Sakly, H.; Matoussi, G. Volume integral equations for electromagnetic scattering by an orthotropic infinite cylinder. (English) Zbl 07739963 J. Math. Anal. Appl. 529, No. 1, Article ID 127670, 19 p. (2024). MSC: 78Axx 47Axx 35Jxx PDF BibTeX XML Cite \textit{H. Sakly} and \textit{G. Matoussi}, J. Math. Anal. Appl. 529, No. 1, Article ID 127670, 19 p. (2024; Zbl 07739963) Full Text: DOI
Bernhoff, Niclas Linearized Boltzmann collision operator. II: Polyatomic molecules modeled by a continuous internal energy variable. (English) Zbl 07735750 Kinet. Relat. Models 16, No. 6, 828-849 (2023). MSC: 82C40 35Q20 35Q70 76P05 47G10 PDF BibTeX XML Cite \textit{N. Bernhoff}, Kinet. Relat. Models 16, No. 6, 828--849 (2023; Zbl 07735750) Full Text: DOI arXiv
Kant, Kapil; Kumar, Rakesh; Chakraborty, Samiran; Nelakanti, Gnaneshwar Discrete Galerkin and iterated discrete Galerkin methods for derivative-dependent Fredholm-Hammerstein integral equations with Green’s kernel. (English) Zbl 07735333 Mediterr. J. Math. 20, No. 5, Paper No. 249, 25 p. (2023). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{K. Kant} et al., Mediterr. J. Math. 20, No. 5, Paper No. 249, 25 p. (2023; Zbl 07735333) Full Text: DOI
Garif’yanov, F.; Strezhneva, E. Functional equation induced by a half-disk and its application. (English) Zbl 07730177 Lobachevskii J. Math. 44, No. 4, 1311-1315 (2023). MSC: 39B32 45B05 PDF BibTeX XML Cite \textit{F. Garif'yanov} and \textit{E. Strezhneva}, Lobachevskii J. Math. 44, No. 4, 1311--1315 (2023; Zbl 07730177) Full Text: DOI
Tidke, Haribhau L.; Patil, Gajanan S. Existence of solutions for nonlinear Volterra Fredholm integrodifferential equation of higher order via \(S\)-iteration method. (English) Zbl 07727257 Adv. Differ. Equ. Control Process. 30, No. 3, 237-276 (2023). MSC: 34A12 45B05 37C25 45D05 39B12 PDF BibTeX XML Cite \textit{H. L. Tidke} and \textit{G. S. Patil}, Adv. Differ. Equ. Control Process. 30, No. 3, 237--276 (2023; Zbl 07727257) Full Text: DOI
Lee, Doo-Sung Electrified eccentric circular disk situated in an infinite hollow cylinder. (English) Zbl 07725553 Appl. Anal. 102, No. 9, 2466-2471 (2023). MSC: 31B15 45B05 PDF BibTeX XML Cite \textit{D.-S. Lee}, Appl. Anal. 102, No. 9, 2466--2471 (2023; Zbl 07725553) Full Text: DOI
Khuddush, Mahammad Existence of solutions to the iterative system of nonlinear two-point tempered fractional order boundary value problems. (English) Zbl 1517.34036 Adv. Stud.: Euro-Tbil. Math. J. 16, No. 2, 97-114 (2023). MSC: 34B18 34A08 35J60 35J66 45B05 47H10 PDF BibTeX XML Cite \textit{M. Khuddush}, Adv. Stud.: Euro-Tbil. Math. J. 16, No. 2, 97--114 (2023; Zbl 1517.34036) Full Text: DOI Link
Chistyakov, V. F. On singular points of linear differential-algebraic equations with perturbations in the form of integral operators. (English. Russian original) Zbl 07723277 Comput. Math. Math. Phys. 63, No. 6, 1028-1044 (2023); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 6, 962-978 (2023). MSC: 34A09 34A30 34A12 34C05 45J05 PDF BibTeX XML Cite \textit{V. F. Chistyakov}, Comput. Math. Math. Phys. 63, No. 6, 1028--1044 (2023; Zbl 07723277); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 6, 962--978 (2023) Full Text: DOI
Zhou, Yuting; Booß-Bavnbek, Bernhelm; Deng, Jian; Zhu, Chaofeng Continuity of families of Calderón projections. (English) Zbl 07722282 J. Funct. Anal. 285, No. 8, Article ID 110069, 42 p. (2023). MSC: 35J67 58J32 58J40 47A53 PDF BibTeX XML Cite \textit{Y. Zhou} et al., J. Funct. Anal. 285, No. 8, Article ID 110069, 42 p. (2023; Zbl 07722282) Full Text: DOI arXiv
Guebbai, Hamza; Ghiat, Morad; Merchela, Wassim; Segni, Sami; Stepanenko, Elena Viktorovna Approximate solution of the nonlinear Fredholm integral equation of the second kind. (Russian. English summary) Zbl 07720907 Vladikavkaz. Mat. Zh. 25, No. 1, 33-47 (2023). MSC: 45B05 45E10 65J10 65R20 35P05 PDF BibTeX XML Cite \textit{H. Guebbai} et al., Vladikavkaz. Mat. Zh. 25, No. 1, 33--47 (2023; Zbl 07720907) Full Text: DOI MNR
Bhujel, Manalisha; Hazarika, Bipan Existence of solutions of nonlinear Fredholm-type integral equations in Hölder space. (English) Zbl 07714666 J. Integral Equations Appl. 35, No. 1, 1-10 (2023). MSC: 26B35 45B05 47H08 47H10 PDF BibTeX XML Cite \textit{M. Bhujel} and \textit{B. Hazarika}, J. Integral Equations Appl. 35, No. 1, 1--10 (2023; Zbl 07714666) Full Text: DOI Link
Kulikov, E. K.; Makarov, A. A. A method for solving the Fredholm integral equation of the first kind. (English. Russian original) Zbl 07712789 J. Math. Sci., New York 272, No. 4, 558-565 (2023); translation from Zap. Nauchn. Semin. POMI 514, 113-125 (2022). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{E. K. Kulikov} and \textit{A. A. Makarov}, J. Math. Sci., New York 272, No. 4, 558--565 (2023; Zbl 07712789); translation from Zap. Nauchn. Semin. POMI 514, 113--125 (2022) Full Text: DOI
