×

Implementation of a strain energy-based nonlinear finite element in the object-oriented environment. (English) Zbl 1333.74082

Summary: The objective of the paper is to describe a novel finite element computational method based on a strain energy density function and to implement it in the object-oriented environment. The original energy-based finite element was put into the known standard framework of classes and handled in a different manner. The nonlinear properties of material are defined with a modified strain energy density function. The local relaxation procedure proposed as a method used to resolve a nonlinear problem is implemented in C++ language. The hexahedral element with eight nodes as well as the adaptation of the nonlinear finite element is introduced. The chosen numerical model is made of nearly incompressible hyperelastic material. The application of the proposed element is shown on the example of a rectangular parallelepiped with a hollow port.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

PZ; EasyFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stroustrup, B., The C++ Programming Language: Special Edition (2000), Addison-Wesley Professional: Addison-Wesley Professional USA, p. 1029
[2] Archer, G. C.; Fenves, G.; Thewalt, C., A new object-oriented finite element analysis program architecture, Comp. Struct., 70, 63-75 (1999) · Zbl 0936.74064
[3] Besson, J.; Foerch, R., Large scale object-oriented finite element code design, Comp. Meth. Appl. Mech. Eng., 142, 165-187 (1997) · Zbl 0896.73056
[4] Devloo, P. R.B., An object-oriented environment for scientific programming, Comp. Meth. Appl. Mech. Eng., 150, 133-153 (1997) · Zbl 0907.65115
[5] Dolenc, M., Developing extensible component-oriented finite element software, Adv. Eng. Soft., 35, 703-714 (2004) · Zbl 1082.68545
[6] Kong, X. A.; Chen, D. P., An object-oriented design of FEM programs, Comp. Struct., 57, 157-166 (1995) · Zbl 0918.73149
[7] Lichao, Y.; Kumar, A. V., An object-oriented programming modular framework for implementing the finite element method, Comp. Struct., 79, 919-928 (2001)
[8] Mackie, R. I., Extensibility of finite element class system – a case study, Comp. Struct., 82, 2241-2249 (2004)
[9] Mackie, R. I., Object-oriented finite element programming – the importance of data modelling, Adv. Eng. Soft., 30, 775-782 (1990)
[10] Mackie, R. I., Using objects to handle complexity in finite element software, Eng. Comp., 13, 99-111 (1997)
[11] Patzák, B.; Bittnar, Z., Design of object oriented finite element code, Adv. Eng. Soft., 32, 759-767 (2001) · Zbl 0984.68526
[12] Phongthanapanich, S.; Dechaumphai, P., Easy FEM - An object-oriented graphics interface finite element/finite volume software, Adv. Eng. Soft., 37, 797-804 (2006)
[13] Rucki, M. D.; Miller, G. R., An adoptable finite element modelling kernel, Comp. Struct., 69, 399-409 (1998) · Zbl 0940.74068
[14] Zimmerman, Th.; Bomme, P.; Eyheramendy, D.; Vernir, L.; Commend, S., Aspects of an object-oriented finite element environment, Comp. Struct., 68, 1-16 (1998) · Zbl 0940.74073
[15] Mackie, R. I., Object-Oriented Methods and Finite Element Analysis (2002), Saxe-Coburg Publications: Saxe-Coburg Publications Stirling, p. 216 · Zbl 0768.73075
[16] Miller, G. R., A LISP based, object-oriented approach to structural analysis, Eng. Comp., 4, 409-415 (1988)
[17] Zimmermann, Th.; Dubois-Pèlerin, Y.; Bomme, P., Object-oriented finite element programming: I. Governing principles, Comp. Meth. Appl. Mech. Eng., 98, 291-303 (1992)
[18] Dubois-Pèlerin, Y.; Zimmermann, Th.; Bomme, P., Object-oriented finite element programming: II. A prototype program in Smalltalk, Comp. Meth. Appl. Mech. Eng., 98, 361-397 (1992)
[19] Dubois-Pèlerin, Y.; Zimmermann, Th., Object-oriented finite element programming: III. An efficient implementation in C++, Comp. Meth. Appl. Mech. Eng., 108, 165-183 (1993)
[20] Balopoulos, V.; Abel, J. F., Use of shallow class hierarchies to facilitate object-oriented nonlinear structural simulations, Fin. Elem. Anal. Des., 38, 1047-1074 (2002) · Zbl 1219.65003
[21] Dubois-Pèlerin, Y.; Pegon, P., Linear constraints in object-oriented finite element programming, Comp. Meth. Appl. Mech. Eng., 154, 1/2, 31-39 (1998) · Zbl 0941.74061
