da Silva, Priscila L. Analytic regularity of global solutions for the \(b\)-equation. (English) Zbl 07766572 Appl. Math. Lett. 148, Article ID 108883, 6 p. (2024). MSC: 35Qxx 37Kxx 35Axx PDF BibTeX XML Cite \textit{P. L. da Silva}, Appl. Math. Lett. 148, Article ID 108883, 6 p. (2024; Zbl 07766572) Full Text: DOI arXiv
Melo, Wilberclay G.; Santos, Thyago S. R.; dos Santos Costa, Natielle Existence of solutions and their behavior for the anisotropic quasi-geostrophic equation in Sobolev and Sobolev-Gevrey spaces. (English) Zbl 07759018 J. Math. Anal. Appl. 530, No. 1, Article ID 127661, 29 p. (2024). MSC: 35Qxx 35Bxx 35Axx PDF BibTeX XML Cite \textit{W. G. Melo} et al., J. Math. Anal. Appl. 530, No. 1, Article ID 127661, 29 p. (2024; Zbl 07759018) Full Text: DOI
Wang, Haiquan; Chen, Miaomiao; Chong, Gezi On the Cauchy problem of the two-component Novikov-type system with peaked solutions and \(H^1\)-conservation law. (English) Zbl 07749853 Int. J. Math. 34, No. 11, Article ID 2350069, 27 p. (2023). MSC: 35B40 35B30 35G55 PDF BibTeX XML Cite \textit{H. Wang} et al., Int. J. Math. 34, No. 11, Article ID 2350069, 27 p. (2023; Zbl 07749853) Full Text: DOI
Melo, Wilberclay G.; Rocha, Natã Firmino New blow-up criteria for local solutions of the 3D generalized MHD equations in Lei-Lin-Gevrey spaces. (English) Zbl 07747219 Math. Nachr. 296, No. 2, 757-778 (2023). MSC: 35B44 35Q30 35A01 76D05 76W05 PDF BibTeX XML Cite \textit{W. G. Melo} and \textit{N. F. Rocha}, Math. Nachr. 296, No. 2, 757--778 (2023; Zbl 07747219) Full Text: DOI
da Silva, Priscila L. Local well-posedness and global analyticity for solutions of a generalized 0-equation. (English) Zbl 07741864 Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 5, 1630-1650 (2023). MSC: 35A02 35A01 35A20 35G25 PDF BibTeX XML Cite \textit{P. L. da Silva}, Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 5, 1630--1650 (2023; Zbl 07741864) Full Text: DOI arXiv OA License
Arias Junior, Alexandre; Ascanelli, Alessia; Cappiello, Marco KdV-type equations in projective Gevrey spaces. (English. French summary) Zbl 07738546 J. Math. Pures Appl. (9) 178, 110-140 (2023). MSC: 35Q53 35Q35 76T10 35G10 35S05 35B65 35A01 35A02 46F05 PDF BibTeX XML Cite \textit{A. Arias Junior} et al., J. Math. Pures Appl. (9) 178, 110--140 (2023; Zbl 07738546) Full Text: DOI arXiv
Qian, Haotian; Shan, Minjie Local well-posedness and spatial analyticity for the generalized Zakharov-Kuznetsov equation. (English) Zbl 1522.35448 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 235, Article ID 113344, 16 p. (2023). MSC: 35Q53 35A20 35B65 35B50 35A01 35A02 30H05 PDF BibTeX XML Cite \textit{H. Qian} and \textit{M. Shan}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 235, Article ID 113344, 16 p. (2023; Zbl 1522.35448) Full Text: DOI
Melo, Wilberclay G.; Rocha, Natã Firmino; dos Santos Costa, Natielle Decay rates for mild solutions of the quasi-geostrophic equation with critical fractional dissipation in Sobolev-Gevrey spaces. (English) Zbl 07715950 Acta Appl. Math. 186, Paper No. 4, 13 p. (2023). MSC: 35Qxx 35A01 35A20 35Q35 42B37 76U60 PDF BibTeX XML Cite \textit{W. G. Melo} et al., Acta Appl. Math. 186, Paper No. 4, 13 p. (2023; Zbl 07715950) Full Text: DOI
Figueira, Renata O.; Panthee, Mahendra Evolution of the radius of analyticity for the generalized Benjamin equation. (English) Zbl 1518.35021 Discrete Contin. Dyn. Syst. 43, No. 8, 3043-3059 (2023). MSC: 35A20 35B40 35Q53 35Q55 PDF BibTeX XML Cite \textit{R. O. Figueira} and \textit{M. Panthee}, Discrete Contin. Dyn. Syst. 43, No. 8, 3043--3059 (2023; Zbl 1518.35021) Full Text: DOI arXiv
Ghisi, Marina; Gobbino, Massimo Three examples of residual pathologies. (English) Zbl 07697433 Jpn. J. Math. (3) 18, No. 1, 67-113 (2023). MSC: 26A24 35L15 35Q35 76F25 PDF BibTeX XML Cite \textit{M. Ghisi} and \textit{M. Gobbino}, Jpn. J. Math. (3) 18, No. 1, 67--113 (2023; Zbl 07697433) Full Text: DOI arXiv
Bona, J. L.; Weissler, F. B. Blowup and ill-posedness for the complex, periodic KdV equation. (English) Zbl 1517.35192 Commun. Contemp. Math. 25, No. 6, Article ID 2250044, 57 p. (2023). MSC: 35Q53 35B44 35A01 35A02 35R25 PDF BibTeX XML Cite \textit{J. L. Bona} and \textit{F. B. Weissler}, Commun. Contemp. Math. 25, No. 6, Article ID 2250044, 57 p. (2023; Zbl 1517.35192) Full Text: DOI
Haas, Tobias; de Derijk, Björn; Schneider, Guido Validity of Whitham’s modulation equations for dissipative systems with a conservation law: phase dynamics in a generalized Ginzburg-Landau system. (English) Zbl 07685826 Indiana Univ. Math. J. 72, No. 1, 165-195 (2023). Reviewer: Luigi Amedeo Bianchi (Povo) MSC: 35A10 35B10 35Q56 PDF BibTeX XML Cite \textit{T. Haas} et al., Indiana Univ. Math. J. 72, No. 1, 165--195 (2023; Zbl 07685826) Full Text: DOI arXiv
Ben Mohamed, Hassen; Chaffar, Mohamed Moktar Generalized Weinstein Sobolev-Gevrey spaces and pseudo-differential operators. (English) Zbl 1517.46022 Rend. Circ. Mat. Palermo (2) 72, No. 1, 273-292 (2023). MSC: 46E35 47G30 PDF BibTeX XML Cite \textit{H. Ben Mohamed} and \textit{M. M. Chaffar}, Rend. Circ. Mat. Palermo (2) 72, No. 1, 273--292 (2023; Zbl 1517.46022) Full Text: DOI
