Ara, Dimitri; Maltsiniotis, Georges Comparison of \(n\)-categorical nerves. (Comparaison des nerfs \(n\)-catégoriques.) (French. English summary) Zbl 1511.18007 Algebr. Geom. Topol. 22, No. 6, 2867-2914 (2022). Reviewer: Philippe Gaucher (Paris) MSC: 18E35 18N30 18N40 18N50 55P10 55P15 55U10 55U35 PDF BibTeX XML Cite \textit{D. Ara} and \textit{G. Maltsiniotis}, Algebr. Geom. Topol. 22, No. 6, 2867--2914 (2022; Zbl 1511.18007) Full Text: DOI
Gagna, Andrea; Harpaz, Yonatan; Lanari, Edoardo Gray tensor products and lax functors of \((\infty, 2)\)-categories. (English) Zbl 1472.18021 Adv. Math. 391, Article ID 107986, 32 p. (2021). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 18N65 18N50 55U10 55U35 PDF BibTeX XML Cite \textit{A. Gagna} et al., Adv. Math. 391, Article ID 107986, 32 p. (2021; Zbl 1472.18021) Full Text: DOI arXiv
Maehara, Yuki The Gray tensor product for 2-quasi-categories. (English) Zbl 1471.18024 Adv. Math. 377, Article ID 107461, 79 p. (2021). Reviewer: Julie Bergner (Riverside) MSC: 18N10 18M15 18N65 18M05 PDF BibTeX XML Cite \textit{Y. Maehara}, Adv. Math. 377, Article ID 107461, 79 p. (2021; Zbl 1471.18024) Full Text: DOI arXiv
Ara, Dimitri; Maltsiniotis, Georges Join and slices for strict \(\infty\)-categories. (Joint et tranches pour les \(\infty\)-catégories strictes.) (French. English summary) Zbl 1473.18001 Mém. Soc. Math. Fr., Nouv. Sér. 165, 1-203 (2020). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 18-02 18Nxx PDF BibTeX XML Cite \textit{D. Ara} and \textit{G. Maltsiniotis}, Mém. Soc. Math. Fr., Nouv. Sér. 165, 1--203 (2020; Zbl 1473.18001) Full Text: arXiv
Ara, Dimitri; Lucas, Maxime The folk model category structure on strict \(\omega\)-categories is monoidal. (English) Zbl 1443.18008 Theory Appl. Categ. 35, 745-808 (2020). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 18M05 18N30 18N40 55U35 PDF BibTeX XML Cite \textit{D. Ara} and \textit{M. Lucas}, Theory Appl. Categ. 35, 745--808 (2020; Zbl 1443.18008) Full Text: arXiv Link
Ara, Dimitri; Maltsiniotis, Georges A Quillen’s theorem A for strict \(\infty\)-categories. II: The \(\infty\)-categorical proof. (Un théorème A de Quillen pour les \(\infty\)-catégories strictes. II: La preuve \(\infty\)-catégorique.) (French. English summary) Zbl 1477.18049 High. Struct. 4, No. 1, 284-388 (2020). MSC: 18N60 18N65 18M05 18N50 18N40 18A25 55P15 55U10 55U15 55U35 PDF BibTeX XML Cite \textit{D. Ara} and \textit{G. Maltsiniotis}, High. Struct. 4, No. 1, 284--388 (2020; Zbl 1477.18049) Full Text: arXiv
Ara, Dimitri; Maltsiniotis, Georges A Quillen’s Theorem A for strict \(\infty\)-categories. I: The simplicial proof. (Un théorème A de Quillen pour les \(\infty\)-catégories strictes. I : La preuve simpliciale.) (French. English summary) Zbl 1390.18011 Adv. Math. 328, 446-500 (2018). Reviewer: Antonio R. Garzón (Granada) MSC: 18D05 18G30 18G35 18G55 55P15 55U10 55U15 55U35 PDF BibTeX XML Cite \textit{D. Ara} and \textit{G. Maltsiniotis}, Adv. Math. 328, 446--500 (2018; Zbl 1390.18011) Full Text: DOI arXiv
Stanculescu, Alexandru Emil Formal aspects of Gray’s tensor products of 2-categories. (English) Zbl 1308.18010 Appl. Categ. Struct. 21, No. 6, 781-800 (2013). Reviewer: Emily Riehl (Cambridge) MSC: 18D15 18D20 PDF BibTeX XML Cite \textit{A. E. Stanculescu}, Appl. Categ. Struct. 21, No. 6, 781--800 (2013; Zbl 1308.18010) Full Text: DOI arXiv
Weber, Mark Free products of higher operad algebras. (English) Zbl 1275.18022 Theory Appl. Categ. 28, 24-65 (2013). MSC: 18D50 18A05 18D20 55P48 PDF BibTeX XML Cite \textit{M. Weber}, Theory Appl. Categ. 28, 24--65 (2013; Zbl 1275.18022) Full Text: arXiv EMIS
Gurski, Nick The monoidal structure of strictification. (English) Zbl 1273.18012 Theory Appl. Categ. 28, 1-23 (2013). MSC: 18D05 18D10 PDF BibTeX XML Cite \textit{N. Gurski}, Theory Appl. Categ. 28, 1--23 (2013; Zbl 1273.18012) Full Text: arXiv EMIS
