×

Generalizations of simple kriging methods in spatial data analysis. (English) Zbl 1403.62174

Griebel, Michael (ed.) et al., Meshfree methods for partial differential equations VIII. Selected contributions based on the presentations at the 8th international workshop, Bonn, Germany, September 7–9, 2015. Cham: Springer (ISBN 978-3-319-51953-1/hbk; 978-3-319-51954-8/ebook). Lecture Notes in Computational Science and Engineering 115, 145-166 (2017).
Summary: In this article, we use the theory of meshfree approximation to generalize the simple kriging methods by kernel-based probabilities. The main idea is that the new kriging estimations are modeled by the Gaussian fields indexed by bounded linear functionals defined on Sobolev spaces. Moreover, the covariances of the Gaussian fields at the observed functionals can be computed by the given covariance kernels with respect to the related functionals, for example, Gaussian kernels evaluated at points and gradients. This guarantees that the generalized kriging estimations can be obtained by the same techniques of the simple kriging methods and the generalized kriging estimations can cover many kinds of the complex observed information. By the generalized kriging methods, we can model the geostatistics with the additional observations of gradients at the uncertain locations.
For the entire collection see [Zbl 1369.65003].

MSC:

62M30 Inference from spatial processes
62G05 Nonparametric estimation
60G15 Gaussian processes
60G60 Random fields

Software:

GaussQR; Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R.A. Adams, J.J.F. Fournier, \(Sobolev Spaces\), 2nd edn. (Elsevier/Academic, Amsterdam, 2003) · Zbl 1098.46001
[2] J.O. Berger, \(Statistical Decision Theory and Bayesian Analysis\) (Springer, New York, 1993). Corrected reprint of the second edition (1985). MR 1234489 (94j:62002)
[3] A. Berlinet, C. Thomas-Agnan, \(Reproducing Kernel Hilbert Spaces in Probability and Statistics\) (Kluwer Academic Publishers, Boston, MA, 2004) · Zbl 1145.62002 · doi:10.1007/978-1-4419-9096-9
[4] M.D. Buhmann, \(Radial Basis Functions: Theory and Implementations\) (Cambridge University Press, Cambridge, 2003) · Zbl 1038.41001 · doi:10.1017/CBO9780511543241
[5] J.-P. Chilés, P. Delfiner, \(Geostatistics: Modeling Spatial Uncertainty\), 2nd edn. (Wiley, Hoboken, 1999) · doi:10.1002/9780470316993
[6] G.E. Fasshauer, \(Meshfree Approximation Methods with\)matlab (World Scientific Publishing, Hackensack, NJ, 2007) · doi:10.1142/6437
[7] G.E. Fasshauer, M.J. McCourt, \(Kernel-Based Approximation Methods Using MATLAB\) (World Scientific, Hackensack, NJ, 2015) · Zbl 1318.00001 · doi:10.1142/9335
[8] G.E. Fasshauer, Q. Ye, Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators. Numer. Math. 119 (3), 585-611 (2011) · Zbl 1242.46039 · doi:10.1007/s00211-011-0391-2
[9] G.E. Fasshauer, Q. Ye, Reproducing kernels of Sobolev spaces via a green kernel approach with differential operators and boundary operators. Adv. Comput. Math. 38 (4), 891-921 (2013) · Zbl 1267.41018 · doi:10.1007/s10444-011-9264-6
[10] S. Janson, \(Gaussian Hilbert Spaces\) (Cambridge University Press, Cambridge, 1997) · Zbl 0887.60009 · doi:10.1017/CBO9780511526169
[11] I. Karatzas, S.E. Shreve, \(Brownian Motion and Stochastic Calculus\), 2nd edn. (Springer, New York, 1991) · Zbl 0734.60060
[12] B.A. Lockwood, M. Anitescu, Gradient-enhanced universal kriging for uncertainty propagation. Nucl. Sci. Eng. 170 (2), 168-195 (2012) · doi:10.13182/NSE10-86
[13] M. Scheuerer, R. Schaback, M. Schlather, Interpolation of spatial data—a stochastic or a deterministic problem? Eur. J. Appl. Math. 24, 601-629 (2013) · Zbl 1426.62284 · doi:10.1017/S0956792513000016
[14] M.L. Stein, \(Interpolation of Spatial Data\) (Springer, New York, 1999) · Zbl 0924.62100 · doi:10.1007/978-1-4612-1494-6
[15] G. Wahba, \(Spline Models for Observational Data\) (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990) · Zbl 0813.62001 · doi:10.1137/1.9781611970128
[16] H. Wendland, \(Scattered Data Approximation\) (Cambridge University Press, Cambridge, 2005) · Zbl 1075.65021
[17] Q. Ye, Kernel-based methods for stochastic partial differential equations (2015). arXiv:1303.5381v8
[18] Q. Ye, Optimal designs of positive definite kernels for scattered data approximation. Appl. Comput. Harmon. Anal. 41 (1), 214-236 (2016) · Zbl 1357.46069 · doi:10.1016/j.acha.2015.08.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.