Germain, Pierre; Pusateri, Fabio Quadratic Klein-Gordon equations with a potential in one dimension. (English) Zbl 07565651 Forum Math. Pi 10, Paper No. e17, 172 p. (2022). MSC: 35-XX 42B37 35P25 35Q56 PDF BibTeX XML Cite \textit{P. Germain} and \textit{F. Pusateri}, Forum Math. Pi 10, Paper No. e17, 172 p. (2022; Zbl 07565651) Full Text: DOI OpenURL
Du, Shuze; Zhong, Yening; Yao, Shunwei; Peng, Lin; Shi, Tingting; Sang, Lina; Liu, Xiaolin; Lin, Jia The dynamics of current-driven vortex in two-band superconductor with \(s+d\) wave pairing. (English) Zbl 07562036 Phys. Lett., A 443, Article ID 128206, 7 p. (2022). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{S. Du} et al., Phys. Lett., A 443, Article ID 128206, 7 p. (2022; Zbl 07562036) Full Text: DOI OpenURL
Chen, Rui; Gu, Shuting On novel linear schemes for the Cahn-Hilliard equation based on an improved invariant energy quadratization approach. (English) Zbl 07553108 J. Comput. Appl. Math. 414, Article ID 114405, 18 p. (2022). MSC: 65M06 65M12 35Q56 PDF BibTeX XML Cite \textit{R. Chen} and \textit{S. Gu}, J. Comput. Appl. Math. 414, Article ID 114405, 18 p. (2022; Zbl 07553108) Full Text: DOI OpenURL
Kowalczyk, Michał; Lamy, Xavier; Smyrnelis, Panayotis Entire vortex solutions of negative degree for the anisotropic Ginzburg-Landau system. (English) Zbl 07549428 Arch. Ration. Mech. Anal. 245, No. 1, 565-586 (2022). Reviewer: Simone Secchi (Milano) MSC: 35J61 35B06 35A01 PDF BibTeX XML Cite \textit{M. Kowalczyk} et al., Arch. Ration. Mech. Anal. 245, No. 1, 565--586 (2022; Zbl 07549428) Full Text: DOI OpenURL
Beltrán, Víctor; Le Clainche, Soledad; Vega, José M. An adaptive data-driven reduced order model based on higher order dynamic mode decomposition. (English) Zbl 07549324 J. Sci. Comput. 92, No. 1, Paper No. 12, 18 p. (2022). MSC: 65Mxx 35Qxx 76-XX PDF BibTeX XML Cite \textit{V. Beltrán} et al., J. Sci. Comput. 92, No. 1, Paper No. 12, 18 p. (2022; Zbl 07549324) Full Text: DOI OpenURL
Dhiman, Joginder Singh; Sood, Sumixal Linear and weakly non-linear stability analysis of oscillatory convection in rotating ferrofluid layer. (English) Zbl 07545304 Appl. Math. Comput. 430, Article ID 127239, 16 p. (2022). MSC: 76Exx 76Wxx 80Axx PDF BibTeX XML Cite \textit{J. S. Dhiman} and \textit{S. Sood}, Appl. Math. Comput. 430, Article ID 127239, 16 p. (2022; Zbl 07545304) Full Text: DOI OpenURL
Shu, Ji; Ma, Dandan; Huang, Xin; Zhang, Jian Wong-Zakai approximations and limiting dynamics of stochastic Ginzburg-Landau equations. (English) Zbl 07544526 Stoch. Dyn. 22, No. 4, Article ID 2250006, 18 p. (2022). MSC: 37L55 60H15 35Q56 PDF BibTeX XML Cite \textit{J. Shu} et al., Stoch. Dyn. 22, No. 4, Article ID 2250006, 18 p. (2022; Zbl 07544526) Full Text: DOI OpenURL
Kim, Yunho; Lee, Dongsun Numerical investigation into the dependence of the Allen-Cahn equation on the free energy. (English) Zbl 07539437 Adv. Comput. Math. 48, No. 3, Paper No. 36, 32 p. (2022). MSC: 35Q82 35Q56 82B20 81V45 65M06 65M12 PDF BibTeX XML Cite \textit{Y. Kim} and \textit{D. Lee}, Adv. Comput. Math. 48, No. 3, Paper No. 36, 32 p. (2022; Zbl 07539437) Full Text: DOI OpenURL
Xu, Chao; Pei, Lifang Unconditional optimal error estimates of a modified finite element fully discrete scheme for the complex Ginzburg-Landau equation. (English) Zbl 07537410 Comput. Math. Appl. 115, 1-13 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{C. Xu} and \textit{L. Pei}, Comput. Math. Appl. 115, 1--13 (2022; Zbl 07537410) Full Text: DOI OpenURL
Ekici, Mehmet Stationary optical solitons with complex Ginzburg-Landau equation having nonlinear chromatic dispersion and Kudryashov’s refractive index structures. (English) Zbl 07532649 Phys. Lett., A 440, Article ID 128146, 17 p. (2022). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{M. Ekici}, Phys. Lett., A 440, Article ID 128146, 17 p. (2022; Zbl 07532649) Full Text: DOI OpenURL
Goh, Ryan; Kaper, Tasso J.; Vo, Theodore Delayed Hopf bifurcation and space-time buffer curves in the complex Ginzburg-Landau equation. (English) Zbl 07531630 IMA J. Appl. Math. 87, No. 2, 131-186 (2022). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35B25 35B32 35Q56 PDF BibTeX XML Cite \textit{R. Goh} et al., IMA J. Appl. Math. 87, No. 2, 131--186 (2022; Zbl 07531630) Full Text: DOI OpenURL
Shu, Ji; Bai, Qianqian; Huang, Xin; Zhang, Jian Finite fractal dimension of random attractors for non-autonomous fractional stochastic reaction-diffusion equations in \(\mathbb{R}\). (English) Zbl 07518229 Appl. Anal. 101, No. 6, 2217-2238 (2022). MSC: 37L55 35Q56 PDF BibTeX XML Cite \textit{J. Shu} et al., Appl. Anal. 101, No. 6, 2217--2238 (2022; Zbl 07518229) Full Text: DOI OpenURL
Hirata, Daisuke Global existence of a nonlinear Schrödinger equation with viscous damping. (English) Zbl 07511801 J. Evol. Equ. 22, No. 2, Paper No. 39, 8 p. (2022). MSC: 35Q55 35Q41 35Q56 35A09 35A01 35A02 PDF BibTeX XML Cite \textit{D. Hirata}, J. Evol. Equ. 22, No. 2, Paper No. 39, 8 p. (2022; Zbl 07511801) Full Text: DOI OpenURL