Mi, Jian; Huang, Jin Collocation method for solving two-dimensional nonlinear Volterra-Fredholm integral equations with convergence analysis. (English) Zbl 07711026 J. Comput. Appl. Math. 428, Article ID 115188, 16 p. (2023). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{J. Mi} and \textit{J. Huang}, J. Comput. Appl. Math. 428, Article ID 115188, 16 p. (2023; Zbl 07711026) Full Text: DOI
Assanova, A. T.; Bakirova, E. A.; Kadirbayeva, Zh. M. Two-point boundary value problem for Volterra-Fredholm integro-differential equations and its numerical analysis. (English) Zbl 07710945 Lobachevskii J. Math. 44, No. 3, 1100-1110 (2023). MSC: 45J05 45D05 45B05 65R20 PDF BibTeX XML Cite \textit{A. T. Assanova} et al., Lobachevskii J. Math. 44, No. 3, 1100--1110 (2023; Zbl 07710945) Full Text: DOI
Momenzade, N.; Vahidi, A. R.; Babolian, E. A numerical method for solving stochastic Volterra-Fredholm integral equation. (English) Zbl 07709518 Iran. J. Math. Sci. Inform. 18, No. 1, 145-164 (2023). MSC: 65C30 60H35 60H05 PDF BibTeX XML Cite \textit{N. Momenzade} et al., Iran. J. Math. Sci. Inform. 18, No. 1, 145--164 (2023; Zbl 07709518) Full Text: Link
Karlovich, Yuri I.; Monsiváis-González, Francisco J. Fredholmness of singular integral operators with complex conjugation on star-like curves with cusps. (English) Zbl 07708072 Complex Anal. Oper. Theory 17, No. 5, Paper No. 69, 22 p. (2023). MSC: 45P05 45B05 45E10 47B35 47G10 PDF BibTeX XML Cite \textit{Y. I. Karlovich} and \textit{F. J. Monsiváis-González}, Complex Anal. Oper. Theory 17, No. 5, Paper No. 69, 22 p. (2023; Zbl 07708072) Full Text: DOI
Kazemi, Manochehr; Doostdar, Mohammad Reza; Ghorbani, Morteza Successive approximations method for solving 2D nonlinear singular Fredholm integral equations. (English) Zbl 07707344 J. Math. Ext. 17, No. 1, Paper No. 10, 21 p. (2023). MSC: 31A10 45B05 47H10 PDF BibTeX XML Cite \textit{M. Kazemi} et al., J. Math. Ext. 17, No. 1, Paper No. 10, 21 p. (2023; Zbl 07707344) Full Text: DOI
Chandler-Wilde, S. N.; Spence, E. A. Correction to: “Coercivity, essential norms, and the Galerkin method for second-kind integral equations on polyhedral and Lipschitz domains”. (English) Zbl 07707129 Numer. Math. 154, No. 1-2, 319-321 (2023). MSC: 31A10 31B10 45B05 45L05 65R20 PDF BibTeX XML Cite \textit{S. N. Chandler-Wilde} and \textit{E. A. Spence}, Numer. Math. 154, No. 1--2, 319--321 (2023; Zbl 07707129) Full Text: DOI
Ismaael, Fawzi Muttar An investigation on the existence and uniqueness analysis of the fractional nonlinear integro-differential equations. (English) Zbl 07706120 Nonlinear Funct. Anal. Appl. 28, No. 1, 237-249 (2023). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 26A33 45B05 45D05 47H10 47N20 PDF BibTeX XML Cite \textit{F. M. Ismaael}, Nonlinear Funct. Anal. Appl. 28, No. 1, 237--249 (2023; Zbl 07706120) Full Text: Link
Patel, Subhashree; Laxmi Panigrahi, Bijaya; Nelakanti, Gnaneshwar Multi-projection methods for Fredholm integral equations of the first kind. (English) Zbl 07705593 Int. J. Comput. Math. 100, No. 4, 722-744 (2023). MSC: 65J10 65J20 65J22 PDF BibTeX XML Cite \textit{S. Patel} et al., Int. J. Comput. Math. 100, No. 4, 722--744 (2023; Zbl 07705593) Full Text: DOI
Johnson, Murugesan; Raja, Marimuthu Mohan; Vijayakumar, Velusamy; Shukla, Anurag; Nisar, Kottakkaran Sooppy; Jahanshahi, Hadi Optimal control results for impulsive fractional delay integrodifferential equations of order \(1 < r < 2\) via sectorial operator. (English) Zbl 07705289 Nonlinear Anal., Model. Control 28, No. 3, 468-490 (2023). MSC: 45J05 45B05 45D05 26A33 47N20 PDF BibTeX XML Cite \textit{M. Johnson} et al., Nonlinear Anal., Model. Control 28, No. 3, 468--490 (2023; Zbl 07705289) Full Text: DOI
Xiang, Shuhuang; Zhang, Qingyang Asymptotics on the Fredholm integral equation with a highly oscillatory and weakly singular kernel. (English) Zbl 07704202 Appl. Math. Comput. 456, Article ID 128112, 17 p. (2023). MSC: 65Rxx 65Nxx 45Dxx PDF BibTeX XML Cite \textit{S. Xiang} and \textit{Q. Zhang}, Appl. Math. Comput. 456, Article ID 128112, 17 p. (2023; Zbl 07704202) Full Text: DOI
Hashemian, Ali; Sliusarenko, Hanna; Remogna, Sara; Barrera, Domingo; Bartoň, Michael Solving boundary value problems via the Nyström method using spline Gauss rules. (English) Zbl 07703975 Comput. Math. Appl. 143, 33-47 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{A. Hashemian} et al., Comput. Math. Appl. 143, 33--47 (2023; Zbl 07703975) Full Text: DOI
Ghasemi, Mohammad; Mohammadi, Keivan; Alipanah, Amjad Numerical solution of system of second-order integro-differential equations using nonclassical sinc collocation method. (English) Zbl 07703181 Bound. Value Probl. 2023, Paper No. 38, 24 p. (2023). MSC: 65Lxx 65Rxx 45Jxx PDF BibTeX XML Cite \textit{M. Ghasemi} et al., Bound. Value Probl. 2023, Paper No. 38, 24 p. (2023; Zbl 07703181) Full Text: DOI
Yadav, Abhishek; Setia, Amit; Agarwal, Ravi P. Error analysis of Chebyshev polynomial-based numerical method for system of hypersingular integral equations. (English) Zbl 07700520 Comput. Appl. Math. 42, No. 5, Paper No. 213, 24 p. (2023). MSC: 45B05 45E05 45F15 PDF BibTeX XML Cite \textit{A. Yadav} et al., Comput. Appl. Math. 42, No. 5, Paper No. 213, 24 p. (2023; Zbl 07700520) Full Text: DOI