Kondo, Cezar; Pes, Ronaldo Well-posedness for a coupled system of Kawahara/KdV type equations with polynomials nonlinearities. (English) Zbl 1501.35347 Commun. Pure Appl. Anal. 21, No. 8, 2615-2641 (2022). MSC: 35Q53 35A01 35A02 35C08 PDF BibTeX XML Cite \textit{C. Kondo} and \textit{R. Pes}, Commun. Pure Appl. Anal. 21, No. 8, 2615--2641 (2022; Zbl 1501.35347) Full Text: DOI
Melo, Wilberclay G.; Rosa Santos, Thyago Souza Time decay rates for the generalized MHD-\(\alpha\) equations in Sobolev-Gevrey spaces. (English) Zbl 1498.35396 Appl. Anal. 101, No. 18, 6623-6644 (2022). MSC: 35Q30 76D05 76W05 35A01 35A02 35B40 PDF BibTeX XML Cite \textit{W. G. Melo} and \textit{T. S. Rosa Santos}, Appl. Anal. 101, No. 18, 6623--6644 (2022; Zbl 1498.35396) Full Text: DOI
Azanzal, Achraf; Allalou, Chakir; Melliani, Said Global well-posedness, Gevrey class regularity and large time asymptotics for the dissipative quasi-geostrophic equation in Fourier-Besov spaces. (English) Zbl 1498.35005 Bol. Soc. Mat. Mex., III. Ser. 28, No. 3, Paper No. 74, 25 p. (2022). MSC: 35A01 35A02 35K08 35Q35 35R09 76D05 PDF BibTeX XML Cite \textit{A. Azanzal} et al., Bol. Soc. Mat. Mex., III. Ser. 28, No. 3, Paper No. 74, 25 p. (2022; Zbl 1498.35005) Full Text: DOI
Kühn, Thomas; Petersen, Martin Approximation in periodic Gevrey spaces. (English) Zbl 1505.46039 J. Complexity 73, Article ID 101665, 24 p. (2022). MSC: 46F05 46E15 41A25 41A63 65D15 65Y20 PDF BibTeX XML Cite \textit{T. Kühn} and \textit{M. Petersen}, J. Complexity 73, Article ID 101665, 24 p. (2022; Zbl 1505.46039) Full Text: DOI
Elmansouri, Aouatef; Zennir, Khaled; Boukarou, Aissa; Zehrour, Okba Analytic Gevrey well-posedness and regularity for class of coupled periodic KdV systems of Majda-Biello type. (English) Zbl 1492.35259 Appl. Sci. 24, 117-130 (2022). MSC: 35Q53 35E15 35B65 35C07 PDF BibTeX XML Cite \textit{A. Elmansouri} et al., Appl. Sci. 24, 117--130 (2022; Zbl 1492.35259) Full Text: Link
Ahn, Jaeseop; Kim, Jimyeong; Seo, Ihyeok On the radius of spatial analyticity for the Klein-Gordon-Schrödinger system. (English) Zbl 1490.35008 J. Differ. Equations 321, 449-474 (2022). Reviewer: Nenad Teofanov (Novi Sad) MSC: 35A20 35C10 35L71 35Q40 42B35 PDF BibTeX XML Cite \textit{J. Ahn} et al., J. Differ. Equations 321, 449--474 (2022; Zbl 1490.35008) Full Text: DOI arXiv
Del Santo, Daniele; Prizzi, Martino Well-posedness for hyperbolic equations whose coefficients lose regularity at one point. (English) Zbl 1489.35164 Monatsh. Math. 197, No. 3, 407-417 (2022). Reviewer: Michael Reissig (Freiberg) MSC: 35L15 35B65 PDF BibTeX XML Cite \textit{D. Del Santo} and \textit{M. Prizzi}, Monatsh. Math. 197, No. 3, 407--417 (2022; Zbl 1489.35164) Full Text: DOI arXiv
Melo, Wilberclay G.; de Souza, Manassés; Rosa Santos, Thyago Souza On the generalized Magnetohydrodynamics-\(\alpha\) equations with fractional dissipation in Lei-Lin and Lei-Lin-Gevrey spaces. (English) Zbl 1508.35085 Z. Angew. Math. Phys. 73, No. 1, Paper No. 44, 37 p. (2022). MSC: 35Q35 76W05 76D05 76D03 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{W. G. Melo} et al., Z. Angew. Math. Phys. 73, No. 1, Paper No. 44, 37 p. (2022; Zbl 1508.35085) Full Text: DOI
Dufera, Tamirat T.; Mebrate, Sileshi; Tesfahun, Achenef On the persistence of spatial analyticity for the beam equation. (English) Zbl 1510.35329 J. Math. Anal. Appl. 509, No. 2, Article ID 126001, 13 p. (2022). MSC: 35Q74 74K10 35A20 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{T. T. Dufera} et al., J. Math. Anal. Appl. 509, No. 2, Article ID 126001, 13 p. (2022; Zbl 1510.35329) Full Text: DOI arXiv
Belayneh, Birilew; Tegegn, Emawayish; Tesfahun, Achenef Lower bound on the radius of analyticity of solution for fifth order KdV-BBM equation. (English) Zbl 1482.35012 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 6, 12 p. (2022). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 35A20 35B65 35Q53 35C10 PDF BibTeX XML Cite \textit{B. Belayneh} et al., NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 6, 12 p. (2022; Zbl 1482.35012) Full Text: DOI arXiv
Bae, Hantaek; Lee, Woojae Existence, Gevrey regularity, and decay properties of solutions to active models in critical spaces. (English) Zbl 1489.35198 J. Math. Anal. Appl. 506, No. 2, Article ID 125700, 19 p. (2022). MSC: 35Q35 76D05 76T20 35B65 35A01 60H40 PDF BibTeX XML Cite \textit{H. Bae} and \textit{W. Lee}, J. Math. Anal. Appl. 506, No. 2, Article ID 125700, 19 p. (2022; Zbl 1489.35198) Full Text: DOI
Fischer, Véronique; Ruzhansky, Michael; Taranto, Chiara Alba Subelliptic Gevrey spaces. (English) Zbl 07745781 Math. Nachr. 294, No. 2, 265-285 (2021). MSC: 22E30 43A15 PDF BibTeX XML Cite \textit{V. Fischer} et al., Math. Nachr. 294, No. 2, 265--285 (2021; Zbl 07745781) Full Text: DOI arXiv