Liu, Hong-Zhun A modification to the first integral method and its applications. (English) Zbl 07483687 Appl. Math. Comput. 419, Article ID 126855, 13 p. (2022). MSC: 35Cxx 35Qxx 35Rxx PDF BibTeX XML Cite \textit{H.-Z. Liu}, Appl. Math. Comput. 419, Article ID 126855, 13 p. (2022; Zbl 07483687) Full Text: DOI OpenURL
Liu, Xianming The \(\alpha \)-dependence of the invariant measure of stochastic real Ginzburg-Landau equation driven by \(\alpha \)-stable Lévy processes. (English) Zbl 07471756 J. Differ. Equations 314, 418-445 (2022). MSC: 60H15 60H10 35R60 60J76 PDF BibTeX XML Cite \textit{X. Liu}, J. Differ. Equations 314, 418--445 (2022; Zbl 07471756) Full Text: DOI OpenURL
Zhang, Lu; Zou, Aihong; Yan, Tao; Shu, Ji Weak pullback attractors for stochastic Ginzburg-Landau equations in Bochner spaces. (English) Zbl 07461155 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 749-768 (2022). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 37L55 37L30 60H15 35Q56 PDF BibTeX XML Cite \textit{L. Zhang} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 749--768 (2022; Zbl 07461155) Full Text: DOI OpenURL
Lee, Hyun Geun; Shin, Jaemin; Lee, June-Yub A high-order and unconditionally energy stable scheme for the conservative Allen-Cahn equation with a nonlocal Lagrange multiplier. (English) Zbl 1481.65139 J. Sci. Comput. 90, No. 1, Paper No. 51, 12 p. (2022). MSC: 65M06 65N35 65L06 65T50 65M12 35Q56 PDF BibTeX XML Cite \textit{H. G. Lee} et al., J. Sci. Comput. 90, No. 1, Paper No. 51, 12 p. (2022; Zbl 1481.65139) Full Text: DOI OpenURL
Hennig, Dirk; Karachalios, Nikos I. Dynamics of nonlocal and local discrete Ginzburg-Landau equations: global attractors and their congruence. (English) Zbl 1483.34022 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112647, 20 p. (2022); corrigendum ibid. 218, Article ID 112808, 4 p. (2022). MSC: 34A33 34D05 34D45 34C45 PDF BibTeX XML Cite \textit{D. Hennig} and \textit{N. I. Karachalios}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112647, 20 p. (2022; Zbl 1483.34022) Full Text: DOI arXiv OpenURL
Xu, Guoan; Zhang, Yi; Li, Jibin Exact solitary wave and periodic-peakon solutions of the complex Ginzburg-Landau equation: dynamical system approach. (English) Zbl 07431698 Math. Comput. Simul. 191, 157-167 (2022). MSC: 35-XX 34-XX PDF BibTeX XML Cite \textit{G. Xu} et al., Math. Comput. Simul. 191, 157--167 (2022; Zbl 07431698) Full Text: DOI OpenURL
Nkomom, Théodule Nkoa; Ndzana, Fabien II; Okaly, Joseph Brizar; Mvogo, Alain Dynamics of nonlinear waves in a Burridge and Knopoff model for earthquake with long-range interactions, velocity-dependent and hydrodynamics friction forces. (English) Zbl 07544101 Chaos Solitons Fractals 150, Article ID 111196, 9 p. (2021). MSC: 76B25 76B15 86A05 PDF BibTeX XML Cite \textit{T. N. Nkomom} et al., Chaos Solitons Fractals 150, Article ID 111196, 9 p. (2021; Zbl 07544101) Full Text: DOI OpenURL
Zhang, Lu; Zhang, Qifeng; Sun, Hai-Wei A fast compact difference method for two-dimensional nonlinear space-fractional complex Ginzburg-Landau equations. (English) Zbl 07533075 J. Comput. Math. 39, No. 5, 708-732 (2021). MSC: 26A33 35R11 65M06 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Comput. Math. 39, No. 5, 708--732 (2021; Zbl 07533075) Full Text: DOI OpenURL
Cao, Hongmei; Xu, Chaojiang On the uniqueness of weak solutions for Cauchy problem to Landau equation. (Chinese. English summary) Zbl 07494984 Sci. Sin., Math. 51, No. 6, 899-916 (2021). MSC: 35D30 35Q56 82C40 PDF BibTeX XML Cite \textit{H. Cao} and \textit{C. Xu}, Sci. Sin., Math. 51, No. 6, 899--916 (2021; Zbl 07494984) Full Text: DOI OpenURL
Siddheshwar, P. G.; Veena, B. N. Effect of non-inertial acceleration on Brinkman-Bénard convection in water-copper nanoliquid-saturated porous enclosures. (English) Zbl 07490039 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 108, 24 p. (2021). MSC: 76R10 76S05 76T20 76U05 80A19 PDF BibTeX XML Cite \textit{P. G. Siddheshwar} and \textit{B. N. Veena}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 108, 24 p. (2021; Zbl 07490039) Full Text: DOI OpenURL
Nkomom, Théodule Nkoa; Okaly, Joseph Brizar; Mvogo, Alain Dynamics of modulated waves and localized energy in a Burridge and Knopoff model of earthquake with velocity-dependant and hydrodynamics friction forces. (English) Zbl 07482456 Physica A 583, Article ID 126283, 13 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{T. N. Nkomom} et al., Physica A 583, Article ID 126283, 13 p. (2021; Zbl 07482456) Full Text: DOI OpenURL
Meghana, J.; Pranesh, S. Two-component convection in micropolar fluid under time-dependent boundary concentration. (English) Zbl 1483.76054 Mahanthesh, B. (ed.), Mathematical fluid mechanics. Advances in convective instabilities and incompressible fluid flow. Berlin: De Gruyter. De Gruyter Ser. Appl. Math. Eng. Inf. Sci. 7, 163-200 (2021). MSC: 76R10 76R50 76A05 76M45 80A19 PDF BibTeX XML Cite \textit{J. Meghana} and \textit{S. Pranesh}, De Gruyter Ser. Appl. Math. Eng. Inf. Sci. 7, 163--200 (2021; Zbl 1483.76054) Full Text: DOI OpenURL