[22] Kong, X. A., A data design approach for object-oriented FEM programs, Comp. Struct., 61, 503-513 (1996) · Zbl 0896.73062
[23] Menétrey, Ph.; Zimmermann, Th., Object-oriented nonlinear finite element analysis: Application to J2 plasticity, Comp. Struct., 49, 717-779 (1993) · Zbl 0800.73422
[24] Athanasiadis, A. N.; Deconinck, H., Object-oriented three-dimensional hybrid grid generation, Int. J. Num. Meth. Eng., 58, 301-318 (2003) · Zbl 1032.74708
[25] Bastian, M.; Li, B. Q., An efficient automatic mesh generator for quadrilateral elements implemented using C++, Fin. Elem. Anal. Des., 39, 905-930 (2003)
[26] Ju, J.; Hosain, M. U., Finite element graphics objects in C++, J. Comp. Civ. Eng., 10, 258-260 (1996)
[27] Karamete, B. K., Unstructured grid generation and a simple triangulation algorithm for arbitrary 2-D geometries using object-oriented programming, Int. J. Num. Meth. Eng., 40, 2, 251-268 (1997)
[28] Mackie, R. I., An object-oriented approach to calculation control in finite element programs, Comp. Struct., 77, 461-474 (2000)
[29] Mackie, R. I., An object-oriented approach to fully interactive finite element software, Adv. Eng. Soft., 29, 139-149 (1998)
[30] Mackie, R. I., Using objects to handle calculation control in finite element modelling, Comp. Struct., 80, 2001-2009 (2002)
[31] Zimmerman, Th.; Eyheramendy, D., Object-oriented finite elements. I. Principles of symbolic derivations and automatic programming, Comp. Meth. Appl. Mech. Eng., 132, 259-276 (1996) · Zbl 0890.73076
[32] Eyheramendy, D.; Zimmerman, Th., Object-oriented finite elements. II. A symbolic environment for automatic programming, Comp. Meth. Appl. Mech. Eng., 132, 277-304 (1996) · Zbl 0890.73076
[33] Eyheramendy, D.; Zimmerman, Th., Object-oriented finite elements. III. Theory and application of automatic programming, Comp. Meth. Appl. Mech. Eng., 154, 41-68 (1998), Journal: · Zbl 0939.74063
[34] Eyheramendy, D.; Zimmerman, Th., Object-oriented finite elements. IV. Symbolic derivations and automatic programming of nonlinear formulations, Comp. Meth. Appl. Mech. Eng., 190, 2729-2751 (2001) · Zbl 1107.76350
[35] Franco, J. R.Q.; Barros, F. B.; Malard, F. P.; Balabram, A., Object-oriented programming applied to a finite element technique for the limit analysis of axisymmetrical pressure vessels, Adv. Eng. Soft., 37, 195-204 (2006)
[36] Tabatai, S. M.R., Object-oriented finite element-based design and progressive steel weight minimization, Fin. Elem. Anal. Des., 39, 55-76 (2002) · Zbl 1213.74302
[37] Zabaras, N.; Srikanth, A., Using objects to model finite deformation plasticity, Eng. Comp., 15, 37-60 (1999)
[38] Lages, E. N.; Paulino, G. H.; Menezes, I. F.M.; Silva, R. R., Nonlinear finite element analysis using object-oriented philosophy - Application to beam elements and to the Cosserat continuum, Eng. Comp., 15, 73-89 (1999)
[39] Commend, S.; Zimmerman, Th., Object-oriented nonlinear finite element programming: A primer, Adv. Eng. Soft., 32, 611-628 (2001) · Zbl 0972.74511
[40] Dubois-Pèlerin, Y.; Pegon, P., Object-oriented programming in nonlinear finite element analysis, Comp. Struct., 67, 225-241 (1998) · Zbl 0918.73249
[41] Wegner, T., Energy-Based Method of Modeling and Charts Determination of Dynamic Behavior for Strong Dumping Mechanical Elements, Followed by an Example of Rotational-Symmetric High Amplitude Vibrations of a Ring Made of Nearly Incompressible Material, Associate Professors’ Dissertation Series, vol. 323 (1997), Academic Press/Poznan University of Technology
[42] Attard, M. M.; Hunt, G. W., Hyperelastic constitutive modeling under finite strain, Int. J. Sol. Struct., 41, 5327-5350 (2004) · Zbl 1073.74012
[43] Mooney, M., A theory of large elastic deformation, J. Appl. Phys., 11, 582-592 (1940) · JFM 66.1021.04
[44] Rivlin, R. S., (Eirich, F. R., Rheology Theory and Applications, vol. 1 (1956), Academic Press: Academic Press New York), 351-385
[45] Hartmann, S.; Neff, P., Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility, Int. J. Sol. Struct., 40, 2767-2791 (2004) · Zbl 1051.74539
[46] Jeremić, B.; Runesson, K.; Sture, S., Object-oriented approach to hyperelasticity, Eng. Comp., 15, 2-11 (1999)
[47] Blatz, P. J.; Ko, W. L., Application of finite elasticity to the deformation of rubbery materials, J. Appl. Mech., 53, 807-813 (1962)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.