Reunsumrit, Jiraporn; Shah, Kamal; Khan, Aziz; Amin, Rohul; Ahmad, Israr; Sitthiwirattham, Thanin Extension of Haar wavelet techniques for Mittag-Leffler type fractional Fredholm integro-differential equations. (English) Zbl 07700484 Fractals 31, No. 2, Article ID 2340038, 14 p. (2023). MSC: 45J05 45B05 26A33 47N20 65R20 65T60 PDF BibTeX XML Cite \textit{J. Reunsumrit} et al., Fractals 31, No. 2, Article ID 2340038, 14 p. (2023; Zbl 07700484) Full Text: DOI
Nwaigwe, Chinedu; Benedict, Deborah Ngochinma Generalized Banach fixed-point theorem and numerical discretization for nonlinear Volterra-Fredholm equations. (English) Zbl 07700223 J. Comput. Appl. Math. 425, Article ID 115019, 10 p. (2023). MSC: 65Rxx 45Gxx 45Dxx PDF BibTeX XML Cite \textit{C. Nwaigwe} and \textit{D. N. Benedict}, J. Comput. Appl. Math. 425, Article ID 115019, 10 p. (2023; Zbl 07700223) Full Text: DOI
Shestopalov, Y. Resonance frequencies of arbitrarily shaped dielectric cylinders. (English) Zbl 1517.35028 Appl. Anal. 102, No. 6, 1618-1632 (2023). MSC: 35B34 35P25 45B05 45C05 47A10 78A45 PDF BibTeX XML Cite \textit{Y. Shestopalov}, Appl. Anal. 102, No. 6, 1618--1632 (2023; Zbl 1517.35028) Full Text: DOI
Rathore, Ajay Singh; Shanthi, Vembu; Ramos, Higinio A fitted numerical method for a singularly perturbed Fredholm integro-differential equation with discontinuous source term. (English) Zbl 07699000 Appl. Numer. Math. 185, 88-100 (2023). MSC: 65L11 65R20 45B05 PDF BibTeX XML Cite \textit{A. S. Rathore} et al., Appl. Numer. Math. 185, 88--100 (2023; Zbl 07699000) Full Text: DOI
Ma, Yunyun; Sun, Jiguang Analysis of a Fourier-Galerkin method for the transmission eigenvalue problem based on a boundary integral formulation. (English) Zbl 07698866 J. Sci. Comput. 95, No. 2, Paper No. 60, 19 p. (2023). MSC: 65N25 65N35 65N30 35R09 45B05 35P30 PDF BibTeX XML Cite \textit{Y. Ma} and \textit{J. Sun}, J. Sci. Comput. 95, No. 2, Paper No. 60, 19 p. (2023; Zbl 07698866) Full Text: DOI
Chakraborty, Samiran; Agrawal, Shivam Kumar; Nelakanti, Gnaneshwar Superconvergent multi-Galerkin method for nonlinear Fredholm-Hammerstein integral equations. (English) Zbl 07698144 J. Comput. Appl. Math. 426, Article ID 115092, 13 p. (2023). MSC: 65R20 45L05 45B05 PDF BibTeX XML Cite \textit{S. Chakraborty} et al., J. Comput. Appl. Math. 426, Article ID 115092, 13 p. (2023; Zbl 07698144) Full Text: DOI
Ebner, Bruno; Henze, Norbert On the eigenvalues associated with the limit null distribution of the Epps-Pulley test of normality. (English) Zbl 07697733 Stat. Pap. 64, No. 3, 739-752 (2023). MSC: 62F03 65C60 65R20 PDF BibTeX XML Cite \textit{B. Ebner} and \textit{N. Henze}, Stat. Pap. 64, No. 3, 739--752 (2023; Zbl 07697733) Full Text: DOI arXiv
Arnrich, Steffen; Kalies, Grit A natural regularization of the adsorption integral equation with Langmuir-kernel. (English) Zbl 1516.45001 J. Math. Chem. 61, No. 6, 1248-1274 (2023). MSC: 45B05 45E10 45Q05 42A38 PDF BibTeX XML Cite \textit{S. Arnrich} and \textit{G. Kalies}, J. Math. Chem. 61, No. 6, 1248--1274 (2023; Zbl 1516.45001) Full Text: DOI
Güngör, Nihan Correction to: “A note on linear non-Newtonian Volterra integral equations”. (English) Zbl 1514.45001 Math. Sci., Springer 17, No. 2, 219 (2023). MSC: 45D05 46A45 45B05 PDF BibTeX XML Cite \textit{N. Güngör}, Math. Sci., Springer 17, No. 2, 219 (2023; Zbl 1514.45001) Full Text: DOI
Todorov, Venelin; Dimov, Ivan; Georgieva, Rayna; Ostromsky, Tzvetan Optimized stochastic approaches based on sobol quasirandom sequences for Fredholm integral equations of the second kind. (English) Zbl 07694560 Georgiev, Ivan (ed.) et al., Numerical methods and applications. 10th international conference, NMA 2022, Borovets, Bulgaria, August 22–26, 2022. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13858, 302-313 (2023). MSC: 65-XX PDF BibTeX XML Cite \textit{V. Todorov} et al., Lect. Notes Comput. Sci. 13858, 302--313 (2023; Zbl 07694560) Full Text: DOI
Beyrami, Hossein; Lotfi, Taher A novel method with error analysis for the numerical solution of a logarithmic singular Fredholm integral equation. (English) Zbl 07692616 Afr. Mat. 34, No. 2, Paper No. 33, 10 p. (2023). MSC: 45Exx 45Bxx PDF BibTeX XML Cite \textit{H. Beyrami} and \textit{T. Lotfi}, Afr. Mat. 34, No. 2, Paper No. 33, 10 p. (2023; Zbl 07692616) Full Text: DOI
Bołdyriew, Elżbieta; Chen, Fangu; Devlin, Charles VI.; Miller, Steven J.; Zhao, Jason Determining optimal test functions for 2-level densities. (English) Zbl 1516.11087 Res. Number Theory 9, No. 2, Paper No. 32, 17 p. (2023). MSC: 11M50 45B05 PDF BibTeX XML Cite \textit{E. Bołdyriew} et al., Res. Number Theory 9, No. 2, Paper No. 32, 17 p. (2023; Zbl 1516.11087) Full Text: DOI arXiv