Chen, Qinghua; Li, Yayun; Ma, Mengfan A Liouville theorem of an integral equation of the Chern-Simons-Higgs type. (English) Zbl 1486.35374 J. Korean Math. Soc. 58, No. 6, 1327-1345 (2021). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q56 45G05 45E10 35B53 PDF BibTeX XML Cite \textit{Q. Chen} et al., J. Korean Math. Soc. 58, No. 6, 1327--1345 (2021; Zbl 1486.35374) Full Text: DOI OpenURL
Nakamura, Makoto; Sato, Yuya Existence and non-existence of global solutions for the semilinear complex Ginzburg-Landau type equation in homogeneous and isotropic spacetime. (English) Zbl 07474135 Kyushu J. Math. 75, No. 2, 169-209 (2021). MSC: 35Q56 35Q75 35K58 35G20 83F05 35A01 35B40 PDF BibTeX XML Cite \textit{M. Nakamura} and \textit{Y. Sato}, Kyushu J. Math. 75, No. 2, 169--209 (2021; Zbl 07474135) Full Text: DOI OpenURL
Kamdoum-Tamo, P. H.; Kenfack-Jiotsa, A.; Kofane, T. C. Solitons solutions of the complex Ginzburg-Landau equation with saturation term using Painlevé truncated approach. (English) Zbl 1478.35193 J. Appl. Nonlinear Dyn. 10, No. 2, 279-286 (2021). MSC: 35Q55 35C08 37K10 PDF BibTeX XML Cite \textit{P. H. Kamdoum-Tamo} et al., J. Appl. Nonlinear Dyn. 10, No. 2, 279--286 (2021; Zbl 1478.35193) Full Text: DOI OpenURL
Wang, Kang-Le; Wang, Hao A novel variational approach for fractal Ginzburg-Landau equation. (English) Zbl 07468090 Fractals 29, No. 7, Article ID 2150205, 7 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{K.-L. Wang} and \textit{H. Wang}, Fractals 29, No. 7, Article ID 2150205, 7 p. (2021; Zbl 07468090) Full Text: DOI OpenURL
Yao, Shao-Wen; Ilhan, Esin; Veeresha, P.; Baskonus, Haci Mehmet A powerful iterative approach for quintic complex Ginzburg-Landau equation within the frame of fractional operator. (English) Zbl 07465623 Fractals 29, No. 5, Article ID 2140023, 13 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S.-W. Yao} et al., Fractals 29, No. 5, Article ID 2140023, 13 p. (2021; Zbl 07465623) Full Text: DOI OpenURL
Shu, Ji; Li, Linyan; Huang, Xin; Zhang, Jian Limiting behavior of fractional stochastic integro-differential equations on unbounded domains. (English) Zbl 07462309 Math. Control Relat. Fields 11, No. 4, 715-737 (2021). MSC: 37L55 37H30 37L30 60H15 45R05 35R11 35Q56 PDF BibTeX XML Cite \textit{J. Shu} et al., Math. Control Relat. Fields 11, No. 4, 715--737 (2021; Zbl 07462309) Full Text: DOI OpenURL
Monteil, Antonin; Rodiac, Rémy; Van Schaftingen, Jean Ginzburg-Landau relaxation for harmonic maps on planar domains into a general compact vacuum manifold. (English) Zbl 1481.35150 Arch. Ration. Mech. Anal. 242, No. 2, 875-935 (2021). MSC: 35J20 35Q56 PDF BibTeX XML Cite \textit{A. Monteil} et al., Arch. Ration. Mech. Anal. 242, No. 2, 875--935 (2021; Zbl 1481.35150) Full Text: DOI arXiv OpenURL
Bentley, David C.; Rucklidge, Alastair M. Localized patterns in a generalized Swift-Hohenberg equation with a quartic marginal stability curve. (English) Zbl 1480.35024 IMA J. Appl. Math. 86, No. 5, 944-983 (2021). MSC: 35B36 35K25 35Q56 PDF BibTeX XML Cite \textit{D. C. Bentley} and \textit{A. M. Rucklidge}, IMA J. Appl. Math. 86, No. 5, 944--983 (2021; Zbl 1480.35024) Full Text: DOI arXiv OpenURL
Javanbakht, Mahdi; Ghaedi, Mohammad Sadegh Interaction of martensitic transformations and vacancy diffusion at the nanoscale under thermal loading: a phase field model and simulations. (English) Zbl 1479.74101 Acta Mech. 232, No. 11, 4567-4582 (2021). MSC: 74N25 74N05 74F05 74S05 PDF BibTeX XML Cite \textit{M. Javanbakht} and \textit{M. S. Ghaedi}, Acta Mech. 232, No. 11, 4567--4582 (2021; Zbl 1479.74101) Full Text: DOI OpenURL
Durga, N.; Muthukumar, P.; Fu, Xianlong Stochastic time-optimal control for time-fractional Ginzburg-Landau equation with mixed fractional Brownian motion. (English) Zbl 1479.35833 Stochastic Anal. Appl. 39, No. 6, 1144-1165 (2021). MSC: 35Q56 26A33 35R11 49J20 60G22 60G57 60H15 35A01 PDF BibTeX XML Cite \textit{N. Durga} et al., Stochastic Anal. Appl. 39, No. 6, 1144--1165 (2021; Zbl 1479.35833) Full Text: DOI OpenURL
Kong, Linghua; Luo, Yiyang; Wang, Lan; Chen, Meng; Zhao, Zhi HOC-ADI schemes for two-dimensional Ginzburg-Landau equation in superconductivity. (English) Zbl 07431528 Math. Comput. Simul. 190, 494-507 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{L. Kong} et al., Math. Comput. Simul. 190, 494--507 (2021; Zbl 07431528) Full Text: DOI OpenURL
Chin, Pius W. M. The study of the numerical treatment of the real Ginzburg-Landau equation using the Galerkin method. (English) Zbl 07431315 Numer. Funct. Anal. Optim. 42, No. 10, 1154-1177 (2021). MSC: 65Mxx 47-XX 90-XX PDF BibTeX XML Cite \textit{P. W. M. Chin}, Numer. Funct. Anal. Optim. 42, No. 10, 1154--1177 (2021; Zbl 07431315) Full Text: DOI OpenURL