Castro-Jiménez, Francisco-Jesús; Fernández-Fernández, María-Cruz; Granger, Michel Gevrey expansions of hypergeometric integrals II. (English) Zbl 1505.33008 Int. Math. Res. Not. 2021, No. 23, 17823-17861 (2021). Reviewer: Francisco Pérez Acosta (La Laguna) MSC: 33C60 41A65 PDF BibTeX XML Cite \textit{F.-J. Castro-Jiménez} et al., Int. Math. Res. Not. 2021, No. 23, 17823--17861 (2021; Zbl 1505.33008) Full Text: DOI arXiv
Guterres, Robert H.; Melo, Wilberclay G.; Rocha, Natã F.; Santos, Thyago S. R. Well-posedness, blow-up criteria and stability for solutions of the generalized MHD equations in Sobolev-Gevrey spaces. (English) Zbl 1482.35154 Acta Appl. Math. 176, Paper No. 4, 30 p. (2021). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 35Q30 76W05 35B44 86A25 35A01 35A02 35B35 PDF BibTeX XML Cite \textit{R. H. Guterres} et al., Acta Appl. Math. 176, Paper No. 4, 30 p. (2021; Zbl 1482.35154) Full Text: DOI
Kondo, Cezar I.; Pes, Ronaldo B. Well-posedness for a coupled system of Kawahara/KdV type equations. (English) Zbl 1478.35185 Appl. Math. Optim. 84, No. 3, 2985-3024 (2021). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 35B65 35C08 35A01 35A02 76B15 PDF BibTeX XML Cite \textit{C. I. Kondo} and \textit{R. B. Pes}, Appl. Math. Optim. 84, No. 3, 2985--3024 (2021; Zbl 1478.35185) Full Text: DOI
Melo, Wilberclay G.; Rocha, Natã Firmino; Barbosa, Ezequiel Navier-Stokes equations: local existence, uniqueness and blow-up of solutions in Sobolev-Gevrey spaces. (English) Zbl 1476.35177 Appl. Anal. 100, No. 9, 1905-1924 (2021). MSC: 35Q30 35B44 76D03 76D05 35A01 35A02 PDF BibTeX XML Cite \textit{W. G. Melo} et al., Appl. Anal. 100, No. 9, 1905--1924 (2021; Zbl 1476.35177) Full Text: DOI
Jézéquel, Malo Global trace formula for ultra-differentiable Anosov flows. (English) Zbl 1483.37039 Commun. Math. Phys. 385, No. 3, 1771-1834 (2021). Reviewer: Thomas B. Ward (Newcastle) MSC: 37D20 37C10 37C30 37C40 PDF BibTeX XML Cite \textit{M. Jézéquel}, Commun. Math. Phys. 385, No. 3, 1771--1834 (2021; Zbl 1483.37039) Full Text: DOI arXiv
Ruzhansky, Michael; Taranto, Chiara Alba Time-dependent wave equations on graded groups. (English) Zbl 1469.35097 Acta Appl. Math. 171, Paper No. 21, 25 p. (2021). MSC: 35H10 35L20 35R03 43A70 43A80 PDF BibTeX XML Cite \textit{M. Ruzhansky} and \textit{C. A. Taranto}, Acta Appl. Math. 171, Paper No. 21, 25 p. (2021; Zbl 1469.35097) Full Text: DOI arXiv
Huy, Nguyen Bich; Hien, Pham Van The Cauchy problem in scale of Banach spaces with deviating variables. (English) Zbl 1469.35005 Fixed Point Theory 22, No. 1, 219-230 (2021). MSC: 35A10 35R10 34G20 58D25 47H10 PDF BibTeX XML Cite \textit{N. B. Huy} and \textit{P. Van Hien}, Fixed Point Theory 22, No. 1, 219--230 (2021; Zbl 1469.35005) Full Text: Link
Melo, Wilberclay G.; Rocha, Natã F.; Zingano, Paulo R. Asymptotic behavior of solutions for the 2D micropolar equations in Sobolev-Gevrey spaces. (English) Zbl 1473.35451 Asymptotic Anal. 123, No. 1-2, 157-179 (2021). MSC: 35Q35 76A05 76U05 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{W. G. Melo} et al., Asymptotic Anal. 123, No. 1--2, 157--179 (2021; Zbl 1473.35451) Full Text: DOI
Boukarou, Aissa; Oliveira da Silva, Daniel; Guerbati, Kaddour; Zennir, Khaled Global well-posedness for the fifth-order Kadomtsev-Petviashvili II equation in anisotropic Gevrey spaces. (English) Zbl 1470.35303 Dyn. Partial Differ. Equ. 18, No. 2, 101-112 (2021). MSC: 35Q53 35A01 35A02 PDF BibTeX XML Cite \textit{A. Boukarou} et al., Dyn. Partial Differ. Equ. 18, No. 2, 101--112 (2021; Zbl 1470.35303) Full Text: DOI arXiv
Boukarou, Aissa; Zennir, Khaled; Guerbati, Kaddour; Georgiev, Svetlin G. Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity. (English) Zbl 1462.35139 Rend. Circ. Mat. Palermo (2) 70, No. 1, 349-364 (2021). MSC: 35G15 35Q53 35B65 35C07 PDF BibTeX XML Cite \textit{A. Boukarou} et al., Rend. Circ. Mat. Palermo (2) 70, No. 1, 349--364 (2021; Zbl 1462.35139) Full Text: DOI
Figueira, Renata O.; Himonas, A. Alexandrou Lower bounds on the radius of analyticity for a system of modified KdV equations. (English) Zbl 1462.35333 J. Math. Anal. Appl. 497, No. 2, Article ID 124917, 17 p. (2021). MSC: 35Q53 35A01 35A02 PDF BibTeX XML Cite \textit{R. O. Figueira} and \textit{A. A. Himonas}, J. Math. Anal. Appl. 497, No. 2, Article ID 124917, 17 p. (2021; Zbl 1462.35333) Full Text: DOI
Biswas, Animikh; Hudson, Joshua; Tian, Jing Persistence time of solutions of the three-dimensional Navier-Stokes equations in Sobolev-Gevrey classes. (English) Zbl 1456.35151 J. Differ. Equations 277, 191-233 (2021). MSC: 35Q30 76D05 34G20 47N20 35K55 35D30 35A01 PDF BibTeX XML Cite \textit{A. Biswas} et al., J. Differ. Equations 277, 191--233 (2021; Zbl 1456.35151) Full Text: DOI arXiv
da Silva, Daniel Oliveira; Castro, Alejandro J. Global well-posedness for the nonlinear wave equation in analytic Gevrey spaces. (English) Zbl 1455.35209 J. Differ. Equations 275, 234-249 (2021). MSC: 35Q40 35L70 35A01 35A02 35B40 35L05 PDF BibTeX XML Cite \textit{D. O. da Silva} and \textit{A. J. Castro}, J. Differ. Equations 275, 234--249 (2021; Zbl 1455.35209) Full Text: DOI arXiv
