Huebschmann, Johannes On the history of Lie brackets, crossed modules, and Lie-Rinehart algebras. (English) Zbl 07453484 J. Geom. Mech. 13, No. 3, 385-402 (2021). MSC: 01A60 17B66 18G45 12G05 12H05 17-03 17B55 20J05 53-03 53D17 55Q15 58H05 PDF BibTeX XML Cite \textit{J. Huebschmann}, J. Geom. Mech. 13, No. 3, 385--402 (2021; Zbl 07453484) Full Text: DOI
di Micco, Davide; Van der Linden, Tim Universal central extensions of internal crossed modules via the non-abelian tensor product. (English) Zbl 1511.18008 Appl. Categ. Struct. 28, No. 5, 717-748 (2020). Reviewer: George Janelidze (Cape Town) MSC: 18E50 18G45 18E13 18D40 20J05 17B55 PDF BibTeX XML Cite \textit{D. di Micco} and \textit{T. Van der Linden}, Appl. Categ. Struct. 28, No. 5, 717--748 (2020; Zbl 1511.18008) Full Text: DOI arXiv
Cigoli, Alan S.; Duvieusart, Arnaud; Gran, Marino; Mantovani, Sandra Galois theory and the categorical Peiffer commutator. (English) Zbl 1440.18010 Homology Homotopy Appl. 22, No. 2, 323-346 (2020). MSC: 18C40 18E13 18G45 20J15 17B55 20J05 PDF BibTeX XML Cite \textit{A. S. Cigoli} et al., Homology Homotopy Appl. 22, No. 2, 323--346 (2020; Zbl 1440.18010) Full Text: DOI arXiv
Azizi, Abdelmalek; Jerrari, Idriss; Zekhnini, Abdelkader; Talbi, Mohammed On the 2-class field towers of some imaginary quartic cyclic number fields. (English) Zbl 1454.11198 Colloq. Math. 158, No. 1, 103-118 (2019). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11R11 11R16 11R29 11R32 11R37 PDF BibTeX XML Cite \textit{A. Azizi} et al., Colloq. Math. 158, No. 1, 103--118 (2019; Zbl 1454.11198) Full Text: DOI
Azizi, Abdelmalek; Jerrari, Idriss; Zekhnini, Abdelkader; Talbi, Mohammed Capitulation of the 2-ideal classes of type \((2, 2, 2)\) of some quartic cyclic number fields. (English) Zbl 1415.11150 J. Math. Cryptol. 13, No. 1, 27-46 (2019). MSC: 11R16 11R29 11R32 11R37 PDF BibTeX XML Cite \textit{A. Azizi} et al., J. Math. Cryptol. 13, No. 1, 27--46 (2019; Zbl 1415.11150) Full Text: DOI
Schmid, Peter Realizing 2-groups as Galois groups following Shafarevich and Serre. (English) Zbl 1443.11234 Algebra Number Theory 12, No. 10, 2387-2401 (2018). Reviewer: Andreas Bender (Pavia) MSC: 11R32 20D15 PDF BibTeX XML Cite \textit{P. Schmid}, Algebra Number Theory 12, No. 10, 2387--2401 (2018; Zbl 1443.11234) Full Text: DOI
Azizi, A.; Jerrari, I.; Zekhnini, A.; Talbi, M. On the second 2-class group \(\mathrm{Gal}(K_2^{(2)} / K)\) of some imaginary quartic cyclic number field \(K\). (English) Zbl 1428.11190 J. Number Theory 177, 562-588 (2017). MSC: 11R16 11R11 11R29 11R32 11R37 PDF BibTeX XML Cite \textit{A. Azizi} et al., J. Number Theory 177, 562--588 (2017; Zbl 1428.11190) Full Text: DOI
Schmid, Peter Cohomology and Galois theory of 2-groups of maximal class. (English) Zbl 1319.20041 Beitr. Algebra Geom. 56, No. 1, 373-377 (2015). MSC: 20J06 20D15 11R32 PDF BibTeX XML Cite \textit{P. Schmid}, Beitr. Algebra Geom. 56, No. 1, 373--377 (2015; Zbl 1319.20041) Full Text: DOI