Ditkovskaya, E. E. Curvature identities for principle \(T^{1}\)-bundles over almost Hermitian manifolds. (English. Russian original) Zbl 1219.53070 Russ. Math. 54, No. 7, 49-55 (2010); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2010, No. 7, 56-63 (2010). Reviewer: Antonio De Nicola (Coimbra) MSC: 53C55 53C15 PDF BibTeX XML Cite \textit{E. E. Ditkovskaya}, Russ. Math. 54, No. 7, 49--55 (2010; Zbl 1219.53070); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2010, No. 7, 56--63 (2010) Full Text: DOI
Atindogbe, C.; Bérard Bergery, L.; Tossa, J. Gray tensors on lightlike hypersurfaces. (English) Zbl 1193.53145 Int. Electron. J. Geom. 2, No. 2, 1-19 (2009). Reviewer: Constantin Călin (Iaşi) MSC: 53C50 53C21 PDF BibTeX XML Cite \textit{C. Atindogbe} et al., Int. Electron. J. Geom. 2, No. 2, 1--19 (2009; Zbl 1193.53145)
Brozos-Vázquez, Miguel; Gilkey, Peter; Nikčević, Stana; Vázquez-Lorenzo, Ramón Geometric realizations of para-Hermitian curvature models. (English) Zbl 1191.53023 Result. Math. 56, No. 1-4, 319-333 (2009). Reviewer: Mircea Craioveanu (Timişoara) MSC: 53C15 53C17 53C99 PDF BibTeX XML Cite \textit{M. Brozos-Vázquez} et al., Result. Math. 56, No. 1--4, 319--333 (2009; Zbl 1191.53023) Full Text: DOI arXiv
Kharitonova, S. V. On the geometry of locally conformally almost cosymplectic manifolds. (English. Russian original) Zbl 1203.53077 Math. Notes 86, No. 1, 121-131 (2009); translation from Mat. Zametki 86, No. 1, 126-138 (2009). Reviewer: Marcela Popescu (Craiova) MSC: 53D05 53C15 PDF BibTeX XML Cite \textit{S. V. Kharitonova}, Math. Notes 86, No. 1, 121--131 (2009; Zbl 1203.53077); translation from Mat. Zametki 86, No. 1, 126--138 (2009) Full Text: DOI
Verity, D. R. B. Weak complicial sets. I: Basic homotopy theory. (English) Zbl 1158.18007 Adv. Math. 219, No. 4, 1081-1149 (2008). Reviewer: Georges Hoff (Villetaneuse) MSC: 18G55 55U10 55U35 18G30 18D05 PDF BibTeX XML Cite \textit{D. R. B. Verity}, Adv. Math. 219, No. 4, 1081--1149 (2008; Zbl 1158.18007) Full Text: DOI arXiv
Verity, Dominic Complicial sets characterising the simplicial nerves of strict \(\omega\)-categories. (English) Zbl 1138.18005 Mem. Am. Math. Soc. 905, 184 p. (2008). Reviewer: Richard John Steiner (Glasgow) MSC: 18D05 18G30 18-02 PDF BibTeX XML Cite \textit{D. Verity}, Complicial sets characterising the simplicial nerves of strict \(\omega\)-categories. Providence, RI: American Mathematical Society (AMS) (2008; Zbl 1138.18005) Full Text: DOI
Lack, Stephen A Quillen model structure for 2-categories. (English) Zbl 1017.18005 \(K\)-Theory 26, No. 2, 171-205 (2002). Reviewer: Akrur Behera (Rourkela) MSC: 18D05 55U35 18G55 PDF BibTeX XML Cite \textit{S. Lack}, \(K\)-Theory 26, No. 2, 171--205 (2002; Zbl 1017.18005) Full Text: DOI
Kamps, K. H.; Porter, T. 2-groupoid enrichments in homotopy theory and algebra. (English) Zbl 1009.18007 \(K\)-Theory 25, No. 4, 373-409 (2002). Reviewer: Richard John Steiner (Glasgow) MSC: 18D20 55P15 18G35 18G55 55U15 20L05 18D10 55U35 18D05 PDF BibTeX XML Cite \textit{K. H. Kamps} and \textit{T. Porter}, \(K\)-Theory 25, No. 4, 373--409 (2002; Zbl 1009.18007) Full Text: DOI
Crans, Sjoerd E. A tensor product for Gray-categories. (English) Zbl 0914.18006 Theory Appl. Categ. 5, 12-69 (1999). Reviewer: R.H.Street (North Ryde) MSC: 18D05 18A05 18D10 18D20 PDF BibTeX XML Cite \textit{S. E. Crans}, Theory Appl. Categ. 5, 12--69 (1999; Zbl 0914.18006) Full Text: EuDML EMIS
Gordon, R.; Power, A. J.; Street, Ross H. Coherence for tricategories. (English) Zbl 0836.18001 Mem. Am. Math. Soc. 558, 81 p. (1995). Reviewer: Peter T. Johnstone (Cambridge) MSC: 18D05 55U35 68Q65 81T05 PDF BibTeX XML Cite \textit{R. Gordon} et al., Coherence for tricategories. Providence, RI: American Mathematical Society (AMS) (1995; Zbl 0836.18001) Full Text: DOI