Colombini, Ferruccio; Orrù, Nicola; Taglialatela, Giovanni Strong hyperbolicity in Gevrey classes. (English) Zbl 1458.35254 J. Differ. Equations 272, 222-254 (2021). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 35L30 35G10 PDF BibTeX XML Cite \textit{F. Colombini} et al., J. Differ. Equations 272, 222--254 (2021; Zbl 1458.35254) Full Text: DOI
Bridges, Thomas J.; Kostianko, Anna; Schneider, Guido A proof of validity for multiphase Whitham modulation theory. (English) Zbl 1472.35332 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2243, Article ID 20200203, 19 p. (2020). MSC: 35Q53 35C07 PDF BibTeX XML Cite \textit{T. J. Bridges} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2243, Article ID 20200203, 19 p. (2020; Zbl 1472.35332) Full Text: DOI arXiv Link
Melo, Wilberclay G.; Rosa Santos, Thyago Souza; Zingano, Paulo R. Global well-posedness of the 3D generalized MHD equations in Lei-Lin-Gevrey and Lei-Lin spaces. (English) Zbl 1464.35189 Z. Angew. Math. Phys. 71, No. 6, Paper No. 195, 11 p. (2020). MSC: 35Q30 76D03 76D05 76W05 35A01 35A02 PDF BibTeX XML Cite \textit{W. G. Melo} et al., Z. Angew. Math. Phys. 71, No. 6, Paper No. 195, 11 p. (2020; Zbl 1464.35189) Full Text: DOI
Boukarou, A.; Zennir, Kh.; Guerbati, K.; Svetlin, G. G. Well-posedness and regularity of the fifth order Kadomtsev-Petviashvili I equation in the analytic Bourgain spaces. (English) Zbl 1462.35143 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66, No. 2, 255-272 (2020). MSC: 35G25 35Q53 35B65 35C07 PDF BibTeX XML Cite \textit{A. Boukarou} et al., Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66, No. 2, 255--272 (2020; Zbl 1462.35143) Full Text: DOI
Selmi, Ridha; Chaabani, Abdelkerim Vanishing viscosity limit to the 3D Burgers equation in Gevrey class. (English) Zbl 1460.35017 Pure Appl. Math. Q. 16, No. 5, 1747-1762 (2020). MSC: 35B25 35K20 35K58 35A01 35A02 35B45 PDF BibTeX XML Cite \textit{R. Selmi} and \textit{A. Chaabani}, Pure Appl. Math. Q. 16, No. 5, 1747--1762 (2020; Zbl 1460.35017) Full Text: DOI
Cui, Yiwen; Xiao, Weiliang Gevrey regularity and time decay of the fractional Debye-Hückel system in Fourier-Besov spaces. (English) Zbl 1468.35193 Bull. Korean Math. Soc. 57, No. 6, 1393-1408 (2020). Reviewer: Eduard Curca (Lyon) MSC: 35Q60 35K55 35B65 35A01 78A57 35R11 PDF BibTeX XML Cite \textit{Y. Cui} and \textit{W. Xiao}, Bull. Korean Math. Soc. 57, No. 6, 1393--1408 (2020; Zbl 1468.35193) Full Text: DOI
Opschoor, Joost A. A.; Petersen, Philipp C.; Schwab, Christoph Deep ReLU networks and high-order finite element methods. (English) Zbl 1452.65354 Anal. Appl., Singap. 18, No. 5, 715-770 (2020). MSC: 65N30 65D07 65N12 41A25 41A46 35B65 35R02 68T07 92B20 PDF BibTeX XML Cite \textit{J. A. A. Opschoor} et al., Anal. Appl., Singap. 18, No. 5, 715--770 (2020; Zbl 1452.65354) Full Text: DOI
Wang, Haiquan; Chong, Gezi Local Gevrey regularity and analyticity of the solutions to the initial value problem associated with the two-component Novikov system. (Chinese. English summary) Zbl 1463.35145 J. Shandong Univ., Nat. Sci. 55, No. 6, 56-63, 75 (2020). MSC: 35B65 35B60 35Q53 PDF BibTeX XML Cite \textit{H. Wang} and \textit{G. Chong}, J. Shandong Univ., Nat. Sci. 55, No. 6, 56--63, 75 (2020; Zbl 1463.35145) Full Text: DOI
Boukarou, Aissa; Guerbati, Kaddour; Zennir, Khaled Local well-posedness and time regularity for a fifth-order shallow water equations in analytic Gevrey-Bourgain spaces. (English) Zbl 1453.35047 Monatsh. Math. 193, No. 4, 763-782 (2020). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 35G25 35E15 35B65 35C07 35Q35 PDF BibTeX XML Cite \textit{A. Boukarou} et al., Monatsh. Math. 193, No. 4, 763--782 (2020; Zbl 1453.35047) Full Text: DOI
Ghisi, Marina; Gobbino, Massimo Critical counterexamples for linear wave equations with time-dependent propagation speed. (English) Zbl 1452.35108 J. Differ. Equations 269, No. 12, 11435-11460 (2020). Reviewer: Luigi Rodino (Torino) MSC: 35L90 35L20 35B30 35B65 PDF BibTeX XML Cite \textit{M. Ghisi} and \textit{M. Gobbino}, J. Differ. Equations 269, No. 12, 11435--11460 (2020; Zbl 1452.35108) Full Text: DOI arXiv
Figueira, Renata; Himonas, A. Alexandrou; Yan, Fangchi A higher dispersion KdV equation on the line. (English) Zbl 1450.35232 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 199, Article ID 112055, 37 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35G25 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{R. Figueira} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 199, Article ID 112055, 37 p. (2020; Zbl 1450.35232) Full Text: DOI
Selmi, Ridha; Chaabani, Abdelkerim; Zaabi, Mounia Blow-up of the maximal solution to 3D Boussinesq system in Lei-Lin-Gevrey spaces. (English) Zbl 1447.35076 Math. Methods Appl. Sci. 43, No. 6, 2945-2952 (2020). MSC: 35B44 35Q35 PDF BibTeX XML Cite \textit{R. Selmi} et al., Math. Methods Appl. Sci. 43, No. 6, 2945--2952 (2020; Zbl 1447.35076) Full Text: DOI
