 Comput. Appl. Math. 41, No. 7, Paper No. 324, 16 p. (2022). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{A. R. Yaghoobnia} and \textit{R. Ezzati}, Comput. Appl. Math. 41, No. 7, Paper No. 324, 16 p. (2022; Zbl 1513.65538) Full Text: DOI
Ernst, Philip A.; Peskir, Goran Quickest real-time detection of a Brownian coordinate drift. (English) Zbl 1499.60129 Ann. Appl. Probab. 32, No. 4, 2652-2670 (2022). MSC: 60G40 60J65 60H30 35J15 45G10 62C10 PDF BibTeX XML Cite \textit{P. A. Ernst} and \textit{G. Peskir}, Ann. Appl. Probab. 32, No. 4, 2652--2670 (2022; Zbl 1499.60129) Full Text: DOI arXiv
Santra, Sudarshan; Panda, Abhilipsa; Mohapatra, Jugal A novel approach for solving multi-term time fractional Volterra-Fredholm partial integro-differential equations. (English) Zbl 07597412 J. Appl. Math. Comput. 68, No. 5, 3545-3563 (2022). MSC: 65-XX 26A33 35R09 65R20 PDF BibTeX XML Cite \textit{S. Santra} et al., J. Appl. Math. Comput. 68, No. 5, 3545--3563 (2022; Zbl 07597412) Full Text: DOI
Patel, Subhashree; Panigrahi, Bijaya Laxmi; Nelakanti, Gnaneshwar Legendre spectral multi-projection methods for Fredholm integral equations of the first kind. (English) Zbl 1495.65244 Adv. Oper. Theory 7, No. 4, Paper No. 51, 22 p. (2022). MSC: 65R20 45B05 47A52 65J10 65J20 PDF BibTeX XML Cite \textit{S. Patel} et al., Adv. Oper. Theory 7, No. 4, Paper No. 51, 22 p. (2022; Zbl 1495.65244) Full Text: DOI
Zemlyanova, Anna Y.; White, Lauren M. Axisymmetric frictionless indentation of a rigid stamp into a semi-space with a surface energetic boundary. (English) Zbl 07590427 Math. Mech. Solids 27, No. 2, 334-347 (2022). MSC: 74-XX PDF BibTeX XML Cite \textit{A. Y. Zemlyanova} and \textit{L. M. White}, Math. Mech. Solids 27, No. 2, 334--347 (2022; Zbl 07590427) Full Text: DOI
Nakade, Koichi; Karim, Rubayet Analysis of a discrete-time Markov process with a bounded continuous state space by the Fredholm integral equation of the second kind. (English) Zbl 1497.60096 RAIRO, Oper. Res. 56, No. 4, 2881-2894 (2022). MSC: 60J05 45B05 PDF BibTeX XML Cite \textit{K. Nakade} and \textit{R. Karim}, RAIRO, Oper. Res. 56, No. 4, 2881--2894 (2022; Zbl 1497.60096) Full Text: DOI
Feng, Sheng-Ya; Chang, Der-Chen \(L^P\) solutions to the parameterized Fredholm integral equations associated with Chandrasekhar kernels. (English) Zbl 1497.45001 Appl. Anal. 101, No. 13, 4650-4667 (2022). Reviewer: Andreas Kleefeld (Jülich) MSC: 45B05 47L05 26D15 47H10 47N20 PDF BibTeX XML Cite \textit{S.-Y. Feng} and \textit{D.-C. Chang}, Appl. Anal. 101, No. 13, 4650--4667 (2022; Zbl 1497.45001) Full Text: DOI
Durmaz, Muhammet Enes; Amirali, Gabil; Kudu, Mustafa Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. (English) Zbl 1493.65121 Turk. J. Math. 46, No. 1, 207-224 (2022). MSC: 65L11 65L12 65L20 65R20 45J05 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., Turk. J. Math. 46, No. 1, 207--224 (2022; Zbl 1493.65121) Full Text: DOI