Dai, Jia-Yuan; Lappicy, Phillipo Ginzburg-Landau patterns in circular and spherical geometries: vortices, spirals, and attractors. (English) Zbl 1483.35232 SIAM J. Appl. Dyn. Syst. 20, No. 4, 1959-1984 (2021). Reviewer: Catalin Popa (Iaşi) MSC: 35Q56 37G35 37G40 35B32 35B41 PDF BibTeX XML Cite \textit{J.-Y. Dai} and \textit{P. Lappicy}, SIAM J. Appl. Dyn. Syst. 20, No. 4, 1959--1984 (2021; Zbl 1483.35232) Full Text: DOI arXiv OpenURL
Smyrnelis, Panayotis Vortex-filament solutions in the Ginzburg-Landau-Painlevé theory of phase transition. (English. French summary) Zbl 1480.35170 J. Math. Pures Appl. (9) 156, 328-350 (2021). MSC: 35J47 35Q56 35A01 35J50 PDF BibTeX XML Cite \textit{P. Smyrnelis}, J. Math. Pures Appl. (9) 156, 328--350 (2021; Zbl 1480.35170) Full Text: DOI arXiv OpenURL
Zou, Aihong; Zhang, Lu; Yan, Tao; Shu, Ji Asymptotic behaviour of non-autonomous discrete complex Ginzburg-Landau equations driven by nonlinear noise. (English) Zbl 1482.37081 J. Difference Equ. Appl. 27, No. 7, 947-965 (2021). MSC: 37L55 37L30 37L60 35Q56 39A50 PDF BibTeX XML Cite \textit{A. Zou} et al., J. Difference Equ. Appl. 27, No. 7, 947--965 (2021; Zbl 1482.37081) Full Text: DOI OpenURL
Kamdoum-Tamo, P. H.; Tala-Tebue, E.; Kenfack-Jiotsa, A.; Kofane, T. C. Exact analytical solutions: physical and/or mathematical validity. (English) Zbl 1472.35325 J. Appl. Nonlinear Dyn. 10, No. 1, 95-109 (2021). MSC: 35Q41 35Q55 PDF BibTeX XML Cite \textit{P. H. Kamdoum-Tamo} et al., J. Appl. Nonlinear Dyn. 10, No. 1, 95--109 (2021; Zbl 1472.35325) Full Text: DOI OpenURL
Enciso, Alberto; Peralta-Salas, Daniel Approximation theorems for the Schrödinger equation and quantum vortex reconnection. (English) Zbl 1479.35784 Commun. Math. Phys. 387, No. 2, 1111-1149 (2021). MSC: 35Q55 35Q56 35B65 35A01 82D50 82C10 PDF BibTeX XML Cite \textit{A. Enciso} and \textit{D. Peralta-Salas}, Commun. Math. Phys. 387, No. 2, 1111--1149 (2021; Zbl 1479.35784) Full Text: DOI arXiv OpenURL
Horikis, Theodoros P.; Karachalios, Nikos I.; Frantzeskakis, Dimitrios J. Dynamics of a higher-order Ginzburg-Landau-type equation. (English) Zbl 1479.35836 Rassias, Themistocles M. (ed.), Nonlinear analysis, differential equations, and applications. Cham: Springer. Springer Optim. Appl. 173, 187-207 (2021). MSC: 35Q56 35Q55 35Q41 35C08 35G30 35A01 PDF BibTeX XML Cite \textit{T. P. Horikis} et al., Springer Optim. Appl. 173, 187--207 (2021; Zbl 1479.35836) Full Text: DOI OpenURL
Salvalaglio, Marco; Selch, Maximilian; Voigt, Axel; Wise, Steven M. Doubly degenerate diffuse interface models of anisotropic surface diffusion. (English) Zbl 1473.35525 Math. Methods Appl. Sci. 44, No. 7, 5406-5417 (2021). MSC: 35Q56 35K65 65M60 PDF BibTeX XML Cite \textit{M. Salvalaglio} et al., Math. Methods Appl. Sci. 44, No. 7, 5406--5417 (2021; Zbl 1473.35525) Full Text: DOI arXiv OpenURL
Salvalaglio, Marco; Voigt, Axel; Wise, Steven M. Doubly degenerate diffuse interface models of surface diffusion. (English) Zbl 1473.35526 Math. Methods Appl. Sci. 44, No. 7, 5385-5405 (2021). MSC: 35Q56 35K65 65M60 PDF BibTeX XML Cite \textit{M. Salvalaglio} et al., Math. Methods Appl. Sci. 44, No. 7, 5385--5405 (2021; Zbl 1473.35526) Full Text: DOI arXiv OpenURL
Samir, Islam; Badra, Niveen; Ahmed, Hamdy M.; Arnous, Ahmed H. Solitons in birefringent fibers for CGL equation with Hamiltonian perturbations and Kerr law nonlinearity using modified extended direct algebraic method. (English) Zbl 1476.35254 Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105945, 12 p. (2021). MSC: 35Q56 35Q60 78A60 35C08 33E05 35A24 PDF BibTeX XML Cite \textit{I. Samir} et al., Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105945, 12 p. (2021; Zbl 1476.35254) Full Text: DOI OpenURL
Du, Rui; Wang, Yanyan; Hao, Zhaopeng High-dimensional nonlinear Ginzburg-Landau equation with fractional Laplacian: discretization and simulations. (English) Zbl 07382118 Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105920, 20 p. (2021). MSC: 65M06 65N06 65M12 65N12 65M15 65T50 35Q56 26A33 35R11 PDF BibTeX XML Cite \textit{R. Du} et al., Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105920, 20 p. (2021; Zbl 07382118) Full Text: DOI OpenURL
Rapún, M.-L.; Terragni, F.; Vega, J. M. Adaptive sampling and modal expansions in pattern-forming systems. (English) Zbl 1487.65168 Adv. Comput. Math. 47, No. 4, Paper No. 48, 31 p. (2021). Reviewer: Philipp Öffner (Mainz) MSC: 65M70 65M60 65M06 65M99 65M50 65F05 35Q56 PDF BibTeX XML Cite \textit{M. L. Rapún} et al., Adv. Comput. Math. 47, No. 4, Paper No. 48, 31 p. (2021; Zbl 1487.65168) Full Text: DOI OpenURL
Zhang, Qifeng; Hesthaven, Jan S.; Sun, Zhi-zhong; Ren, Yunzhu Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation. (English) Zbl 1480.65230 Adv. Comput. Math. 47, No. 3, Paper No. 35, 33 p. (2021). MSC: 65M06 65M12 65M15 26A33 35R11 35Q56 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Adv. Comput. Math. 47, No. 3, Paper No. 35, 33 p. (2021; Zbl 1480.65230) Full Text: DOI OpenURL