Abdeljawad, Ahmed; Coriasco, Sandro; Teofanov, Nenad Bilinear pseudo-differential operators with Gevrey-Hörmander symbols. (English) Zbl 1443.35208 Mediterr. J. Math. 17, No. 4, Paper No. 120, 24 p. (2020). MSC: 35S05 47B37 47G30 42B35 PDF BibTeX XML Cite \textit{A. Abdeljawad} et al., Mediterr. J. Math. 17, No. 4, Paper No. 120, 24 p. (2020; Zbl 1443.35208) Full Text: DOI arXiv
Teofanov, Nenad; Tomić, Filip Extended Gevrey regularity via the short-time Fourier transform. (English) Zbl 1452.46028 Boggiatto, Paolo (ed.) et al., Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2–6, 2018. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 455-474 (2020). Reviewer: Antonio Galbis (Valencia) MSC: 46F05 35A18 PDF BibTeX XML Cite \textit{N. Teofanov} and \textit{F. Tomić}, in: Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2--6, 2018. Cham: Birkhäuser. 455--474 (2020; Zbl 1452.46028) Full Text: DOI arXiv
Bouzar, Chikh Spaces of ultradifferentiable functions of multi-anisotropic type. (English) Zbl 1445.46024 Boggiatto, Paolo (ed.) et al., Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2–6, 2018. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 131-144 (2020). Reviewer: José Bonet (Valencia) MSC: 46E10 46F05 PDF BibTeX XML Cite \textit{C. Bouzar}, in: Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2--6, 2018. Cham: Birkhäuser. 131--144 (2020; Zbl 1445.46024) Full Text: DOI
Abdeljawad, Ahmed; Toft, Joachim Anisotropic Gevrey-Hörmander pseudo-differential operators on modulation spaces. (English) Zbl 1439.35595 Boggiatto, Paolo (ed.) et al., Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2–6, 2018. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 1-20 (2020). MSC: 35S05 47G30 46F05 PDF BibTeX XML Cite \textit{A. Abdeljawad} and \textit{J. Toft}, in: Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2--6, 2018. Cham: Birkhäuser. 1--20 (2020; Zbl 1439.35595) Full Text: DOI arXiv
Amour, L.; Lerner, N.; Nourrigat, J. On the anti-Wick symbol as a Gelfand-Shilov generalized function. (English) Zbl 1505.47051 Proc. Am. Math. Soc. 148, No. 7, 2909-2914 (2020). Reviewer: Luigi Rodino (Torino) MSC: 47G30 46F05 PDF BibTeX XML Cite \textit{L. Amour} et al., Proc. Am. Math. Soc. 148, No. 7, 2909--2914 (2020; Zbl 1505.47051) Full Text: DOI arXiv
Braz e Silva, P.; Melo, W. G.; Rocha, N. F. Existence, uniqueness and blow-up of solutions for the 3D Navier-Stokes equations in homogeneous Sobolev-Gevrey spaces. (English) Zbl 1449.35113 Comput. Appl. Math. 39, No. 2, Paper No. 66, 11 p. (2020). MSC: 35B44 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{P. Braz e Silva} et al., Comput. Appl. Math. 39, No. 2, Paper No. 66, 11 p. (2020; Zbl 1449.35113) Full Text: DOI
Ruzhansky, Michael; Yessirkegenov, Nurgissa Very weak solutions to hypoelliptic wave equations. (English) Zbl 1473.35355 J. Differ. Equations 268, No. 5, 2063-2088 (2020). Reviewer: Duván Cardona (Ghent) MSC: 35L30 35L05 43A70 35H10 35R03 PDF BibTeX XML Cite \textit{M. Ruzhansky} and \textit{N. Yessirkegenov}, J. Differ. Equations 268, No. 5, 2063--2088 (2020; Zbl 1473.35355) Full Text: DOI arXiv
Melo, Wilberclay G.; Rocha, Natã Firmino; Zingano, Paulo R. Local existence, uniqueness and lower bounds of solutions for the magnetohydrodynamics equations in Sobolev-Gevrey spaces. (English) Zbl 1431.35104 J. Math. Anal. Appl. 482, No. 1, Article ID 123524, 31 p. (2020). MSC: 35Q30 35Q35 76W05 76D05 35B44 76D03 PDF BibTeX XML Cite \textit{W. G. Melo} et al., J. Math. Anal. Appl. 482, No. 1, Article ID 123524, 31 p. (2020; Zbl 1431.35104) Full Text: DOI
Melo, Wilberclay G.; Firmino Rocha, Natã; Barbosa, Ezequiel Mathematical theory of incompressible flows: local existence, uniqueness, and blow-up of solutions in Sobolev-Gevrey spaces. (English) Zbl 1442.35349 Dutta, Hemen (ed.) et al., Current trends in mathematical analysis and its interdisciplinary applications. Cham: Birkhäuser. 311-349 (2019). MSC: 35Q35 76D05 35B44 35A01 PDF BibTeX XML Cite \textit{W. G. Melo} et al., in: Current trends in mathematical analysis and its interdisciplinary applications. Cham: Birkhäuser. 311--349 (2019; Zbl 1442.35349) Full Text: DOI
Wang, Weihua Global well-posedness and analyticity for the 3D fractional magnetohydrodynamics equations in variable Fourier-Besov spaces. (English) Zbl 1429.42028 Z. Angew. Math. Phys. 70, No. 6, Paper No. 163, 16 p. (2019). MSC: 42B37 76W05 46F30 35S30 49N60 46E35 PDF BibTeX XML Cite \textit{W. Wang}, Z. Angew. Math. Phys. 70, No. 6, Paper No. 163, 16 p. (2019; Zbl 1429.42028) Full Text: DOI
Markin, Marat V. On the Gevrey ultradifferentiability of weak solutions of an abstract evolution equation with a scalar type spectral operator on the open semi-axis. (English) Zbl 1430.34071 Open Math. 17, 1082-1112 (2019). MSC: 34G10 47B40 47D06 PDF BibTeX XML Cite \textit{M. V. Markin}, Open Math. 17, 1082--1112 (2019; Zbl 1430.34071) Full Text: DOI arXiv
Cappiello, Marco; Gramchev, Todor; Pilipovic, Stevan; Rodino, Luigi Anisotropic Shubin operators and eigenfunction expansions in Gelfand-Shilov spaces. (English) Zbl 1454.35100 J. Anal. Math. 138, No. 2, 857-870 (2019). Reviewer: Petar Popivanov (Sofia) MSC: 35J30 35L45 35B65 35S10 PDF BibTeX XML Cite \textit{M. Cappiello} et al., J. Anal. Math. 138, No. 2, 857--870 (2019; Zbl 1454.35100) Full Text: DOI arXiv