Simões, Alberto; Selvan, Ponmana Hyers-Ulam stability of a certain Fredholm integral equation. (English) Zbl 1493.45002 Turk. J. Math. 46, No. 1, 87-98 (2022). MSC: 45B05 PDF BibTeX XML Cite \textit{A. Simões} and \textit{P. Selvan}, Turk. J. Math. 46, No. 1, 87--98 (2022; Zbl 1493.45002) Full Text: DOI
El Majouti, Z.; El Jid, R.; Hajjaj, A. Numerical solution for three-dimensional nonlinear mixed Volterra-Fredholm integral equations via modified moving least-square method. (English) Zbl 1513.65518 Int. J. Comput. Math. 99, No. 9, 1849-1867 (2022). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{Z. El Majouti} et al., Int. J. Comput. Math. 99, No. 9, 1849--1867 (2022; Zbl 1513.65518) Full Text: DOI
Sun, Dong-Liang; Zhang, Xue-Yang; Li, Xian-Fang Interaction of multiple parallel cracks in a pre-stressed orthotropic elastic plane. (English) Zbl 1498.74068 Eur. J. Mech., A, Solids 96, Article ID 104704, 11 p. (2022). MSC: 74R10 74E10 74G70 74B10 74S70 PDF BibTeX XML Cite \textit{D.-L. Sun} et al., Eur. J. Mech., A, Solids 96, Article ID 104704, 11 p. (2022; Zbl 1498.74068) Full Text: DOI
Pötzsche, Christian Uniform convergence of Nyström discretization on Hölder spaces. (English) Zbl 1498.45015 J. Integral Equations Appl. 34, No. 2, 247-255 (2022). Reviewer: Eduardo Cuesta (Valladolid) MSC: 45L05 45P05 45B05 47G10 65R20 PDF BibTeX XML Cite \textit{C. Pötzsche}, J. Integral Equations Appl. 34, No. 2, 247--255 (2022; Zbl 1498.45015) Full Text: DOI
Lefebvre, Mario Probabilistic solutions of integral equations from optimal control. (English) Zbl 1500.45001 J. Integral Equations Appl. 34, No. 2, 215-227 (2022). Reviewer: Qi Lu (Chengdu) MSC: 45B05 45L05 65R20 62M10 93E20 93E03 PDF BibTeX XML Cite \textit{M. Lefebvre}, J. Integral Equations Appl. 34, No. 2, 215--227 (2022; Zbl 1500.45001) Full Text: DOI
Cakir, Musa; Ekinci, Yilmaz; Cimen, Erkan A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer. (English) Zbl 1513.65214 Comput. Appl. Math. 41, No. 6, Paper No. 259, 14 p. (2022). MSC: 65L05 65L11 65L12 65L20 65R20 45B05 45J05 PDF BibTeX XML Cite \textit{M. Cakir} et al., Comput. Appl. Math. 41, No. 6, Paper No. 259, 14 p. (2022; Zbl 1513.65214) Full Text: DOI
Estaremi, Y.; Shamsigamchi, S. Unbounded WCT operators and applications to linear equations. (English) Zbl 1502.47050 Comput. Appl. Math. 41, No. 6, Paper No. 238, 14 p. (2022). MSC: 47B38 47A05 45B05 PDF BibTeX XML Cite \textit{Y. Estaremi} and \textit{S. Shamsigamchi}, Comput. Appl. Math. 41, No. 6, Paper No. 238, 14 p. (2022; Zbl 1502.47050) Full Text: DOI
Rezazadeh, Tohid; Najafi, Esmaeil Jacobi collocation method and smoothing transformation for numerical solution of neutral nonlinear weakly singular Fredholm integro-differential equations. (English) Zbl 1502.65279 Appl. Numer. Math. 181, 135-150 (2022). MSC: 65R20 45J05 45E10 45B05 65L60 PDF BibTeX XML Cite \textit{T. Rezazadeh} and \textit{E. Najafi}, Appl. Numer. Math. 181, 135--150 (2022; Zbl 1502.65279) Full Text: DOI