Fei, Mingfa; Huang, Chengming; Wang, Nan; Zhang, Guoyu Galerkin-Legendre spectral method for the nonlinear Ginzburg-Landau equation with the Riesz fractional derivative. (English) Zbl 1486.65192 Math. Methods Appl. Sci. 44, No. 4, 2711-2730 (2021). MSC: 65M70 65M06 65N35 26A33 35R11 65M12 PDF BibTeX XML Cite \textit{M. Fei} et al., Math. Methods Appl. Sci. 44, No. 4, 2711--2730 (2021; Zbl 1486.65192) Full Text: DOI OpenURL
Onodera, Eiji; Yamasaki, Haruka A fifth-order dispersive partial differential equation for curve flow on the sphere. (English) Zbl 1477.35267 J. Math. Anal. Appl. 503, No. 1, Article ID 125297, 33 p. (2021). MSC: 35Q82 35Q35 35Q55 35Q56 82D40 76B47 37K10 35K25 35A01 35A02 PDF BibTeX XML Cite \textit{E. Onodera} and \textit{H. Yamasaki}, J. Math. Anal. Appl. 503, No. 1, Article ID 125297, 33 p. (2021; Zbl 1477.35267) Full Text: DOI OpenURL
Chen, Qinghua; Lei, Yutian Asymptotic estimates for an integral equation in theory of phase transition. (English) Zbl 1467.45007 Nonlinearity 34, No. 6, 3953-3968 (2021). MSC: 45G05 45E10 35Q56 45M05 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{Y. Lei}, Nonlinearity 34, No. 6, 3953--3968 (2021; Zbl 1467.45007) Full Text: DOI OpenURL
Li, Yangrong; Wang, Fengling; Yang, Shuang Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. (English) Zbl 1471.37069 Discrete Contin. Dyn. Syst., Ser. B 26, No. 7, 3643-3665 (2021). MSC: 37L55 35B41 60H15 35Q56 PDF BibTeX XML Cite \textit{Y. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 7, 3643--3665 (2021; Zbl 1471.37069) Full Text: DOI OpenURL
Li, Lingyu; Chen, Zhang Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. (English) Zbl 1467.60048 Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 3303-3333 (2021). Reviewer: Rózsa Horváth-Bokor (Budakalász) MSC: 60H15 35B40 35B41 35R60 60H40 PDF BibTeX XML Cite \textit{L. Li} and \textit{Z. Chen}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 3303--3333 (2021; Zbl 1467.60048) Full Text: DOI OpenURL
Gao, Yuan; Liu, Jian-Guo; Luo, Tao; Xiang, Yang Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. (English) Zbl 1471.35268 Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 3177-3207 (2021). MSC: 35Q74 35Q56 74B10 35A09 35A01 35A02 35S15 35J50 82D25 35R11 PDF BibTeX XML Cite \textit{Y. Gao} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 3177--3207 (2021; Zbl 1471.35268) Full Text: DOI arXiv OpenURL
Martini, Eduardo; Rodríguez, Daniel; Towne, Aaron; Cavalieri, André V. G. Efficient computation of global resolvent modes. (English) Zbl 07357783 J. Fluid Mech. 919, Paper No. A3, 27 p. (2021). MSC: 76F06 76M99 PDF BibTeX XML Cite \textit{E. Martini} et al., J. Fluid Mech. 919, Paper No. A3, 27 p. (2021; Zbl 07357783) Full Text: DOI arXiv OpenURL
He, Mingyan; Sun, Pengtao Mixed finite element method for modified Poisson-Nernst-Planck/Navier-Stokes equations. (English) Zbl 1473.65197 J. Sci. Comput. 87, No. 3, Paper No. 80, 33 p. (2021). MSC: 65M60 65M06 65N30 65M12 65M15 78A30 35Q60 35Q56 PDF BibTeX XML Cite \textit{M. He} and \textit{P. Sun}, J. Sci. Comput. 87, No. 3, Paper No. 80, 33 p. (2021; Zbl 1473.65197) Full Text: DOI OpenURL
Herrmann, Benjamin; Baddoo, Peter J.; Semaan, Richard; Brunton, Steven L.; McKeon, Beverley J. Data-driven resolvent analysis. (English) Zbl 1487.76065 J. Fluid Mech. 918, Paper No. A10, 19 p. (2021). MSC: 76M99 76F10 PDF BibTeX XML Cite \textit{B. Herrmann} et al., J. Fluid Mech. 918, Paper No. A10, 19 p. (2021; Zbl 1487.76065) Full Text: DOI arXiv OpenURL
Wei, Juncheng; Wu, Yuanze Infinitely many multi-vortex solutions of the magnetic Ginzburg-Landau equation with external potentials in \(\mathbb{R}^2\). (English) Zbl 1467.82106 J. Math. Phys. 62, No. 4, 041509, 33 p. (2021). MSC: 82D55 82D40 35Q56 PDF BibTeX XML Cite \textit{J. Wei} and \textit{Y. Wu}, J. Math. Phys. 62, No. 4, 041509, 33 p. (2021; Zbl 1467.82106) Full Text: DOI OpenURL
Li, Xiaolin; Li, Shuling A linearized element-free Galerkin method for the complex Ginzburg-Landau equation. (English) Zbl 07336206 Comput. Math. Appl. 90, 135-147 (2021). MSC: 65-XX 93-XX PDF BibTeX XML Cite \textit{X. Li} and \textit{S. Li}, Comput. Math. Appl. 90, 135--147 (2021; Zbl 07336206) Full Text: DOI OpenURL
Yuan, Jiye; Zhao, Tengfei; Zheng, Jiqiang On the dimension of divergence sets of Schrödinger equation with complex time. (English) Zbl 1466.35306 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 208, Article ID 112312, 28 p. (2021). MSC: 35Q41 47A63 42B25 35R11 PDF BibTeX XML Cite \textit{J. Yuan} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 208, Article ID 112312, 28 p. (2021; Zbl 1466.35306) Full Text: DOI arXiv OpenURL
Dong, Hongjie; Gao, Yuan Existence and uniqueness of bounded stable solutions to the Peierls-Nabarro model for curved dislocations. (English) Zbl 1462.35437 Calc. Var. Partial Differ. Equ. 60, No. 2, Paper No. 62, 26 p. (2021). MSC: 35R11 35Q56 35A02 35J50 35J60 PDF BibTeX XML Cite \textit{H. Dong} and \textit{Y. Gao}, Calc. Var. Partial Differ. Equ. 60, No. 2, Paper No. 62, 26 p. (2021; Zbl 1462.35437) Full Text: DOI arXiv OpenURL