Panda, Abhilipsa; Mohapatra, Jugal A robust finite difference method for the solutions of singularly perturbed Fredholm integro-differential equations. (English) Zbl 1511.65156 Mediterr. J. Math. 20, No. 4, Paper No. 198, 19 p. (2023). MSC: 65R30 34K26 45J05 PDF BibTeX XML Cite \textit{A. Panda} and \textit{J. Mohapatra}, Mediterr. J. Math. 20, No. 4, Paper No. 198, 19 p. (2023; Zbl 1511.65156) Full Text: DOI
Yasmeen, Shumaila; Siraj-ul-Islam; Amin, Rohul Higher order Haar wavelet method for numerical solution of integral equations. (English) Zbl 07687546 Comput. Appl. Math. 42, No. 4, Paper No. 147, 16 p. (2023). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{S. Yasmeen} et al., Comput. Appl. Math. 42, No. 4, Paper No. 147, 16 p. (2023; Zbl 07687546) Full Text: DOI
Hayati, Yazdan; Rahai, Alireza; Eslami, Abolfazl Mixed boundary-value problems and dynamic impedance functions due to vibrations of a rigid disc on a thermoelastic transversely isotropic half-space. (English) Zbl 07687486 Eng. Anal. Bound. Elem. 146, 636-655 (2023). MSC: 74-XX 76-XX PDF BibTeX XML Cite \textit{Y. Hayati} et al., Eng. Anal. Bound. Elem. 146, 636--655 (2023; Zbl 07687486) Full Text: DOI
Kharat, V. V.; Tate, Shivaji; Gophane, M. T.; Gandhi, M. A. Some results on \(\psi\)-Hilfer Volterra-Fredholm fractional integro-differential equations. (English) Zbl 1516.45009 J. Adv. Math. Stud. 16, No. 1, 66-76 (2023). MSC: 45J05 45D05 45B05 26A33 PDF BibTeX XML Cite \textit{V. V. Kharat} et al., J. Adv. Math. Stud. 16, No. 1, 66--76 (2023; Zbl 1516.45009) Full Text: Link
Gangloff, Silvère A complete proof that square ice entropy is \(\frac{3}{2}\log_2(4/3)\). (English) Zbl 07682661 Ergodic Theory Dyn. Syst. 43, No. 6, 1847-1908 (2023). Reviewer: Haru Pinson (Tucson) MSC: 37A60 37A35 82B20 82B23 45B05 PDF BibTeX XML Cite \textit{S. Gangloff}, Ergodic Theory Dyn. Syst. 43, No. 6, 1847--1908 (2023; Zbl 07682661) Full Text: DOI
Yadav, Pooja; Jahan, Shah; Nisar, K. S. Fibonacci wavelet collocation method for Fredholm integral equations of second kind. (English) Zbl 1515.65337 Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 82, 17 p. (2023). MSC: 65R20 65D30 65T60 45B05 PDF BibTeX XML Cite \textit{P. Yadav} et al., Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 82, 17 p. (2023; Zbl 1515.65337) Full Text: DOI
Inozemtsev, A. I.; Barysheva, I. V. Linear Fredholm and Volterra partial integral equations in anisotropic Lebesgue spaces. (English. Russian original) Zbl 1512.45009 J. Math. Sci., New York 270, No. 4, 556-561 (2023); translation from Probl. Mat. Anal. 122, 47-52 (2023). MSC: 45K05 45D05 45B05 PDF BibTeX XML Cite \textit{A. I. Inozemtsev} and \textit{I. V. Barysheva}, J. Math. Sci., New York 270, No. 4, 556--561 (2023; Zbl 1512.45009); translation from Probl. Mat. Anal. 122, 47--52 (2023) Full Text: DOI
Abdelkawy, Mohamed A. Shifted Legendre spectral collocation technique for solving stochastic Volterra-Fredholm integral equations. (English) Zbl 07677974 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 1, 123-136 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{M. A. Abdelkawy}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 1, 123--136 (2023; Zbl 07677974) Full Text: DOI
Durmaz, Muhammet Enes; Amirali, Ilhame; Amiraliyev, Gabil M. An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition. (English) Zbl 1512.65301 J. Appl. Math. Comput. 69, No. 1, 505-528 (2023). MSC: 65R20 65L11 45J05 45B05 65L12 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., J. Appl. Math. Comput. 69, No. 1, 505--528 (2023; Zbl 1512.65301) Full Text: DOI
Kumar, Saurabh; Gupta, Vikas An approach based on fractional-order Lagrange polynomials for the numerical approximation of fractional order non-linear Volterra-Fredholm integro-differential equations. (English) Zbl 07676658 J. Appl. Math. Comput. 69, No. 1, 251-272 (2023). MSC: 65Mxx 26Axx 65Rxx PDF BibTeX XML Cite \textit{S. Kumar} and \textit{V. Gupta}, J. Appl. Math. Comput. 69, No. 1, 251--272 (2023; Zbl 07676658) Full Text: DOI
Wu, Guo-Cheng; Shiri, Babak; Fan, Qin; Feng, Hua-Rong Terminal value problems of non-homogeneous fractional linear systems with general memory kernels. (English) Zbl 1509.34017 J. Nonlinear Math. Phys. 30, No. 1, 303-314 (2023). MSC: 34A08 34A45 26A33 45D05 45B05 45L05 PDF BibTeX XML Cite \textit{G.-C. Wu} et al., J. Nonlinear Math. Phys. 30, No. 1, 303--314 (2023; Zbl 1509.34017) Full Text: DOI
Meddahi, Salim; Ruiz-Baier, Ricardo A mixed discontinuous Galerkin method for a linear viscoelasticity problem with strongly imposed symmetry. (English) Zbl 1516.65093 SIAM J. Sci. Comput. 45, No. 1, B27-B56 (2023). MSC: 65M60 65M06 65N30 65M12 65M15 74H15 74D05 76A10 35A01 35A02 35R09 45B05 PDF BibTeX XML Cite \textit{S. Meddahi} and \textit{R. Ruiz-Baier}, SIAM J. Sci. Comput. 45, No. 1, B27--B56 (2023; Zbl 1516.65093) Full Text: DOI arXiv