Azevedo, Juarez S. A sigmoid method for some nonlinear Fredholm integral equations of the second kind. (English) Zbl 1502.65269 Appl. Numer. Math. 181, 125-134 (2022). MSC: 65R20 45B05 45G10 PDF BibTeX XML Cite \textit{J. S. Azevedo}, Appl. Numer. Math. 181, 125--134 (2022; Zbl 1502.65269) Full Text: DOI
Alrashedi, Naif R.; Alshammari, Fahad S.; George, Reny Common fixed points of a pair of \(H^\beta\)-Hausdorff multivalued operators in \(b\)-metric space and application to integral equations. (English) Zbl 1492.54017 J. Math. Ext. 16, No. 11, Paper No. 10, 19 p. (2022). MSC: 54H25 47H10 54E40 PDF BibTeX XML Cite \textit{N. R. Alrashedi} et al., J. Math. Ext. 16, No. 11, Paper No. 10, 19 p. (2022; Zbl 1492.54017) Full Text: DOI
Elazzouzi, Abdelhai; Ezzinbi, Khalil; Kriche, Mohammed Periodic solution for some class of linear partial differential equation with infinite delay using semi-Fredholm perturbations. (English) Zbl 1503.34121 Nonauton. Dyn. Syst. 9, 116-144 (2022). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 34K13 34K06 34K27 34K12 34K30 35B10 47A53 47N20 47A55 PDF BibTeX XML Cite \textit{A. Elazzouzi} et al., Nonauton. Dyn. Syst. 9, 116--144 (2022; Zbl 1503.34121) Full Text: DOI
Bonnet-Ben Dhia, Anne-Sophie; Chandler-Wilde, Simon N.; Fliss, Sonia On the half-space matching method for real wavenumber. (English) Zbl 1497.35100 SIAM J. Appl. Math. 82, No. 4, 1287-1311 (2022). MSC: 35J05 35J25 35P25 45B05 65N30 PDF BibTeX XML Cite \textit{A.-S. Bonnet-Ben Dhia} et al., SIAM J. Appl. Math. 82, No. 4, 1287--1311 (2022; Zbl 1497.35100) Full Text: DOI arXiv
Feng, Sheng-Ya; Chang, Der-Chen The singular Fredholm integral operators and related integral equations of Chandrasekhar type. (English) Zbl 1494.45002 Milman, Mario (ed.) et al., Geometric potential analysis. Selected papers based on the presentations at the special session, virtual, July 15–16 and 19, 2021. Berlin: De Gruyter. Adv. Anal. Geom. 6, 89-104 (2022). MSC: 45B05 26D15 47H10 47N20 PDF BibTeX XML Cite \textit{S.-Y. Feng} and \textit{D.-C. Chang}, Adv. Anal. Geom. 6, 89--104 (2022; Zbl 1494.45002) Full Text: DOI
Adama, Kamate; Mbaiguesse, Djibet; Yiyureboula, Bationo Jeremie; Abbo, Bakari; Pare, Youssouf Analytical solution of some nonlinear fractional integro-differential equations of the Fredholm second kind by a new approximation technique of the numerical SBA method. (English) Zbl 1513.65507 Int. J. Numer. Methods Appl. 21, 37-58 (2022). MSC: 65R20 45G10 26A33 45B05 PDF BibTeX XML Cite \textit{K. Adama} et al., Int. J. Numer. Methods Appl. 21, 37--58 (2022; Zbl 1513.65507) Full Text: DOI
Sur, Abhik; Mondal, Sudip; Kanoria, M. Effect of nonlocality and memory responses in the thermoelastic problem with a mode I crack. (English) Zbl 1495.74060 Waves Random Complex Media 32, No. 2, 771-796 (2022). MSC: 74R10 74F05 PDF BibTeX XML Cite \textit{A. Sur} et al., Waves Random Complex Media 32, No. 2, 771--796 (2022; Zbl 1495.74060) Full Text: DOI