Markin, Marat V. On the Gevrey ultradifferentiability of weak solutions of an abstract evolution equation with a scalar type spectral operator of orders less than one. (English) Zbl 1506.34076 Open Math. 17, 1-14 (2019). MSC: 34G10 47B40 30D15 47B15 47D06 47D60 PDF BibTeX XML Cite \textit{M. V. Markin}, Open Math. 17, 1--14 (2019; Zbl 1506.34076) Full Text: DOI arXiv
Hoepfner, Gustavo; Raich, Andrew Global \(L^q\) Gevrey functions, Paley-Wiener theorems, and the FBI transform. (English) Zbl 1426.42019 Indiana Univ. Math. J. 68, No. 3, 967-1002 (2019). Reviewer: Koichi Saka (Akita) MSC: 42B35 42B10 42B37 58J15 PDF BibTeX XML Cite \textit{G. Hoepfner} and \textit{A. Raich}, Indiana Univ. Math. J. 68, No. 3, 967--1002 (2019; Zbl 1426.42019) Full Text: DOI
Lorenz, Jens; Melo, Wilberclay G.; Rocha, Natã Firmino The nagneto-hydrodynamic equations: local theory and blow-up of solutions. (English) Zbl 1428.35382 Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 3819-3841 (2019). MSC: 35Q35 35B44 35Q30 76D03 76D05 76W05 PDF BibTeX XML Cite \textit{J. Lorenz} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 3819--3841 (2019; Zbl 1428.35382) Full Text: DOI
Tesfahun, Achenef Remark on the persistence of spatial analyticity for cubic nonlinear Schrödinger equation on the circle. (English) Zbl 1420.35382 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 2, Paper No. 12, 13 p. (2019). MSC: 35Q55 35Q40 35L70 35J10 81Q05 PDF BibTeX XML Cite \textit{A. Tesfahun}, NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 2, Paper No. 12, 13 p. (2019; Zbl 1420.35382) Full Text: DOI
Abdeljawad, Ahmed; Cappiello, Marco; Toft, Joachim Pseudo-differential calculus in anisotropic Gelfand-Shilov setting. (English) Zbl 1419.35262 Integral Equations Oper. Theory 91, No. 3, Paper No. 26, 33 p. (2019). Reviewer: Vadim D. Kryakvin (Rostov-na-Donu) MSC: 35S05 35A20 42B35 46F05 PDF BibTeX XML Cite \textit{A. Abdeljawad} et al., Integral Equations Oper. Theory 91, No. 3, Paper No. 26, 33 p. (2019; Zbl 1419.35262) Full Text: DOI arXiv
Barostichi, Rafael F.; Figueira, Renata O.; Himonas, A. Alexandrou Well-posedness of the “good” Boussinesq equation in analytic Gevrey spaces and time regularity. (English) Zbl 1417.35161 J. Differ. Equations 267, No. 5, 3181-3198 (2019). MSC: 35Q53 37K10 35C07 35B65 PDF BibTeX XML Cite \textit{R. F. Barostichi} et al., J. Differ. Equations 267, No. 5, 3181--3198 (2019; Zbl 1417.35161) Full Text: DOI
Colombini, Ferruccio; Nishitani, Tatsuo; Rauch, Jeffrey Weakly hyperbolic systems by symmetrization. (English) Zbl 1435.35230 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 19, No. 1, 217-251 (2019). Reviewer: Andrei Perjan (Chişinău) MSC: 35L45 35L40 35B65 PDF BibTeX XML Cite \textit{F. Colombini} et al., Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 19, No. 1, 217--251 (2019; Zbl 1435.35230) Full Text: DOI arXiv
Chen, Jia; Wang, Heping Approximation numbers of Sobolev and Gevrey type embeddings on the sphere and on the ball – preasymptotics, asymptotics, and tractability. (English) Zbl 1416.46034 J. Complexity 50, 1-24 (2019). MSC: 46E35 47B06 41A45 PDF BibTeX XML Cite \textit{J. Chen} and \textit{H. Wang}, J. Complexity 50, 1--24 (2019; Zbl 1416.46034) Full Text: DOI arXiv
Ghisi, Marina; Gobbino, Massimo Time-dependent propagation speed vs strong damping for degenerate linear hyperbolic equations. (English) Zbl 1409.35149 J. Differ. Equations 266, No. 1, 114-146 (2019). Reviewer: Joseph Shomberg (Providence) MSC: 35L90 35L20 35L80 PDF BibTeX XML Cite \textit{M. Ghisi} and \textit{M. Gobbino}, J. Differ. Equations 266, No. 1, 114--146 (2019; Zbl 1409.35149) Full Text: DOI arXiv
Pilipović, Stevan; Teofanov, Nenad; Tomić, Filip Beyond Gevrey regularity: superposition and propagation of singularities. (English) Zbl 1499.46078 Filomat 32, No. 8, 2763-2782 (2018). MSC: 46F05 46E10 35A18 PDF BibTeX XML Cite \textit{S. Pilipović} et al., Filomat 32, No. 8, 2763--2782 (2018; Zbl 1499.46078) Full Text: DOI
Markin, Marat V. On the Gevrey ultradifferentiability of weak solutions of an abstract evolution equation with a scalar type spectral operator. (English) Zbl 1438.34209 Methods Funct. Anal. Topol. 24, No. 4, 349-369 (2018). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 34G10 47B40 PDF BibTeX XML Cite \textit{M. V. Markin}, Methods Funct. Anal. Topol. 24, No. 4, 349--369 (2018; Zbl 1438.34209) Full Text: arXiv Link
Pilipović, Stevan; Teofanov, Nenad; Tomić, Filip Regularities for a new class of spaces between distributions and ultradistributions. (English) Zbl 1438.46048 Sarajevo J. Math. 14(27), No. 2, 251-263 (2018). MSC: 46F05 46E10 35A18 42B10 PDF BibTeX XML Cite \textit{S. Pilipović} et al., Sarajevo J. Math. 14(27), No. 2, 251--263 (2018; Zbl 1438.46048)