Grundman, Helen G.; Smith, Tara L. Galois realizability of groups of order 64. (English) Zbl 1256.12003 Cent. Eur. J. Math. 8, No. 5, 846-854 (2010). Reviewer: Ivo M. Michailov (Shumen) MSC: 12F12 PDF BibTeX XML Cite \textit{H. G. Grundman} and \textit{T. L. Smith}, Cent. Eur. J. Math. 8, No. 5, 846--854 (2010; Zbl 1256.12003) Full Text: DOI
Grundman, Helen G.; Smith, Tara L. Realizability and automatic realizability of Galois groups of order 32. (English) Zbl 1256.12002 Cent. Eur. J. Math. 8, No. 2, 244-260 (2010). Reviewer: Ivo M. Michailov (Shumen) MSC: 12F12 PDF BibTeX XML Cite \textit{H. G. Grundman} and \textit{T. L. Smith}, Cent. Eur. J. Math. 8, No. 2, 244--260 (2010; Zbl 1256.12002) Full Text: DOI
Grundman, H. G.; Smith, Tara L. Galois realizability of a central \(C_4\)-extension of \(D_8\). (English) Zbl 1222.12007 J. Algebra 322, No. 10, 3492-3498 (2009). Reviewer: Martin Epkenhans (Münster) MSC: 12F12 PDF BibTeX XML Cite \textit{H. G. Grundman} and \textit{T. L. Smith}, J. Algebra 322, No. 10, 3492--3498 (2009; Zbl 1222.12007) Full Text: DOI
Li, Yuanlin; Bell, Howard E.; Phipps, Colin On reversible group rings. (English) Zbl 1103.16016 Bull. Aust. Math. Soc. 74, No. 1, 139-142 (2006). Reviewer: Nako Nachev (Plovdiv) MSC: 16S34 20C05 16P10 16S50 16U80 PDF BibTeX XML Cite \textit{Y. Li} et al., Bull. Aust. Math. Soc. 74, No. 1, 139--142 (2006; Zbl 1103.16016) Full Text: DOI
Kang, D.-S.; Reichstein, Z. Trace forms of Galois field extensions in the presence of roots of unity. (English) Zbl 1017.12004 J. Reine Angew. Math. 549, 79-89 (2002). Reviewer: Tara Smith (Cincinnati) MSC: 12F10 11E04 11R32 PDF BibTeX XML Cite \textit{D. S. Kang} and \textit{Z. Reichstein}, J. Reine Angew. Math. 549, 79--89 (2002; Zbl 1017.12004) Full Text: DOI
Grundman, Helen G.; Smith, Tara L. Automatic realizability of Galois groups of order 16. (English) Zbl 0862.12005 Proc. Am. Math. Soc. 124, No. 9, 2631-2640 (1996). Reviewer: M.Epkenhans (Paderborn) MSC: 12F12 12F10 PDF BibTeX XML Cite \textit{H. G. Grundman} and \textit{T. L. Smith}, Proc. Am. Math. Soc. 124, No. 9, 2631--2640 (1996; Zbl 0862.12005) Full Text: DOI
Schneps, Leila On Galois groups and their maximal 2-subgroups. (English) Zbl 0856.12003 Isr. J. Math. 93, 125-144 (1996). Reviewer: T.Nguyen Quang Do (Besançon) MSC: 12F10 12F12 PDF BibTeX XML Cite \textit{L. Schneps}, Isr. J. Math. 93, 125--144 (1996; Zbl 0856.12003) Full Text: DOI
Ledet, Arne On 2-groups as Galois groups. (English) Zbl 0849.12006 Can. J. Math. 47, No. 6, 1253-1273 (1995). Reviewer: M.Epkenhans (Paderborn) MSC: 12F12 12F10 PDF BibTeX XML Cite \textit{A. Ledet}, Can. J. Math. 47, No. 6, 1253--1273 (1995; Zbl 0849.12006) Full Text: DOI
Grundman, Helen G.; Smith, Tara L.; Swallow, John R. Groups of order 16 as Galois groups. (English) Zbl 0838.12004 Expo. Math. 13, No. 4, 289-319 (1995). Reviewer: R.Massy (Valenciennes) MSC: 12F12 PDF BibTeX XML Cite \textit{H. G. Grundman} et al., Expo. Math. 13, No. 4, 289--319 (1995; Zbl 0838.12004)
