Tao, Pham Dinh; Le Thi Hoai An A D. C. optimization algorithm for solving the trust-region subproblem. (English) Zbl 0913.65054 SIAM J. Optim. 8, No. 2, 476-505 (1998). The authors consider the optimization problem \[ g(x)- h(x)\to \inf_{x\in\mathbb{R}^n}, \] where the functions \(g\) and \(h\) are convex. For this d.c. optimization problem, the authors give duality, local and global optimization conditions and a numerical algorithm. The given algorithm is applied for the solution of a trust-region problem of the form \[ {1\over 2}\cdot x^T\cdot A\cdot x+ b^T\cdot x\to \inf_{\| x\|\leq r}. \] Numerical experiments are given and relations to the Goldstein-Levitin-Polyak gradient projection algorithm in the convex case are discussed. Reviewer: H.Benker (Merseburg) Cited in 4 ReviewsCited in 179 Documents MSC: 65K05 Numerical mathematical programming methods 90C26 Nonconvex programming, global optimization Keywords:d.c. optimization; d.c. duality; global and local optimality conditions; regularization techniques; DCA; Lanczos method; trust-region subproblem; numerical experiments; Goldstein-Levitin-Polyak gradient projection algorithm PDF BibTeX XML Cite \textit{P. D. Tao} and \textit{Le Thi Hoai An}, SIAM J. Optim. 8, No. 2, 476--505 (1998; Zbl 0913.65054) Full Text: DOI OpenURL