Zhou, Xuhuan; Xiao, Weiliang Algebra properties in Fourier-Besov spaces and their applications. (English) Zbl 1415.46026 J. Funct. Spaces 2018, Article ID 3629179, 10 p. (2018). MSC: 46E35 35Q30 PDF BibTeX XML Cite \textit{X. Zhou} and \textit{W. Xiao}, J. Funct. Spaces 2018, Article ID 3629179, 10 p. (2018; Zbl 1415.46026) Full Text: DOI
Bae, Hantaek Analyticity of the inhomogeneous incompressible Navier-Stokes equations. (English) Zbl 06892580 Appl. Math. Lett. 83, 200-206 (2018). MSC: 35Q30 76D03 76D05 42B25 35-02 PDF BibTeX XML Cite \textit{H. Bae}, Appl. Math. Lett. 83, 200--206 (2018; Zbl 06892580) Full Text: DOI
Hoang, Luan T.; Martinez, Vincent R. Asymptotic expansion for solutions of the Navier-Stokes equations with non-potential body forces. (English) Zbl 1394.35130 J. Math. Anal. Appl. 462, No. 1, 84-113 (2018). MSC: 35C20 35Q30 76D05 PDF BibTeX XML Cite \textit{L. T. Hoang} and \textit{V. R. Martinez}, J. Math. Anal. Appl. 462, No. 1, 84--113 (2018; Zbl 1394.35130) Full Text: DOI arXiv
Dasgupta, Aparajita; Ruzhansky, Michael Eigenfunction expansions of ultradifferentiable functions and ultradistributions. II: Tensor representations. (English) Zbl 1398.46030 Trans. Am. Math. Soc., Ser. B 5, 81-101 (2018). MSC: 46F05 58J40 22E30 PDF BibTeX XML Cite \textit{A. Dasgupta} and \textit{M. Ruzhansky}, Trans. Am. Math. Soc., Ser. B 5, 81--101 (2018; Zbl 1398.46030) Full Text: DOI arXiv
Araújo, G. Regularity and solvability of linear differential operators in Gevrey spaces. (English) Zbl 1392.35087 Math. Nachr. 291, No. 5-6, 729-758 (2018). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 35F35 35R50 46F05 58J10 PDF BibTeX XML Cite \textit{G. Araújo}, Math. Nachr. 291, No. 5--6, 729--758 (2018; Zbl 1392.35087) Full Text: DOI
da Silva, Daniel Oliveira The Thirring model in spaces of analytic functions. (English) Zbl 1397.35243 Adv. Pure Appl. Math. 9, No. 2, 153-158 (2018). Reviewer: Joseph Shomberg (Providence) MSC: 35Q40 35F25 81T10 PDF BibTeX XML Cite \textit{D. O. da Silva}, Adv. Pure Appl. Math. 9, No. 2, 153--158 (2018; Zbl 1397.35243) Full Text: DOI
Toft, Joachim; Nabizadeh, Elmira Periodic distributions and periodic elements in modulation spaces. (English) Zbl 1385.42007 Adv. Math. 323, 193-225 (2018). Reviewer: Evgueni Doubtsov (St. Petersburg) MSC: 42B05 42B35 46F05 46E35 46B40 PDF BibTeX XML Cite \textit{J. Toft} and \textit{E. Nabizadeh}, Adv. Math. 323, 193--225 (2018; Zbl 1385.42007) Full Text: DOI arXiv
Teofanov, Nenad; Tomić, Filip Ultradifferentiable functions of class \( M_p^{\tau ,\sigma}\) and microlocal regularity. (English) Zbl 1394.46032 Oberguggenberger, Michael (ed.) et al., Generalized functions and Fourier analysis. Dedicated to Stevan Pilipović on the occasion of his 65th birthday. Contributions of the 8th, 9th and 10th ISAAC congresses, Moscow, Russia, 2011, Krakow, Poland, 2013 and Macau, China, 2015. Basel: Birkhäuser/Springer (ISBN 978-3-319-51910-4/hbk; 978-3-319-51911-1/ebook). Operator Theory: Advances and Applications 260. Advances in Partial Differential Equations, 193-213 (2017). MSC: 46F05 47G30 35A18 PDF BibTeX XML Cite \textit{N. Teofanov} and \textit{F. Tomić}, Oper. Theory: Adv. Appl. 260, 193--213 (2017; Zbl 1394.46032) Full Text: DOI arXiv
Ghazaryan, Hayk G. The Newton polyhedron, spaces of differentiable functions and general theory of differential equations. (English) Zbl 1429.46024 Armen. J. Math. 9, No. 2, 102-145 (2017). Reviewer: Raymond Johnson (Columbia) MSC: 46E35 35H10 52B11 47F10 46-02 PDF BibTeX XML Cite \textit{H. G. Ghazaryan}, Armen. J. Math. 9, No. 2, 102--145 (2017; Zbl 1429.46024)
Yang, MingHua; Fu, ZunWei; Sun, JinYi Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces. (English) Zbl 1402.35212 Sci. China, Math. 60, No. 10, 1837-1856 (2017). Reviewer: Luigi Rodino (Torino) MSC: 35Q30 42B35 42B25 35B40 35B65 76A15 35Q92 92C17 35B44 35K55 PDF BibTeX XML Cite \textit{M. Yang} et al., Sci. China, Math. 60, No. 10, 1837--1856 (2017; Zbl 1402.35212) Full Text: DOI
Matsuyama, Tokio; Ruzhansky, Michael The Kirchhoff equation with Gevrey data. (English) Zbl 1400.35185 Dang, Pei (ed.) et al., New trends in analysis and interdisciplinary applications. Selected contributions of the 10th ISAAC congress, Macau, China, August 3–8, 2015. Basel: Birkhäuser/Springer (ISBN 978-3-319-48810-3/pbk; 978-3-319-48812-7/ebook). Trends in Mathematics. Research Perspectives, 313-318 (2017). MSC: 35L72 35L15 35R09 PDF BibTeX XML Cite \textit{T. Matsuyama} and \textit{M. Ruzhansky}, in: New trends in analysis and interdisciplinary applications. Selected contributions of the 10th ISAAC congress, Macau, China, August 3--8, 2015. Basel: Birkhäuser/Springer. 313--318 (2017; Zbl 1400.35185) Full Text: DOI
Minghua, Yang; Sun, Jinyi Spatial analyticity of solutions to Keller-Segel equation of parabolic-elliptic type. (English) Zbl 1383.35170 Result. Math. 72, No. 4, 1653-1681 (2017). MSC: 35Q35 35B40 35B65 76A15 35Q92 92C17 PDF BibTeX XML Cite \textit{Y. Minghua} and \textit{J. Sun}, Result. Math. 72, No. 4, 1653--1681 (2017; Zbl 1383.35170) Full Text: DOI