Nockowska-Rosiak, Magdalena; Pötzsche, Christian Positivity and discretization of Fredholm integral operators. (English) Zbl 1512.65309 J. Math. Anal. Appl. 524, No. 1, Article ID 127137, 29 p. (2023). MSC: 65R20 45B05 45P05 PDF BibTeX XML Cite \textit{M. Nockowska-Rosiak} and \textit{C. Pötzsche}, J. Math. Anal. Appl. 524, No. 1, Article ID 127137, 29 p. (2023; Zbl 1512.65309) Full Text: DOI arXiv
Sivasankar, Sivajiganesan; Udhayakumar, Ramalingam; Muthukumaran, Venkatesan A new conversation on the existence of Hilfer fractional stochastic Volterra-Fredholm integro-differential inclusions via almost sectorial operators. (English) Zbl 1514.45007 Nonlinear Anal., Model. Control 28, No. 2, 288-307 (2023). MSC: 45K05 45B05 45D05 45R05 47B12 47N20 60H20 26A33 PDF BibTeX XML Cite \textit{S. Sivasankar} et al., Nonlinear Anal., Model. Control 28, No. 2, 288--307 (2023; Zbl 1514.45007) Full Text: DOI
Alqahtani, A.; Mach, T.; Reichel, L. Solution of ill-posed problems with Chebfun. (English) Zbl 07669771 Numer. Algorithms 92, No. 4, 2341-2364 (2023). MSC: 65-XX 47A52 65F22 45B05 41A10 PDF BibTeX XML Cite \textit{A. Alqahtani} et al., Numer. Algorithms 92, No. 4, 2341--2364 (2023; Zbl 07669771) Full Text: DOI arXiv
Hamoud, Ahmed A.; Mohammed, Nedal M. Existence and uniqueness results for fractional Volterra-Fredholm integro differential equations with integral boundary conditions. (English) Zbl 1516.45006 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75-86 (2023). Reviewer: Vitaliy Volchkov (Donetsk) MSC: 45J05 45D05 45B05 45M20 45M10 26A33 47N20 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{N. M. Mohammed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75--86 (2023; Zbl 1516.45006) Full Text: Link
Peixoto, Rodrigo Guerra; de Paulo de Souza, Lucas A cell-less boundary element method for a two-step thermoelastic analysis. (English) Zbl 1510.65297 Appl. Math. Modelling 115, 173-190 (2023). MSC: 65N30 45B05 74F05 PDF BibTeX XML Cite \textit{R. G. Peixoto} and \textit{L. de Paulo de Souza}, Appl. Math. Modelling 115, 173--190 (2023; Zbl 1510.65297) Full Text: DOI
Mahmoodi, Darani Narges Hybrid collocation method for some classes of second-kind nonlinear weakly singular integral equations. (English) Zbl 07665303 Comput. Methods Differ. Equ. 11, No. 1, 183-196 (2023). MSC: 65L05 34K06 34K28 PDF BibTeX XML Cite \textit{D. N. Mahmoodi}, Comput. Methods Differ. Equ. 11, No. 1, 183--196 (2023; Zbl 07665303) Full Text: DOI
Hamza, Bouda; Chafik, Allouch; Mohamed, Tahrichi Legendre superconvergent degenerate kernel and Nyström methods for Fredholm integral equations. (English) Zbl 07665233 Sahand Commun. Math. Anal. 20, No. 1, 45-60 (2023). MSC: 45Axx 65J10 65R20 45L05 41A10 PDF BibTeX XML Cite \textit{B. Hamza} et al., Sahand Commun. Math. Anal. 20, No. 1, 45--60 (2023; Zbl 07665233) Full Text: DOI
Allakhyarova, N. E. Eigenvalues of Fredholm type limit integral equations in the space of Bohr almost periodic functions. (English) Zbl 07663830 J. Contemp. Appl. Math. 13, No. 1, 71-82 (2023). MSC: 45B05 45C05 PDF BibTeX XML Cite \textit{N. E. Allakhyarova}, J. Contemp. Appl. Math. 13, No. 1, 71--82 (2023; Zbl 07663830) Full Text: Link
Mashayekhi, S.; Sedaghat, S. Study the genetic variation using eta functions. (English) Zbl 1506.92060 Comput. Appl. Math. 42, No. 2, Paper No. 95, 17 p. (2023). MSC: 92D10 92D15 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{S. Mashayekhi} and \textit{S. Sedaghat}, Comput. Appl. Math. 42, No. 2, Paper No. 95, 17 p. (2023; Zbl 1506.92060) Full Text: DOI
Jain, Shobha; Radenovic, Stojan Interpolative fuzzy \(Z\)-contraction with its application to Fredholm nonlinear integral equation. (English) Zbl 1506.54020 Gulf J. Math. 14, No. 1, 84-98 (2023). MSC: 54H25 47H10 54A40 54E40 45B05 PDF BibTeX XML Cite \textit{S. Jain} and \textit{S. Radenovic}, Gulf J. Math. 14, No. 1, 84--98 (2023; Zbl 1506.54020) Full Text: DOI
Mitrovic, Zoran; Mani, Gunaseelan; Gnanaprakasam, Arul Joseph; George, Reny The existence of a solution of a nonlinear Fredholm integral equations over bicomplex \(b\)-metric spaces. (English) Zbl 1516.54040 Gulf J. Math. 14, No. 1, 69-83 (2023). MSC: 54H25 54E40 45B05 45G10 PDF BibTeX XML Cite \textit{Z. Mitrovic} et al., Gulf J. Math. 14, No. 1, 69--83 (2023; Zbl 1516.54040) Full Text: DOI
Alalyani, Ahmad; Abdou, M. A.; Basseem, M. On a solution of a third kind mixed integro-differential equation with singular kernel using orthogonal polynomial method. (English) Zbl 1517.65131 J. Appl. Math. 2023, Article ID 5163398, 9 p. (2023). MSC: 65R20 45B05 45H05 PDF BibTeX XML Cite \textit{A. Alalyani} et al., J. Appl. Math. 2023, Article ID 5163398, 9 p. (2023; Zbl 1517.65131) Full Text: DOI
Webber, James W. Multi-coil MRI by analytic continuation. (English) Zbl 1505.45011 J. Inverse Ill-Posed Probl. 31, No. 1, 1-17 (2023). MSC: 45Q05 92C55 PDF BibTeX XML Cite \textit{J. W. Webber}, J. Inverse Ill-Posed Probl. 31, No. 1, 1--17 (2023; Zbl 1505.45011) Full Text: DOI arXiv