Chen, Zhang; Li, Lingyu Asymptotic behavior of non-autonomous stochastic complex Ginzburg-Landau equations on unbounded thin domains. (English) Zbl 1462.35373 J. Math. Phys. 62, No. 2, 022704, 18 p. (2021). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q56 35B40 35B41 35R60 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{L. Li}, J. Math. Phys. 62, No. 2, 022704, 18 p. (2021; Zbl 1462.35373) Full Text: DOI OpenURL
Dai, Jia-Yuan Ginzburg-Landau spiral waves in circular and spherical geometries. (English) Zbl 07317436 SIAM J. Math. Anal. 53, No. 1, 1004-1028 (2021). MSC: 35Q56 37G40 35B32 PDF BibTeX XML Cite \textit{J.-Y. Dai}, SIAM J. Math. Anal. 53, No. 1, 1004--1028 (2021; Zbl 07317436) Full Text: DOI arXiv OpenURL
Mohammed, Wael W.; Blömker, Dirk Fast-diffusion limit for reaction-diffusion equations with multiplicative noise. (English) Zbl 1459.35414 J. Math. Anal. Appl. 496, No. 2, Article ID 124808, 20 p. (2021). MSC: 35R60 35K90 35B25 PDF BibTeX XML Cite \textit{W. W. Mohammed} and \textit{D. Blömker}, J. Math. Anal. Appl. 496, No. 2, Article ID 124808, 20 p. (2021; Zbl 1459.35414) Full Text: DOI OpenURL
Matsushita, Teruo Superconductivity and electromagnetism. (English) Zbl 1471.82002 Springer Series in Solid-State Sciences 195. Cham: Springer (ISBN 978-3-030-67567-7/hbk; 978-3-030-67568-4/ebook). x, 207 p. (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 82-02 82D55 35Q82 78-02 78A25 35Q60 35Q56 PDF BibTeX XML Cite \textit{T. Matsushita}, Superconductivity and electromagnetism. Cham: Springer (2021; Zbl 1471.82002) Full Text: DOI OpenURL
Zhang, Qifeng; Zhang, Lu; Sun, Hai-wei A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. (English) Zbl 1462.65119 J. Comput. Appl. Math. 389, Article ID 113355, 20 p. (2021). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65M06 65N06 65M12 65T50 65F08 65F10 15B05 35R11 35Q56 PDF BibTeX XML Cite \textit{Q. Zhang} et al., J. Comput. Appl. Math. 389, Article ID 113355, 20 p. (2021; Zbl 1462.65119) Full Text: DOI OpenURL
Xie, Junyao; Robert Koch, Charles; Dubljevic, Stevan Discrete-time model-based output regulation of fluid flow systems. (English) Zbl 1455.93114 Eur. J. Control 57, 1-13 (2021). MSC: 93C55 93C20 76N25 PDF BibTeX XML Cite \textit{J. Xie} et al., Eur. J. Control 57, 1--13 (2021; Zbl 1455.93114) Full Text: DOI OpenURL
Gao, Peng Averaging principle for complex Ginzburg-Landau equation perturbated by mixing random forces. (English) Zbl 1479.35834 SIAM J. Math. Anal. 53, No. 1, 32-61 (2021). Reviewer: Baasansuren Jadamba (Rochester) MSC: 35Q56 60H15 35B40 PDF BibTeX XML Cite \textit{P. Gao}, SIAM J. Math. Anal. 53, No. 1, 32--61 (2021; Zbl 1479.35834) Full Text: DOI OpenURL
Kalousek, Martin; Schlömerkemper, Anja Dissipative solutions to a system for the flow of magnetoviscoelastic materials. (English) Zbl 1454.35286 J. Differ. Equations 271, 1023-1057 (2021). MSC: 35Q35 35Q56 35A01 35B65 76A10 76W05 74F15 PDF BibTeX XML Cite \textit{M. Kalousek} and \textit{A. Schlömerkemper}, J. Differ. Equations 271, 1023--1057 (2021; Zbl 1454.35286) Full Text: DOI arXiv OpenURL
Wang, Pengde Fast exponential time differencing/spectral-Galerkin method for the nonlinear fractional Ginzburg-Landau equation with fractional Laplacian in unbounded domain. (English) Zbl 1453.65365 Appl. Math. Lett. 112, Article ID 106710, 7 p. (2021). MSC: 65M70 65M60 65N35 65M06 35R11 35Q56 PDF BibTeX XML Cite \textit{P. Wang}, Appl. Math. Lett. 112, Article ID 106710, 7 p. (2021; Zbl 1453.65365) Full Text: DOI OpenURL
Maslovskaya, A. G.; Moroz, L. I.; Chebotarev, A. Yu.; Kovtanyuk, A. E. Theoretical and numerical analysis of the Landau-Khalatnikov model of ferroelectric hysteresis. (English) Zbl 1457.82448 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105524, 13 p. (2021). Reviewer: Hasan Akin (Gaziantep) MSC: 82D45 82B26 74N30 35D30 35A01 35A02 35Q56 35Q82 82M20 65M06 65M15 65F10 82-05 PDF BibTeX XML Cite \textit{A. G. Maslovskaya} et al., Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105524, 13 p. (2021; Zbl 1457.82448) Full Text: DOI OpenURL
Wang, Shimin; Liu, Jie Response solution to complex Ginzburg-Landau equation with quasi-periodic forcing of Liouvillean frequency. (English) Zbl 07509705 Bound. Value Probl. 2020, Paper No. 70, 35 p. (2020). MSC: 35Qxx PDF BibTeX XML Cite \textit{S. Wang} and \textit{J. Liu}, Bound. Value Probl. 2020, Paper No. 70, 35 p. (2020; Zbl 07509705) Full Text: DOI OpenURL
Hussain, Amjad; Jhangeer, Adil; Abbas, Naseem; Khan, Ilyas; Sherif, El-Syed M. Optical solitons of fractional complex Ginzburg-Landau equation with conformable, beta, and M-truncated derivatives: a comparative study. (English) Zbl 1486.35427 Adv. Difference Equ. 2020, Paper No. 612, 18 p. (2020). MSC: 35R11 35Q56 26A33 35C08 PDF BibTeX XML Cite \textit{A. Hussain} et al., Adv. Difference Equ. 2020, Paper No. 612, 18 p. (2020; Zbl 1486.35427) Full Text: DOI OpenURL