Egidi, Nadaniela; Giacomini, Josephin; Maponi, Pierluigi A Fredholm integral operator for the differentiation problem. (English) Zbl 1513.65038 Comput. Appl. Math. 41, No. 5, Paper No. 220, 21 p. (2022). MSC: 65D25 45B05 45P05 45C05 PDF BibTeX XML Cite \textit{N. Egidi} et al., Comput. Appl. Math. 41, No. 5, Paper No. 220, 21 p. (2022; Zbl 1513.65038) Full Text: DOI
Liang, Jiangli; Xiang, Shuhuang A fast multipole method for Fredholm integral equations of the second kind with general kernel \(K(x,y)=K(x-y)\). (English) Zbl 07546713 Comput. Math. Appl. 118, 237-247 (2022). MSC: 65R20 45B05 65N38 35J05 45A05 PDF BibTeX XML Cite \textit{J. Liang} and \textit{S. Xiang}, Comput. Math. Appl. 118, 237--247 (2022; Zbl 07546713) Full Text: DOI
Waphare, B. B. The linear canonical Hankel type transformations associated with translation and convolution. (English) Zbl 1501.44001 Asian-Eur. J. Math. 15, No. 6, Article ID 2250114, 12 p. (2022). MSC: 44A05 46F12 PDF BibTeX XML Cite \textit{B. B. Waphare}, Asian-Eur. J. Math. 15, No. 6, Article ID 2250114, 12 p. (2022; Zbl 1501.44001) Full Text: DOI
Shahsavaran, Ahmad; Fotros, Forough An effective and simple scheme for solving nonlinear Fredholm integral equations. (English) Zbl 1492.65370 Math. Model. Anal. 27, No. 2, 215-231 (2022). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{A. Shahsavaran} and \textit{F. Fotros}, Math. Model. Anal. 27, No. 2, 215--231 (2022; Zbl 1492.65370) Full Text: DOI
Guan, Yu; Fang, Tingting; Zhang, Diankun; Jin, Congming Solving Fredholm integral equations using deep learning. (English) Zbl 1492.65359 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 87, 10 p. (2022). MSC: 65R20 45B05 68T07 PDF BibTeX XML Cite \textit{Y. Guan} et al., Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 87, 10 p. (2022; Zbl 1492.65359) Full Text: DOI
Hamoud, Ahmed A.; Ghadle, Kirtiwant P. Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-differential equations. (English) Zbl 1501.45008 Iran. J. Math. Sci. Inform. 17, No. 1, 135-144 (2022). MSC: 45J05 45D05 45B05 26A33 26D10 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, Iran. J. Math. Sci. Inform. 17, No. 1, 135--144 (2022; Zbl 1501.45008) Full Text: Link
Wang, Tingyu; Layton, Simon K.; Barba, Lorena A. Inexact GMRES iterations and relaxation strategies with fast-multipole boundary element method. (English) Zbl 1491.35350 Adv. Comput. Math. 48, No. 3, Paper No. 32, 25 p. (2022). MSC: 35Q35 35Q60 76D07 76Z05 78A30 35J05 45B05 65N38 65N35 65F10 65D32 78M16 92C35 PDF BibTeX XML Cite \textit{T. Wang} et al., Adv. Comput. Math. 48, No. 3, Paper No. 32, 25 p. (2022; Zbl 1491.35350) Full Text: DOI arXiv
Dalmolin, D.; de Azevedo, F. S.; Sauter, E. Advances in the theory of existence and numerical simulations for the one-dimensional transport equation. (English) Zbl 1510.82038 Appl. Math. Comput. 428, Article ID 127191, 12 p. (2022). MSC: 82C70 65R20 35Q49 PDF BibTeX XML Cite \textit{D. Dalmolin} et al., Appl. Math. Comput. 428, Article ID 127191, 12 p. (2022; Zbl 1510.82038) Full Text: DOI