de Alba, Patricia Díaz; Fermo, Luisa; Pes, Federica; Rodriguez, Giuseppe Regularized minimal-norm solution of an overdetermined system of first kind integral equations. (English) Zbl 07644398 Numer. Algorithms 92, No. 1, 471-502 (2023). MSC: 65R30 65R32 45Q05 86A22 PDF BibTeX XML Cite \textit{P. D. de Alba} et al., Numer. Algorithms 92, No. 1, 471--502 (2023; Zbl 07644398) Full Text: DOI arXiv
Sang, Yuanqi Algebras of generalized Cauchy singular integral operators. (English) Zbl 07640245 Banach J. Math. Anal. 17, No. 1, Paper No. 16, 32 p. (2023). MSC: 47B35 45E10 47C10 PDF BibTeX XML Cite \textit{Y. Sang}, Banach J. Math. Anal. 17, No. 1, Paper No. 16, 32 p. (2023; Zbl 07640245) Full Text: DOI
Fermo, Luisa; Mezzanotte, Domenico; Occorsio, Donatella A product integration rule on equispaced nodes for highly oscillating integrals. (English) Zbl 07630014 Appl. Math. Lett. 136, Article ID 108463, 8 p. (2023). MSC: 65D32 41A10 65R20 41A35 45B05 PDF BibTeX XML Cite \textit{L. Fermo} et al., Appl. Math. Lett. 136, Article ID 108463, 8 p. (2023; Zbl 07630014) Full Text: DOI arXiv
Liang, Hui; Stynes, Martin Regularity of the solution of a nonlinear Volterra integral equation of the second kind. (English) Zbl 1506.45002 Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2211-2223 (2023). Reviewer: Alexander N. Tynda (Penza) MSC: 45D05 45B05 45G05 PDF BibTeX XML Cite \textit{H. Liang} and \textit{M. Stynes}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2211--2223 (2023; Zbl 1506.45002) Full Text: DOI
Patra, Asim An epidemiology model involving high-order linear Fredholm integro-differential-difference equations via a novel balancing collocation technique. (English) Zbl 07614143 J. Comput. Appl. Math. 421, Article ID 114851, 26 p. (2023). MSC: 65R20 45J05 45B05 30D15 65L10 PDF BibTeX XML Cite \textit{A. Patra}, J. Comput. Appl. Math. 421, Article ID 114851, 26 p. (2023; Zbl 07614143) Full Text: DOI
Davaeifar, Sara; Rashidinia, Jalil Operational matrix approach based on two-dimensional Boubaker polynomials for solving nonlinear two-dimensional integral equations. (English) Zbl 1501.65157 J. Comput. Appl. Math. 421, Article ID 114831, 23 p. (2023). MSC: 65R20 45B05 45D05 45G15 PDF BibTeX XML Cite \textit{S. Davaeifar} and \textit{J. Rashidinia}, J. Comput. Appl. Math. 421, Article ID 114831, 23 p. (2023; Zbl 1501.65157) Full Text: DOI
Saemi, Fereshteh; Ebrahimi, Hamideh; Shafiee, Mahmoud; Hosseini, Kamyar A detailed study on 2D Volterra-Fredholm integro-differential equations involving the Caputo fractional derivative. (English) Zbl 07604641 J. Comput. Appl. Math. 420, Article ID 114820, 12 p. (2023). MSC: 65R20 45D05 45B05 65M70 65L60 PDF BibTeX XML Cite \textit{F. Saemi} et al., J. Comput. Appl. Math. 420, Article ID 114820, 12 p. (2023; Zbl 07604641) Full Text: DOI
Dobrovol’skiĭ, Nikolaĭ Mikhaĭlovich; Podolyan, Alena Sergeevna Algebraic grids and their application to the numerical solution of linear integral equations. (Russian. English summary) Zbl 07734463 Chebyshevskiĭ Sb. 23, No. 4(85), 162-169 (2022). MSC: 65-XX 45-XX PDF BibTeX XML Cite \textit{N. M. Dobrovol'skiĭ} and \textit{A. S. Podolyan}, Chebyshevskiĭ Sb. 23, No. 4(85), 162--169 (2022; Zbl 07734463) Full Text: DOI MNR
Orevkov, Stepan Yu. Counting lattice triangulations: Fredholm equations in combinatorics. (English. Russian original) Zbl 07733510 Sb. Math. 213, No. 11, 1530-1558 (2022); translation from Mat. Sb. 213, No. 11, 50-78 (2022). MSC: 05A15 45B05 PDF BibTeX XML Cite \textit{S. Yu. Orevkov}, Sb. Math. 213, No. 11, 1530--1558 (2022; Zbl 07733510); translation from Mat. Sb. 213, No. 11, 50--78 (2022) Full Text: DOI arXiv MNR
Garif’yanov, F. N.; Strezhneva, E. V. On a Carleman problem in the case of a doubly periodic group. (English) Zbl 07724916 Probl. Anal. Issues Anal. 11(29), No. 3, 45-55 (2022). MSC: 30F10 45B05 PDF BibTeX XML Cite \textit{F. N. Garif'yanov} and \textit{E. V. Strezhneva}, Probl. Anal. Issues Anal. 11(29), No. 3, 45--55 (2022; Zbl 07724916) Full Text: DOI MNR
Todorov, Venelin; Dimov, Ivan; Georgieva, Rayna Advanced biased stochastic approach for solvingFredholm integral equations. (English) Zbl 07720702 Fidanova, Stefka (ed.), Recent advances in computational optimization. Results of the workshop on computational optimization, WCO 2021. Cham: Springer. Stud. Comput. Intell. 1044, 349-371 (2022). MSC: 90C27 90C59 PDF BibTeX XML Cite \textit{V. Todorov} et al., Stud. Comput. Intell. 1044, 349--371 (2022; Zbl 07720702) Full Text: DOI
Ibrahim, Amira Abd-Elall; Zaghrout, Afaf A. S.; Raslan, K. R.; Ali, Khalid K. On the analytical and numerical study for fractional \(q\)-integrodifferential equations. (English) Zbl 1512.65304 Bound. Value Probl. 2022, Paper No. 98, 15 p. (2022). MSC: 65R20 45J05 45B05 PDF BibTeX XML Cite \textit{A. A. E. Ibrahim} et al., Bound. Value Probl. 2022, Paper No. 98, 15 p. (2022; Zbl 1512.65304) Full Text: DOI
Mouley, Jyotirmoy; Mandal, Birendra Nath An efficient wavelet-based numerical method to solve nonlinear Fredholm integral equation of second kind with smooth kernel. (English) Zbl 07694608 J. Math. Model. 10, No. 2, 299-313 (2022). MSC: 45-XX 45Gxx 45G10 PDF BibTeX XML Cite \textit{J. Mouley} and \textit{B. N. Mandal}, J. Math. Model. 10, No. 2, 299--313 (2022; Zbl 07694608) Full Text: DOI