Qiu, Yunli; Malomed, Boris A.; Mihalache, Dumitru; Zhu, Xing; Zhang, Li; He, Yingji Soliton dynamics in a fractional complex Ginzburg-Landau model. (English) Zbl 07505788 Chaos Solitons Fractals 131, Article ID 109471, 5 p. (2020). MSC: 35Qxx 35Rxx 35Bxx PDF BibTeX XML Cite \textit{Y. Qiu} et al., Chaos Solitons Fractals 131, Article ID 109471, 5 p. (2020; Zbl 07505788) Full Text: DOI OpenURL
Siddheshwar, P. G.; Revathi, B. R.; Kanchana, C. Effect of gravity modulation on linear, weakly-nonlinear and local-nonlinear stability analyses of stationary double-diffusive convection in a dielectric liquid. (English) Zbl 1483.76011 Meccanica 55, No. 10, 2003-2019 (2020). MSC: 76A99 76E06 76E30 76E25 76R50 PDF BibTeX XML Cite \textit{P. G. Siddheshwar} et al., Meccanica 55, No. 10, 2003--2019 (2020; Zbl 1483.76011) Full Text: DOI OpenURL
Wang, Pengde; Huang, Chengming Implicit-explicit difference schemes for the nonlinear fractional Ginzburg-Landau equation. (Chinese. English summary) Zbl 07494840 Sci. Sin., Math. 50, No. 10, 1505-1524 (2020). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{P. Wang} and \textit{C. Huang}, Sci. Sin., Math. 50, No. 10, 1505--1524 (2020; Zbl 07494840) Full Text: DOI OpenURL
Aguareles, M.; Chapman, S. J.; Witelski, T. Dynamics of spiral waves in the complex Ginzburg-Landau equation in bounded domains. (English) Zbl 07491109 Physica D 414, Article ID 132699, 23 p. (2020). MSC: 35Q56 35B40 35B36 35B05 PDF BibTeX XML Cite \textit{M. Aguareles} et al., Physica D 414, Article ID 132699, 23 p. (2020; Zbl 07491109) Full Text: DOI arXiv OpenURL
Besteiro, Agustin Tomas A note on dark solitons in nonlinear complex Ginzburg-Landau equations. (English) Zbl 07473652 Mathematica 62(85), No. 1, 11-15 (2020). MSC: 35Q56 35C08 PDF BibTeX XML Cite \textit{A. T. Besteiro}, Mathematica 62(85), No. 1, 11--15 (2020; Zbl 07473652) Full Text: DOI OpenURL
Kriauzienė, Rima; Bugajev, Andrej; Čiegis, Raimondas A three-level parallelisation scheme and application to the Nelder-Mead algorithm. (English) Zbl 1476.65175 Math. Model. Anal. 25, No. 4, 584-607 (2020). MSC: 65M06 65Y05 35Q56 65M12 PDF BibTeX XML Cite \textit{R. Kriauzienė} et al., Math. Model. Anal. 25, No. 4, 584--607 (2020; Zbl 1476.65175) Full Text: DOI arXiv OpenURL
Shu, Ji; Zhang, Jian Random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations on unbounded domains. (English) Zbl 1483.37095 J. Appl. Anal. Comput. 10, No. 6, 2592-2618 (2020). MSC: 37L55 37L30 60H15 35Q56 35R60 35R11 26A33 PDF BibTeX XML Cite \textit{J. Shu} and \textit{J. Zhang}, J. Appl. Anal. Comput. 10, No. 6, 2592--2618 (2020; Zbl 1483.37095) Full Text: DOI OpenURL
Kostianko, Anna Bi-Lipschitz Mané projectors and finite-dimensional reduction for complex Ginzburg-Landau equation. (English) Zbl 1472.35225 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2239, Article ID 20200144, 14 p. (2020). MSC: 35K58 35Q55 35Q56 PDF BibTeX XML Cite \textit{A. Kostianko}, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2239, Article ID 20200144, 14 p. (2020; Zbl 1472.35225) Full Text: DOI arXiv OpenURL
Yang, Yin; Tao, Jianyong; Zhang, Shangyou; Sivtsev, Petr V. A Jacobi collocation method for the fractional Ginzburg-Landau differential equation. (English) Zbl 07409024 Adv. Appl. Math. Mech. 12, No. 1, 57-86 (2020). MSC: 35R35 65M12 65M70 PDF BibTeX XML Cite \textit{Y. Yang} et al., Adv. Appl. Math. Mech. 12, No. 1, 57--86 (2020; Zbl 07409024) Full Text: DOI OpenURL
Habibirad, Ali; Hesameddini, Esmail An efficient combination of split-step in time and the meshless local Petrov-Galerkin methods for solving the Ginzburg-Landau equation in two and three dimensions. (Persian. English summary) Zbl 1471.65140 JAMM, J. Adv. Math. Model. 10, No. 1, 62-87 (2020). MSC: 65M60 34A45 PDF BibTeX XML Cite \textit{A. Habibirad} and \textit{E. Hesameddini}, JAMM, J. Adv. Math. Model. 10, No. 1, 62--87 (2020; Zbl 1471.65140) Full Text: DOI OpenURL
Yang, Yuan; Shu, Ji; Zhang, Jian Regularity of random attractors for non-autonomous stochastic discrete complex Ginzburg-Landau equations. (English) Zbl 1465.60063 J. Difference Equ. Appl. 26, No. 5, 587-608 (2020). MSC: 60H15 37L55 PDF BibTeX XML Cite \textit{Y. Yang} et al., J. Difference Equ. Appl. 26, No. 5, 587--608 (2020; Zbl 1465.60063) Full Text: DOI OpenURL
Li, Hongfang; Zhou, Feng Pullback attractors for the complex Ginzburg-Landau equation with \(p\)-Laplacian on time-varying domains. (English) Zbl 1474.35122 J. Qufu Norm. Univ., Nat. Sci. 46, No. 4, 1-9 (2020). MSC: 35B41 35Q56 PDF BibTeX XML Cite \textit{H. Li} and \textit{F. Zhou}, J. Qufu Norm. Univ., Nat. Sci. 46, No. 4, 1--9 (2020; Zbl 1474.35122) Full Text: DOI OpenURL
Liu, Liping; Yang, Hang; Ma, Xuan The Landau equation with inflow boundary condition in a finite channel. (Chinese. English summary) Zbl 1474.35594 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 4, 904-917 (2020). MSC: 35Q56 35B65 PDF BibTeX XML Cite \textit{L. Liu} et al., Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 4, 904--917 (2020; Zbl 1474.35594) OpenURL