Khan, Arbaz; Dutt, Pravir; Upadhyay, Chandra Shekhar Spectral element method for parabolic initial value problem with non-smooth data: analysis and application. (English) Zbl 1395.65103 J. Sci. Comput. 73, No. 2-3, 876-905 (2017). MSC: 65M70 65M22 65M55 65Y05 PDF BibTeX XML Cite \textit{A. Khan} et al., J. Sci. Comput. 73, No. 2--3, 876--905 (2017; Zbl 1395.65103) Full Text: DOI
Himonas, A. Alexandrou; Kalisch, Henrik; Selberg, Sigmund On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation. (English) Zbl 1379.35278 Nonlinear Anal., Real World Appl. 38, 35-48 (2017). MSC: 35Q53 35B65 PDF BibTeX XML Cite \textit{A. A. Himonas} et al., Nonlinear Anal., Real World Appl. 38, 35--48 (2017; Zbl 1379.35278) Full Text: DOI
Tesfahun, Achenef On the radius of spatial analyticity for cubic nonlinear Schrödinger equations. (English) Zbl 1375.35436 J. Differ. Equations 263, No. 11, 7496-7512 (2017). MSC: 35Q41 35Q40 35L70 81V10 PDF BibTeX XML Cite \textit{A. Tesfahun}, J. Differ. Equations 263, No. 11, 7496--7512 (2017; Zbl 1375.35436) Full Text: DOI arXiv
Yang, Minghua; Sun, Jinyi Gevrey class regularity of solutions to the Nernst-Planck-Poisson equations with generalized dissipation. (English) Zbl 1393.35185 Appl. Anal. 96, No. 11, 1799-1829 (2017). Reviewer: Catalin Popa (Iaşi) MSC: 35Q35 35B40 35B65 76A15 PDF BibTeX XML Cite \textit{M. Yang} and \textit{J. Sun}, Appl. Anal. 96, No. 11, 1799--1829 (2017; Zbl 1393.35185) Full Text: DOI
Yang, Minghua; Sun, Jinyi Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. (English) Zbl 1364.35245 Commun. Pure Appl. Anal. 16, No. 5, 1617-1639 (2017). MSC: 35Q30 76D03 35E15 PDF BibTeX XML Cite \textit{M. Yang} and \textit{J. Sun}, Commun. Pure Appl. Anal. 16, No. 5, 1617--1639 (2017; Zbl 1364.35245) Full Text: DOI
Oliveira da Silva, Daniel A result on a Dirac-type equation in spaces of analytic functions. (English) Zbl 1379.35268 Analysis, München 37, No. 2, 69-75 (2017). MSC: 35Q40 35F25 PDF BibTeX XML Cite \textit{D. Oliveira da Silva}, Analysis, München 37, No. 2, 69--75 (2017; Zbl 1379.35268) Full Text: DOI
Holmes, John Well-posedness and regularity of the generalized Burgers equation in periodic Gevrey spaces. (English) Zbl 1367.35054 J. Math. Anal. Appl. 454, No. 1, 18-40 (2017). MSC: 35B65 35A01 35A02 35K58 PDF BibTeX XML Cite \textit{J. Holmes}, J. Math. Anal. Appl. 454, No. 1, 18--40 (2017; Zbl 1367.35054) Full Text: DOI
Matsuyama, Tokio; Ruzhansky, Michael Almost global well-posedness of Kirchhoff equation with Gevrey data. (L’équation de Kirchhoff avec données de Gevrey est presque globalement bien posée.) (English. Abridged French version) Zbl 1368.35190 C. R., Math., Acad. Sci. Paris 355, No. 5, 522-525 (2017). MSC: 35L72 35R09 35S10 35L20 PDF BibTeX XML Cite \textit{T. Matsuyama} and \textit{M. Ruzhansky}, C. R., Math., Acad. Sci. Paris 355, No. 5, 522--525 (2017; Zbl 1368.35190) Full Text: DOI
Garetto, Claudia; Ruzhansky, Michael On hyperbolic systems with time-dependent Hölder characteristics. (English) Zbl 1361.35107 Ann. Mat. Pura Appl. (4) 196, No. 1, 155-164 (2017). MSC: 35L45 46F05 PDF BibTeX XML Cite \textit{C. Garetto} and \textit{M. Ruzhansky}, Ann. Mat. Pura Appl. (4) 196, No. 1, 155--164 (2017; Zbl 1361.35107) Full Text: DOI arXiv
Zhang, Lei; Li, Xiuting The local well-posedness, blow-up criteria and Gevrey regularity of solutions for a two-component high-order Camassa-Holm system. (English) Zbl 1364.35009 Nonlinear Anal., Real World Appl. 35, 414-440 (2017). MSC: 35A01 35B44 35B65 35A02 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{X. Li}, Nonlinear Anal., Real World Appl. 35, 414--440 (2017; Zbl 1364.35009) Full Text: DOI
Benameur, Jamel; Jlali, Lotfi On the blow-up criterion of 3D-NSE in Sobolev-Gevrey spaces. (English) Zbl 1358.35087 J. Math. Fluid Mech. 18, No. 4, 805-822 (2016). MSC: 35Q30 35D35 PDF BibTeX XML Cite \textit{J. Benameur} and \textit{L. Jlali}, J. Math. Fluid Mech. 18, No. 4, 805--822 (2016; Zbl 1358.35087) Full Text: DOI arXiv
Kühn, Thomas; Mayer, Sebastian; Ullrich, Tino Counting via entropy: new preasymptotics for the approximation numbers of Sobolev embeddings. (English) Zbl 1404.42004 SIAM J. Numer. Anal. 54, No. 6, 3625-3647 (2016). MSC: 42A10 41A25 46E35 65D15 PDF BibTeX XML Cite \textit{T. Kühn} et al., SIAM J. Numer. Anal. 54, No. 6, 3625--3647 (2016; Zbl 1404.42004) Full Text: DOI arXiv
Reich, Maximilian; Reissig, Michael; Sickel, Winfried Non-analytic superposition results on modulation spaces with subexponential weights. (English) Zbl 1360.47012 J. Pseudo-Differ. Oper. Appl. 7, No. 3, 365-409 (2016). MSC: 47H30 42B35 46E35 47N20 35G30 PDF BibTeX XML Cite \textit{M. Reich} et al., J. Pseudo-Differ. Oper. Appl. 7, No. 3, 365--409 (2016; Zbl 1360.47012) Full Text: DOI arXiv
Dasgupta, Aparajita; Ruzhansky, Michael Eigenfunction expansions of ultradifferentiable functions and ultradistributions. (English) Zbl 1366.46024 Trans. Am. Math. Soc. 368, No. 12, 8481-8498 (2016). Reviewer: Bojan Prangoski (Skopje) MSC: 46F05 22E30 PDF BibTeX XML Cite \textit{A. Dasgupta} and \textit{M. Ruzhansky}, Trans. Am. Math. Soc. 368, No. 12, 8481--8498 (2016; Zbl 1366.46024) Full Text: DOI arXiv Link