Nwaigwe, Chinedu Solvability and approximation of nonlinear functional mixed Volterra-Fredholm equation in Banach space. (English) Zbl 1515.65332 J. Integral Equations Appl. 34, No. 4, 489-500 (2022). MSC: 65R20 45G10 45N05 65D32 PDF BibTeX XML Cite \textit{C. Nwaigwe}, J. Integral Equations Appl. 34, No. 4, 489--500 (2022; Zbl 1515.65332) Full Text: DOI Link
Durdiev, U. D. Initial-boundary value problem for the equation of forced vibrations of a beam with the base stiffness coefficient. (English) Zbl 07671809 Uzb. Math. J. 66, No. 2, 45-55 (2022). MSC: 53C12 57R25 57R35 PDF BibTeX XML Cite \textit{U. D. Durdiev}, Uzb. Math. J. 66, No. 2, 45--55 (2022; Zbl 07671809) Full Text: DOI
Galishnikova, T. N.; Il’inskii, A. S. Wave diffraction on a dielectric cylinder in a free space. (English. Russian original) Zbl 1512.78017 Comput. Math. Model. 33, No. 2, 95-106 (2022); translation from Prikl. Mat. Inf. 70, 4-14 (2022). MSC: 78A45 78A30 78M22 78M15 65R20 45F15 45B05 35Q61 PDF BibTeX XML Cite \textit{T. N. Galishnikova} and \textit{A. S. Il'inskii}, Comput. Math. Model. 33, No. 2, 95--106 (2022; Zbl 1512.78017); translation from Prikl. Mat. Inf. 70, 4--14 (2022) Full Text: DOI
Farshadmoghadam, Farnaz; Azodi, Haman Deilami; Yaghouti, Mohammad Reza An improved radial basis functions method for the high-order Volterra-Fredholm integro-differential equations. (English) Zbl 1510.65326 Math. Sci., Springer 16, No. 4, 445-458 (2022). MSC: 65R20 45J05 65D12 65D32 PDF BibTeX XML Cite \textit{F. Farshadmoghadam} et al., Math. Sci., Springer 16, No. 4, 445--458 (2022; Zbl 1510.65326) Full Text: DOI
Güngör, Nihan A note on linear non-Newtonian Volterra integral equations. (English) Zbl 1510.45001 Math. Sci., Springer 16, No. 4, 373-387 (2022); correction ibid. 17, No. 2, 219 (2023). MSC: 45D05 46A45 45B05 PDF BibTeX XML Cite \textit{N. Güngör}, Math. Sci., Springer 16, No. 4, 373--387 (2022; Zbl 1510.45001) Full Text: DOI
Al-Bugami, Abeer M. Two-dimensional Fredholm integro-differential equation with singular kernel and its numerical solutions. (English) Zbl 1517.65132 Adv. Math. Phys. 2022, Article ID 2501947, 8 p. (2022). MSC: 65R20 45B05 45J05 PDF BibTeX XML Cite \textit{A. M. Al-Bugami}, Adv. Math. Phys. 2022, Article ID 2501947, 8 p. (2022; Zbl 1517.65132) Full Text: DOI
Mokhtar, Mahmoud M.; El Dewaik, M. H.; Mohamed, Amany S. Semi-analytic Fibonacci polynomial solution for Volterra-Fredholm integral equation with error analysis. (English) Zbl 1511.65150 Fractals 30, No. 8, Article ID 2240230, 10 p. (2022). MSC: 65R20 45D05 45B05 11B39 PDF BibTeX XML Cite \textit{M. M. Mokhtar} et al., Fractals 30, No. 8, Article ID 2240230, 10 p. (2022; Zbl 1511.65150) Full Text: DOI
Karaçayir, Murat; Yüzbaşi, Şuayip A Galerkin-type approach to solve systems of linear Volterra-Fredholm integro-differential equations. (English) Zbl 1505.65320 Turk. J. Math. 46, No. 8, 3121-3138 (2022). MSC: 65R20 45J05 45D05 45B05 PDF BibTeX XML Cite \textit{M. Karaçayir} and \textit{Ş. Yüzbaşi}, Turk. J. Math. 46, No. 8, 3121--3138 (2022; Zbl 1505.65320) Full Text: DOI
Hesameddini, Esmail; Shahbazi, Mehdi Application of Bernstein polynomials for solving Fredholm integro-differential-difference equations. (English) Zbl 07657205 Appl. Math., Ser. B (Engl. Ed.) 37, No. 4, 475-493 (2022). MSC: 65R20 65M12 54H25 45E10 PDF BibTeX XML Cite \textit{E. Hesameddini} and \textit{M. Shahbazi}, Appl. Math., Ser. B (Engl. Ed.) 37, No. 4, 475--493 (2022; Zbl 07657205) Full Text: DOI
Bello, Abdulmalik U.; Yahaya, Jamilu; Isyaku, Mustapha Strong convergence results for split feasibility problem with multiple output sets in Banach spaces with applications. (English) Zbl 07651360 Appl. Anal. Optim. 6, No. 3, 375-392 (2022). MSC: 47N10 47N20 45B05 PDF BibTeX XML Cite \textit{A. U. Bello} et al., Appl. Anal. Optim. 6, No. 3, 375--392 (2022; Zbl 07651360) Full Text: Link
Lemita, Samir; Touati, Sami; Derbal, Kheireddine The approximate solution of nonlinear Fredholm implicit integro-differential equation in the complex plane. (English) Zbl 1506.45001 Asian-Eur. J. Math. 15, No. 7, Article ID 2250131, 11 p. (2022). MSC: 45B05 45L05 65R20 47G20 PDF BibTeX XML Cite \textit{S. Lemita} et al., Asian-Eur. J. Math. 15, No. 7, Article ID 2250131, 11 p. (2022; Zbl 1506.45001) Full Text: DOI
Chernov, Andreĭ Vladimirovich On explicit expression of the solution to the regularizing by Tikhonov optimization problem in terms of the regularization parameter in the finite-dimensional case. (Russian. English summary) Zbl 1505.65316 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 60, 90-110 (2022). MSC: 65R20 65J20 65J22 65R30 65R32 45B05 PDF BibTeX XML Cite \textit{A. V. Chernov}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 60, 90--110 (2022; Zbl 1505.65316) Full Text: DOI MNR