Bogomolov, Fedor A. On the structure of Galois groups of the fields of rational functions. (English) Zbl 0843.12003 Jacob, Bill (ed.) et al., K-theory and algebraic geometry: connections with quadratic forms and division algebras. Summer Research Institute on quadratic forms and division algebras, July 6-24, 1992, University of California, Santa Barbara, CA (USA). Providence, RI: American Mathematical Society. Proc. Symp. Pure Math. 58, Part 2, 83-88 (1995). Reviewer: T.Nguyen Quang Do (Besançon) MSC: 12F10 19C30 12F20 12G05 PDF BibTeX XML Cite \textit{F. A. Bogomolov}, Proc. Symp. Pure Math. 58, 83--88 (1995; Zbl 0843.12003)
Smith, Tara L. Extra-special groups of order 32 as Galois groups. (English) Zbl 0810.12004 Can. J. Math. 46, No. 4, 886-896 (1994). Reviewer: R.Massy (Valenciennes) MSC: 12F12 PDF BibTeX XML Cite \textit{T. L. Smith}, Can. J. Math. 46, No. 4, 886--896 (1994; Zbl 0810.12004) Full Text: DOI
Haran, Dan On the cohomological dimension of Artin-Schreier structures. (English) Zbl 0829.20042 J. Algebra 156, No. 1, 219-236 (1993). Reviewer: P.Zalesskij (Minsk) MSC: 20E18 20E22 12G10 20J15 PDF BibTeX XML Cite \textit{D. Haran}, J. Algebra 156, No. 1, 219--236 (1993; Zbl 0829.20042) Full Text: DOI Link
Engler, Antonio José The \(m\)-ordered real free pro-\(2\)-group. Cohomological characterizations. (English) Zbl 0798.20023 Commun. Algebra 21, No. 8, 2597-2629 (1993). Reviewer: M.Kula (Katowice) MSC: 20E18 12G05 20J05 PDF BibTeX XML Cite \textit{A. J. Engler}, Commun. Algebra 21, No. 8, 2597--2629 (1993; Zbl 0798.20023) Full Text: DOI
Jensen, C. U.; Prestel, A. Unique realizability of finite Abelian 2-groups as Galois groups. (English) Zbl 0756.12002 J. Number Theory 40, No. 1, 12-31 (1992). Reviewer: N.Vila (Barcelona) MSC: 12F12 11R32 11R20 20E18 PDF BibTeX XML Cite \textit{C. U. Jensen} and \textit{A. Prestel}, J. Number Theory 40, No. 1, 12--31 (1992; Zbl 0756.12002) Full Text: DOI
Ware, Roger Witt rings and almost free pro-2-groups. (English) Zbl 0706.11022 J. Algebra 132, No. 2, 377-383 (1990). Reviewer: K.Szymiczek MSC: 11E81 20E18 12F10 PDF BibTeX XML Cite \textit{R. Ware}, J. Algebra 132, No. 2, 377--383 (1990; Zbl 0706.11022) Full Text: DOI
Mináč, Ján On fields for which the number of orderings is divisible by a high power of 2. II. (English) Zbl 0577.12016 C. R. Math. Acad. Sci., Soc. R. Can. 7, 221-226 (1985). Reviewer: A.F.T.W.Rosenberg MSC: 12D15 11E10 12G10 12J15 11E16 20E18 PDF BibTeX XML Cite \textit{J. Mináč}, C. R. Math. Acad. Sci., Soc. R. Can. 7, 221--226 (1985; Zbl 0577.12016)
Ware, Roger Quadratic forms and pro 2-groups. II: The Galois group of the Pythagorean closure of a formally real field. (English) Zbl 0518.10024 J. Pure Appl. Algebra 30, 95-107 (1983). MSC: 11E04 12F10 20E18 12D15 PDF BibTeX XML Cite \textit{R. Ware}, J. Pure Appl. Algebra 30, 95--107 (1983; Zbl 0518.10024) Full Text: DOI
Ware, Roger Quadratic forms and profinite 2-groups. (English) Zbl 0412.10010 J. Algebra 58, 227-237 (1979). MSC: 11E04 12F10 20E18 PDF BibTeX XML Cite \textit{R. Ware}, J. Algebra 58, 227--237 (1979; Zbl 0412.10010) Full Text: DOI