×

A modified brain MR image segmentation and bias field estimation model based on local and global information. (English) Zbl 1367.92059

Summary: Because of the poor radio frequency coil uniformity and gradient-driven eddy currents, there is much noise and intensity inhomogeneity (bias) in brain magnetic resonance (MR) image, and it severely affects the segmentation accuracy. Better segmentation results are difficult to achieve by traditional methods; therefore, in this paper, a modified brain MR image segmentation and bias field estimation model based on local and global information is proposed. We first construct local constraints including image neighborhood information in Gaussian kernel mapping space, and then the complete regularization is established by introducing nonlocal spatial information of MR image. The weighting between local and global information is automatically adjusted according to image local information. At the same time, bias field information is coupled with the model, and it makes the model reduce noise interference but also can effectively estimate the bias field information. Experimental results demonstrate that the proposed algorithm has strong robustness to noise and bias field is well corrected.

MSC:

92C55 Biomedical imaging and signal processing

Software:

BrainWeb; N4itk
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Naz, S.; Majeed, H.; Irshad, H., Image segmentation using fuzzy clustering: a survey, Proceedings of the 6th International Conference on Emerging Technologies (ICET ’10), IEEE · doi:10.1109/icet.2010.5638492
[2] Tan, K. S.; Isa, N. A. M., Color image segmentation using histogram thresholding Fuzzy C-means hybrid approach, Pattern Recognition, 44, 1, 1-15 (2011) · Zbl 1207.68319 · doi:10.1016/j.patcog.2010.07.013
[3] Gong, M.; Zhou, Z.; Ma, J., Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering, IEEE Transactions on Image Processing, 21, 4, 2141-2151 (2012) · Zbl 1373.94782 · doi:10.1109/tip.2011.2170702
[4] Ahmed, M. N.; Yamany, S. M.; Mohamed, N.; Farag, A. A.; Moriarty, T., A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data, IEEE Transactions on Medical Imaging, 21, 3, 193-199 (2002) · doi:10.1109/42.996338
[5] Cai, W.; Chen, S.; Zhang, D., Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation, Pattern Recognition, 40, 3, 825-838 (2007) · Zbl 1118.68133 · doi:10.1016/j.patcog.2006.07.011
[6] Krinidis, S.; Chatzis, V., A robust fuzzy local information C-means clustering algorithm, IEEE Transactions on Image Processing, 19, 5, 1328-1337 (2010) · Zbl 1371.68306 · doi:10.1109/tip.2010.2040763
[7] Despotovíć, I.; Vansteenkiste, E.; Philips, W., Spatially coherent fuzzy clustering for accurate and noise-robust image segmentation, IEEE Signal Processing Letters, 20, 4, 295-298 (2013) · doi:10.1109/LSP.2013.2244080
[8] Gong, M.; Liang, Y.; Shi, J.; Ma, W.; Ma, J., Fuzzy C-means clustering with local information and kernel metric for image segmentation, IEEE Transactions on Image Processing, 22, 2, 573-584 (2013) · Zbl 1373.94141 · doi:10.1109/TIP.2012.2219547
[9] Zhao, Z.; Cheng, L.; Cheng, G., Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation, IET Image Processing, 8, 3, 150-161 (2014) · doi:10.1049/iet-ipr.2011.0128
[10] Zhu, L.; Chung, F.-L.; Wang, S., Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39, 3, 578-591 (2009) · doi:10.1109/TSMCB.2008.2004818
[11] Zhao, F.; Jiao, L.; Liu, H.; Gao, X., A novel fuzzy clustering algorithm with non local adaptive spatial constraint for image segmentation, Signal Processing, 91, 4, 988-999 (2011) · Zbl 1217.94026 · doi:10.1016/j.sigpro.2010.10.001
[12] Feng, J.; Jiao, L. C.; Zhang, X.; Gong, M.; Sun, T., Robust non-local fuzzy c-means algorithm with edge preservation for SAR image segmentation, Signal Processing, 93, 2, 487-499 (2013) · doi:10.1016/j.sigpro.2012.08.024
[13] Wells, W. M.; Crimson, W. E. L.; Kikinis, R.; Jolesz, F. A., Adaptive segmentation of MRI data, IEEE Transactions on Medical Imaging, 15, 4, 429-442 (1996) · doi:10.1109/42.511747
[14] Sled, J. G.; Zijdenbos, A. P.; Evans, A. C., A nonparametric method for automatic correction of intensity nonuniformity in mri data, IEEE Transactions on Medical Imaging, 17, 1, 87-97 (1998) · doi:10.1109/42.668698
[15] Tustison, N. J.; Avants, B. B.; Cook, P. A.; Zheng, Y.; Egan, A.; Yushkevich, P. A.; Gee, J. C., N4ITK: improved N3 bias correction, IEEE Transactions on Medical Imaging, 29, 6, 1310-1320 (2010) · doi:10.1109/tmi.2010.2046908
[16] Zhang, K.; Liu, Q.; Song, H.; Li, X., A variational approach to simultaneous image segmentation and bias correction, IEEE Transactions on Cybernetics, 45, 8, 1426-1437 (2015) · doi:10.1109/tcyb.2014.2352343
[17] Li, C.; Xu, C.; Anderson, A., MRI tissue classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework, Proceedings of the 21st International Conference on Information Processing in Medical Imaging (IPMI ’09)
[18] Wang, S.; Ji, X.; Zhang, J., Improved coupled model for MR images segmentation and bias restoration, Journal of Image and Graphics, 17, 9, 1175-1180 (2012)
[19] Zhang, J.; Yang, H.; Chen, Y.; Fang, L.; Zhan, T., Brain MR image segmentation and bias correction model based on non-local information, Journal of Computer-Aided Design & Computer Graphics, 25, 4, 526-540 (2013)
[20] Li, C.; Gore, J. C.; Davatzikos, C., Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation, Magnetic Resonance Imaging, 32, 7, 913-923 (2014) · doi:10.1016/j.mri.2014.03.010
[21] Cocosco, C. A.; Kollokian, V.; Kwan, R. K.-S., BrainWeb: Online Interface to a 3D MRI Simulated Brain Database
[22] Masulli, F.; Schenone, A., A fuzzy clustering based segmentation system as support to diagnosis in medical imaging, Artificial Intelligence in Medicine, 16, 2, 129-147 (1999) · doi:10.1016/S0933-3657(98)00069-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.