×

On optimal mean-field control problem of mean-field forward-backward stochastic system with jumps under partial information. (English) Zbl 1381.93106

Summary: This paper considers the problem of partially observed optimal control for forward-backward stochastic systems driven by Brownian motions and an independent Poisson random measure with a feature that the cost functional is of mean-field type. When the coefficients of the system and the objective performance functionals are allowed to be random, possibly non-Markovian, Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed. The authors also investigate the mean-field type optimal control problem for the system driven by mean-field type Forward-Backward Stochastic Differential Equations (FBSDEs in short) with jumps, where the coefficients contain not only the state process but also its expectation under partially observed information. The maximum principle is established using convex variational technique. An example is given to illustrate the obtained results.

MSC:

93E20 Optimal stochastic control
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
49K45 Optimality conditions for problems involving randomness
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang G, Wu Z, and Xiong J, Maximum principles for forward-backward stochastic control aystems with correlated state and observation noises, SIAM J. Control Optim., 2013, 51(1): 491-524. · Zbl 1262.93027 · doi:10.1137/110846920
[2] Wang G, Wu Z, and Xiong J, A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information, IEEE TAC, 2015, 60(11): 2904-2916. · Zbl 1360.93787
[3] Wang G, Zhang C, and Zhang W, Stochastic maximum principle for mean-field type optimal control under partial information, IEEE Tans. Automatic Control, 2014, 59(59): 522-528. · Zbl 1360.93788 · doi:10.1109/TAC.2013.2273265
[4] Wu Z, A maximum principle for partially observed optimal control of forward-backward stochastic control systems, Science China (Information Sciences), 2010, 53(11): 2205-2214. · Zbl 1227.93116 · doi:10.1007/s11432-010-4094-6
[5] Xiao H, The maximum principle for partially observed optimal control of forward-backward stochastic systems with random jumps, Jounal of Systems Science & Complexity, 2011, 24(6): 1083-1099. · Zbl 1338.93408 · doi:10.1007/s11424-011-9311-x
[6] Anderson D and Djehiche B, A maximum principle for SDE’s of mean-field type, Appl. Math. Optim., 2011, 58: 76-82.
[7] Buckdahn R, Djehiche B, and Li J, A general stochastic maximum principle for SDEs of meanfield type, Appl. Math. Optim., 2011, 64: 197-216. · Zbl 1245.49036 · doi:10.1007/s00245-011-9136-y
[8] Hafayed M and Abbas S, A general maximum principle for mean-field stochastic differential equations with jump, 2013, arXiv: 1301.7327v4. · Zbl 1287.93108
[9] Li J, Stochastic maximum principle in the mean-field controls, Automatica, 2012, 48: 366-373. · Zbl 1260.93176 · doi:10.1016/j.automatica.2011.11.006
[10] Li R and Liu B, A maximum principle for fully coupled stochastic control systems of mean-field type, J. Math. Anal. Appl., 2014, 415(2): 902-930. · Zbl 1326.49040 · doi:10.1016/j.jmaa.2014.02.008
[11] Wang G, Xiao H, and Xing G, An optimal control problem for mean-field forward-backward stochastic differential equation with partial information, 2015, arXiv: 1509.03729.
[12] Yang S and Tak K S, The maximum principle for a jump-diffusion mean-field model and its application to the mean-variance problem, Nonlinear Analysis, 2013, 86: 58-73. · Zbl 1279.49015 · doi:10.1016/j.na.2013.02.029
[13] Yong J, A linear quadratic optimal control problem for mean-field stochastic differential equations, SIAM J. Control Optim., 2011, 51(4): 2809-2838. · Zbl 1275.49060 · doi:10.1137/120892477
[14] Meyer-Brandis T, Øksendal B, and Zhou X Y, A mean-field stochastic maximum principle via Malliavin calculus, Stochastics An International Juornal of Probability and Stochastic Processes: Formerly Stochastics and Stochastics Reports, 2012, 84(5-6): 643-666. · Zbl 1252.49039 · doi:10.1080/17442508.2011.651619
[15] Hu Y Z, Nualart D, and Zhou Q, On optimal mean-field type control problems of stochastic systems with jump processes under partial information, 2014, arXiv: 1403.4377v1.
[16] Benth F E, Di Nunno G, Løkka A, et al., Explicit representation of the minimal variance portfolio in market markets driven by L´evy processes, Math. Finance, 2003, 13: 55-72. · Zbl 1173.91377 · doi:10.1111/1467-9965.t01-1-00005
[17] Di Nunno G, Meyer-Brandis T, Øksendal B, et al., Malliavin Calculus and anticipative Itô formula for Lévy processes, Inf. dim. Anal. Quant. Probab., 2005, 8: 235-258. · Zbl 1080.60068 · doi:10.1142/S0219025705001950
[18] Di Nunno G, Øksendal B, and Proske F, Malliavin Calculus for Lévy Processes and Application to Finance, Universitext, Springer, Berlin, Heidelberg, 2009. · Zbl 1080.60068
[19] Nualart D, Malliavin Calculus and Related Topics, 2nd ed., Springer, Berlin, Heidelberg, 2006. · Zbl 1099.60003
[20] Itô Y, Generalized Poisson functionals, Probab. Theory Rel. Fields, 1998, 77: 1-28. · Zbl 0617.60035 · doi:10.1007/BF01848128
[21] Barles G, Buckdahn R, and Pardoux E, Backward stochastic differential equations and integral partial differential equations, Stochastics, 1997, 60: 7-83. · Zbl 0878.60036
[22] Tang S and Li X, Necessary conditions for optimal control of stochastic systems with random jumps, SIAM J. Control Optim., 1994, 32(5): 1447-1475. · Zbl 0922.49021 · doi:10.1137/S0363012992233858
[23] Huang J, Wang G, and Wu Z, Optimal premium policy of an insurance firm: Full and partial information, Insurance Math. Econ., 2010, 47: 208-215. · Zbl 1231.91200 · doi:10.1016/j.insmatheco.2010.04.007
[24] Xiong J and Zhou X Y, Mean-variance portfolio selection under partial information, SIAM J. Control Optim., 2007, 46: 156-175. · Zbl 1142.91007 · doi:10.1137/050641132
[25] Øksendal B and Sulem A, Maximum principles for optimal control of forward-backward stochastic differnential equations with jumps, SIAM J. Control Optim., 2009, 48: 2945-2976. · Zbl 1207.93115 · doi:10.1137/080739781
[26] Nagai H and Peng S, Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon, Ann. Appl. Probab., 2002, 12(1): 173-195. · Zbl 1042.91048 · doi:10.1214/aoap/1015961160
[27] Carmona R and Dularue F, Mean-field forward-backward stochastic differential equations, Electron. Commun. Probab., 2013, 68: 1-15. · Zbl 1297.93182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.