Kudryashov, Nikolay A. First integrals and general solution of the complex Ginzburg-Landau equation. (English) Zbl 07323469 Appl. Math. Comput. 386, Article ID 125407, 8 p. (2020). MSC: 00-XX PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Appl. Math. Comput. 386, Article ID 125407, 8 p. (2020; Zbl 07323469) Full Text: DOI OpenURL
Nikolić, Hrvoje; Atelj, Josip Proposed measurement of simultaneous particle and wave properties of electric current in a superconductor. (English) Zbl 1455.81008 Mod. Phys. Lett. A 35, No. 39, Article ID 2050320, 8 p. (2020). MSC: 81P15 81P05 35Q56 PDF BibTeX XML Cite \textit{H. Nikolić} and \textit{J. Atelj}, Mod. Phys. Lett. A 35, No. 39, Article ID 2050320, 8 p. (2020; Zbl 1455.81008) Full Text: DOI arXiv OpenURL
Almog, Y.; Helffer, B. The spectrum of a Schrödinger operator in a wire-like domain with a purely imaginary degenerate potential in the semiclassical limit. (English. French abstract) Zbl 1458.35285 Mém. Soc. Math. Fr., Nouv. Sér. 166, 1-94 (2020). MSC: 35P15 35J10 35Q56 82D55 PDF BibTeX XML Cite \textit{Y. Almog} and \textit{B. Helffer}, Mém. Soc. Math. Fr., Nouv. Sér. 166, 1--94 (2020; Zbl 1458.35285) Full Text: DOI arXiv OpenURL
Yang, Juan; Feng, Qingjiang New exact solutions of the nonlinear Landau-Ginburg-Higgs equation. (English) Zbl 1463.35472 Math. Pract. Theory 50, No. 12, 251-254 (2020). MSC: 35Q56 PDF BibTeX XML Cite \textit{J. Yang} and \textit{Q. Feng}, Math. Pract. Theory 50, No. 12, 251--254 (2020; Zbl 1463.35472) OpenURL
Cheng, Ming Recurrent motion in the fractional complex Ginzburg-Landau equation. (English) Zbl 1480.35368 J. Math. Phys. 61, No. 11, 111507, 15 p. (2020). Reviewer: Christos Sourdis (Athína) MSC: 35Q56 35A01 35A02 35B09 35R11 PDF BibTeX XML Cite \textit{M. Cheng}, J. Math. Phys. 61, No. 11, 111507, 15 p. (2020; Zbl 1480.35368) Full Text: DOI OpenURL
Becker, Simon; Menegaki, Angeliki Spectral gap in mean-field \({\mathcal{O}}(n)\)-model. (English) Zbl 1472.60150 Commun. Math. Phys. 380, No. 3, 1361-1400 (2020). MSC: 60K35 46E35 35J10 82C20 PDF BibTeX XML Cite \textit{S. Becker} and \textit{A. Menegaki}, Commun. Math. Phys. 380, No. 3, 1361--1400 (2020; Zbl 1472.60150) Full Text: DOI arXiv OpenURL
Tao, Yong Relativistic Ginzburg-Landau equation: an investigation for overdoped cuprate films. (English) Zbl 1448.35489 Phys. Lett., A 384, No. 26, Article ID 126636, 5 p. (2020). MSC: 35Q56 82D03 82D55 PDF BibTeX XML Cite \textit{Y. Tao}, Phys. Lett., A 384, No. 26, Article ID 126636, 5 p. (2020; Zbl 1448.35489) Full Text: DOI arXiv OpenURL
Zhao, Yao; Xia, Chuan-Yin; Zeng, Hua-Bi Cascade replication of soliton solutions in the one-dimensional complex cubic-quintic Ginzburg-Landau equation. (English) Zbl 1448.35094 Phys. Lett., A 384, No. 18, Article ID 126395, 6 p. (2020). MSC: 35C08 35Q51 35Q55 35Q56 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Phys. Lett., A 384, No. 18, Article ID 126395, 6 p. (2020; Zbl 1448.35094) Full Text: DOI OpenURL
Lu, Peng-Hong; Wang, Ben-Hai; Dai, Chao-Qing Fractional traveling wave solutions of the \((2+1)\)-dimensional fractional complex Ginzburg-Landau equation via two methods. (English) Zbl 1453.35041 Math. Methods Appl. Sci. 43, No. 15, 8518-8526 (2020). MSC: 35C07 35C05 35Q56 35R11 PDF BibTeX XML Cite \textit{P.-H. Lu} et al., Math. Methods Appl. Sci. 43, No. 15, 8518--8526 (2020; Zbl 1453.35041) Full Text: DOI OpenURL
Hari, K.; Manikandan, K.; Sankaranarayanan, R. Dissipative optical solitons in asymmetric Rosen-Morse potential. (English) Zbl 1448.35432 Phys. Lett., A 384, No. 4, Article ID 126104, 8 p. (2020). MSC: 35Q51 35Q56 35C08 35Q55 81V80 PDF BibTeX XML Cite \textit{K. Hari} et al., Phys. Lett., A 384, No. 4, Article ID 126104, 8 p. (2020; Zbl 1448.35432) Full Text: DOI arXiv OpenURL
Ma, Dandan; Shu, Ji; Qin, Ling Wong-Zakai approximations and asymptotic behavior of stochastic Ginzburg-Landau equations. (English) Zbl 1457.37098 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4335-4359 (2020). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 37L55 37L30 60H15 35Q56 60J65 PDF BibTeX XML Cite \textit{D. Ma} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4335--4359 (2020; Zbl 1457.37098) Full Text: DOI OpenURL
Assaad, Wafaa; Kachmar, Ayman; Sabbagh, Lamis Non-homogeneous magnetic permeability and magnetic steps within the Ginzburg-Landau model. (English) Zbl 1451.35204 J. Elliptic Parabol. Equ. 6, No. 2, 655-684 (2020). MSC: 35Q56 35P15 35J10 82D55 PDF BibTeX XML Cite \textit{W. Assaad} et al., J. Elliptic Parabol. Equ. 6, No. 2, 655--684 (2020; Zbl 1451.35204) Full Text: DOI OpenURL
Haas, Tobias; de Rijk, Björn; Schneider, Guido Modulation equations near the Eckhaus boundary: the KdV equation. (English) Zbl 07269951 SIAM J. Math. Anal. 52, No. 6, 5389-5421 (2020). MSC: 35Q53 35A35 35B10 35Q56 PDF BibTeX XML Cite \textit{T. Haas} et al., SIAM J. Math. Anal. 52, No. 6, 5389--5421 (2020; Zbl 07269951) Full Text: DOI arXiv OpenURL