Delgado, Julio A Poincaré determinant on the torus. (English) Zbl 07535450 J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 29, 13 p. (2022). MSC: 47B10 35S05 58J40 22E30 PDF BibTeX XML Cite \textit{J. Delgado}, J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 29, 13 p. (2022; Zbl 07535450) Full Text: DOI arXiv
Jozi, Meisam; Karimi, Saeed Direct implementation of Tikhonov regularization for the first kind integral equation. (English) Zbl 1499.65749 J. Comput. Math. 40, No. 3, 337-355 (2022). MSC: 65R20 45B05 65F22 PDF BibTeX XML Cite \textit{M. Jozi} and \textit{S. Karimi}, J. Comput. Math. 40, No. 3, 337--355 (2022; Zbl 1499.65749) Full Text: DOI
Durmaz, Muhammet Enes; Cakir, Musa; Amirali, Ilhame; Amiraliyev, Gabil M. Numerical solution of singularly perturbed Fredholm integro-differential equations by homogeneous second order difference method. (English) Zbl 1486.65291 J. Comput. Appl. Math. 412, Article ID 114327, 15 p. (2022). MSC: 65R20 45J05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., J. Comput. Appl. Math. 412, Article ID 114327, 15 p. (2022; Zbl 1486.65291) Full Text: DOI
Malham, Simon J. A. Integrability of local and non-local non-commutative fourth-order quintic non-linear Schrödinger equations. (English) Zbl 1490.35433 IMA J. Appl. Math. 87, No. 2, 231-259 (2022). MSC: 35Q55 35Q41 35A22 37K10 45B05 65R20 PDF BibTeX XML Cite \textit{S. J. A. Malham}, IMA J. Appl. Math. 87, No. 2, 231--259 (2022; Zbl 1490.35433) Full Text: DOI arXiv
Kaya, Ruşen; Taşeli, Hasan A Rayleigh-Ritz method for numerical solutions of linear Fredholm integral equations of the second kind. (English) Zbl 1492.65363 J. Math. Chem. 60, No. 6, 1107-1129 (2022). MSC: 65R20 45A05 45B05 65L15 81Q05 PDF BibTeX XML Cite \textit{R. Kaya} and \textit{H. Taşeli}, J. Math. Chem. 60, No. 6, 1107--1129 (2022; Zbl 1492.65363) Full Text: DOI
Maioli, Alan C.; Schmidt, Alexandre G. M.; Azado, P. C. Quantum scattering by a Viviani’s curve. (English) Zbl 1489.35219 Z. Angew. Math. Phys. 73, No. 3, Paper No. 115, 12 p. (2022). MSC: 35Q40 45B05 31A10 78A45 PDF BibTeX XML Cite \textit{A. C. Maioli} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 115, 12 p. (2022; Zbl 1489.35219) Full Text: DOI
Qiu, Renjun; Yan, Liang; Duan, Xiaojun Solving Fredholm integral equation of the first kind using Gaussian process regression. (English) Zbl 1510.65335 Appl. Math. Comput. 425, Article ID 127032, 9 p. (2022). MSC: 65R30 65R20 45B05 PDF BibTeX XML Cite \textit{R. Qiu} et al., Appl. Math. Comput. 425, Article ID 127032, 9 p. (2022; Zbl 1510.65335) Full Text: DOI
Mohamed, Amany Saad Shifted Jacobi collocation method for Volterra-Fredholm integral equation. (English) Zbl 1499.65761 Comput. Methods Differ. Equ. 10, No. 2, 408-418 (2022). MSC: 65R20 65M70 33C45 41A25 PDF BibTeX XML Cite \textit{A. S. Mohamed}, Comput. Methods Differ. Equ. 10, No. 2, 408--418 (2022; Zbl 1499.65761) Full Text: DOI