Cakir, H. G.; Cakir, F.; Cakir, M. A novel numerical approach for Fredholm integro-differential equations. (English) Zbl 1511.65060 Comput. Math. Math. Phys. 62, No. 12, 2161-2171 (2022). MSC: 65L03 65R20 45B05 PDF BibTeX XML Cite \textit{H. G. Cakir} et al., Comput. Math. Math. Phys. 62, No. 12, 2161--2171 (2022; Zbl 1511.65060) Full Text: DOI
Ponomarev, Dmitry A generalised time-evolution model for contact problems with wear and its analysis. (English) Zbl 07643103 Math. Mech. Complex Syst. 10, No. 3, 279-319 (2022). MSC: 74S40 26A33 45A05 45B05 45M05 PDF BibTeX XML Cite \textit{D. Ponomarev}, Math. Mech. Complex Syst. 10, No. 3, 279--319 (2022; Zbl 07643103) Full Text: DOI arXiv
Marzban, Hamid Reza; Nezami, Atiyeh Analysis of nonlinear fractional optimal control systems described by delay Volterra-Fredholm integral equations via a new spectral collocation method. (English) Zbl 1506.65249 Chaos Solitons Fractals 162, Article ID 112499, 14 p. (2022). MSC: 65R20 45D05 45B05 26A33 PDF BibTeX XML Cite \textit{H. R. Marzban} and \textit{A. Nezami}, Chaos Solitons Fractals 162, Article ID 112499, 14 p. (2022; Zbl 1506.65249) Full Text: DOI
Mohan Raja, M.; Vijayakumar, V. Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order \(r\in (1,2)\) with sectorial operators. (English) Zbl 1505.34096 Chaos Solitons Fractals 159, Article ID 112127, 8 p. (2022). MSC: 34G20 45D05 45B05 34A08 26A33 34K37 47N20 PDF BibTeX XML Cite \textit{M. Mohan Raja} and \textit{V. Vijayakumar}, Chaos Solitons Fractals 159, Article ID 112127, 8 p. (2022; Zbl 1505.34096) Full Text: DOI
Tahami, Mahdieh; Hemmat, Ataollah Askari Two-dimensional wavelet with matrix dilation \(M=2I\) and its application in solving integral equations. (English) Zbl 1513.65546 Kragujevac J. Math. 46, No. 4, 649-666 (2022). MSC: 65T60 42C40 65R20 45B05 PDF BibTeX XML Cite \textit{M. Tahami} and \textit{A. A. Hemmat}, Kragujevac J. Math. 46, No. 4, 649--666 (2022; Zbl 1513.65546) Full Text: Link
Barootkoob, Sedigheh; Karapinar, Erdal; Lakzian, Hosein; Chanda, Ankush Extensions of Meir-Keeler contraction via \(w\)-distances with an application. (English) Zbl 07637431 Kragujevac J. Math. 46, No. 4, 533-547 (2022). MSC: 54H25 54E40 54E50 45B05 45G10 PDF BibTeX XML Cite \textit{S. Barootkoob} et al., Kragujevac J. Math. 46, No. 4, 533--547 (2022; Zbl 07637431) Full Text: Link
Çakır, Musa; Güneş, Baransel A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh. (English) Zbl 1513.65513 Hacet. J. Math. Stat. 51, No. 3, 787-799 (2022). MSC: 65R20 45J05 45D05 45B05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. Çakır} and \textit{B. Güneş}, Hacet. J. Math. Stat. 51, No. 3, 787--799 (2022; Zbl 1513.65513) Full Text: DOI
Bag, Usha; Jain, Reena Solvability of integral equations through fixed point theorems: a survey. (English) Zbl 07633265 Surv. Math. Appl. 17, 367-395 (2022). MSC: 54H25 45B05 45D05 54E40 45-02 PDF BibTeX XML Cite \textit{U. Bag} and \textit{R. Jain}, Surv. Math. Appl. 17, 367--395 (2022; Zbl 07633265) Full Text: Link
Bekkouche, M. Moumen; Mansouri, I.; Ahmed, A. A. Azeb Numerical solution of fractional boundary value problem with Caputo-Fabrizio and its fractional integral. (English) Zbl 1509.34007 J. Appl. Math. Comput. 68, No. 6, 4305-4316 (2022). MSC: 34A08 34B15 45D05 65R20 26A33 PDF BibTeX XML Cite \textit{M. M. Bekkouche} et al., J. Appl. Math. Comput. 68, No. 6, 4305--4316 (2022; Zbl 1509.34007) Full Text: DOI
Allouch, Chafik; Arrai, Mohamed; Bouda, Hamza Richardson extrapolation of Kantorovich and degenerate kernel methods for Fredholm integral equations of the second kind. (English) Zbl 1513.45034 Khayyam J. Math. 8, No. 2, 204-218 (2022). MSC: 45L05 45B05 65R20 PDF BibTeX XML Cite \textit{C. Allouch} et al., Khayyam J. Math. 8, No. 2, 204--218 (2022; Zbl 1513.45034) Full Text: DOI
Mendy, John T.; Shukla, Rahul Viscosity like implicit methods for zeros of monotone operators in Banach spaces. (English) Zbl 1513.47123 Khayyam J. Math. 8, No. 1, 53-72 (2022). MSC: 47J25 47H05 45B05 PDF BibTeX XML Cite \textit{J. T. Mendy} and \textit{R. Shukla}, Khayyam J. Math. 8, No. 1, 53--72 (2022; Zbl 1513.47123) Full Text: DOI
Akbar, Muhammad; Nawaz, Rashid; Ayaz, Muhammad; Ahsan, Sumbal; Ahmad, Hijaz Analytical approach to approximate the solution of Volterra and Fredholm integral equations. (English) Zbl 1503.65316 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 255, 10 p. (2022). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{M. Akbar} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 255, 10 p. (2022; Zbl 1503.65316) Full Text: DOI
Jabbarov, I. Sh.; Allakhyarova, N. E. On integral equations of Fredholm kind in Bohr space of almost periodic functions. (Russian. English summary) Zbl 1513.45004 Ufim. Mat. Zh. 14, No. 3, 43-53 (2022); translation in Ufa Math. J. 14, No. 3, 41-50 (2022). MSC: 45B05 PDF BibTeX XML Cite \textit{I. Sh. Jabbarov} and \textit{N. E. Allakhyarova}, Ufim. Mat. Zh. 14, No. 3, 43--53 (2022; Zbl 1513.45004); translation in Ufa Math. J. 14, No. 3, 41--50 (2022) Full Text: MNR