Zhou, Jun A map-type Gronwall inequality on functional differential equations with state-dependence. (English) Zbl 07690161 J. Math. Inequal. 17, No. 1, 113-126 (2023). MSC: 26D15 34K25 PDF BibTeX XML Cite \textit{J. Zhou}, J. Math. Inequal. 17, No. 1, 113--126 (2023; Zbl 07690161) Full Text: DOI OpenURL
Samatov, B. T.; Akbarov, A. Kh. Linear differential game of pursuit under Grönwall type constraints. (English) Zbl 07686330 Uzb. Math. J. 67, No. 1, 111-119 (2023). MSC: 49N70 91A24 PDF BibTeX XML Cite \textit{B. T. Samatov} and \textit{A. Kh. Akbarov}, Uzb. Math. J. 67, No. 1, 111--119 (2023; Zbl 07686330) Full Text: DOI OpenURL
Vijayakumar, V.; Malik, Muslim; Shukla, Anurag Results on the approximate controllability of Hilfer type fractional semilinear control systems. (English) Zbl 07659903 Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 58, 15 p. (2023). MSC: 93B05 93C15 34A08 93B28 PDF BibTeX XML Cite \textit{V. Vijayakumar} et al., Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 58, 15 p. (2023; Zbl 07659903) Full Text: DOI OpenURL
Vanterler da C. Sousa, J.; Gala, Sadek; de Oliveira, E. Capelas On the uniqueness of mild solutions to the time-fractional Navier-Stokes equations in \(L^N(\mathbb{R}^N)^N\). (English) Zbl 07657513 Comput. Appl. Math. 42, No. 1, Paper No. 41, 11 p. (2023). MSC: 26A33 34G25 34A12 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} et al., Comput. Appl. Math. 42, No. 1, Paper No. 41, 11 p. (2023; Zbl 07657513) Full Text: DOI OpenURL
Maazouz, Kadda; Rodríguez-López, Rosana Differential equations of arbitrary order under Caputo-Fabrizio derivative: some existence results and study of stability. (English) Zbl 07657919 Math. Biosci. Eng. 19, No. 6, 6234-6251 (2022). Reviewer: Hira Waheed (Peshawar) MSC: 34A08 34A09 34D10 47N20 PDF BibTeX XML Cite \textit{K. Maazouz} and \textit{R. Rodríguez-López}, Math. Biosci. Eng. 19, No. 6, 6234--6251 (2022; Zbl 07657919) Full Text: DOI OpenURL
Chiu, Kuo-Shou Existence and global exponential stability of periodic solution for Cohen-Grossberg neural networks model with piecewise constant argument. (English) Zbl 07645299 Hacet. J. Math. Stat. 51, No. 5, 1219-1236 (2022). MSC: 92B20 34K13 34K20 PDF BibTeX XML Cite \textit{K.-S. Chiu}, Hacet. J. Math. Stat. 51, No. 5, 1219--1236 (2022; Zbl 07645299) Full Text: DOI OpenURL
Ravichandran, C.; Sowbakiya, V.; Nisar, Kottakkaran Sooppy Study on existence and data dependence results for fractional order differential equations. (English) Zbl 1504.45008 Chaos Solitons Fractals 160, Article ID 112232, 8 p. (2022). MSC: 45J05 34A08 34K37 26A33 PDF BibTeX XML Cite \textit{C. Ravichandran} et al., Chaos Solitons Fractals 160, Article ID 112232, 8 p. (2022; Zbl 1504.45008) Full Text: DOI OpenURL
Zhang, Hui; Zeng, Fanhai; Jiang, Xiaoyun; Karniadakis, George Em Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations. (English) Zbl 1503.65194 Fract. Calc. Appl. Anal. 25, No. 2, 453-487 (2022). MSC: 65M06 35R11 65M15 65M12 26A33 PDF BibTeX XML Cite \textit{H. Zhang} et al., Fract. Calc. Appl. Anal. 25, No. 2, 453--487 (2022; Zbl 1503.65194) Full Text: DOI arXiv OpenURL
Fečkan, Michal; Pospíšil, Michal; Danca, Marius-F.; Wang, JinRong Caputo delta weakly fractional difference equations. (English) Zbl 1503.39004 Fract. Calc. Appl. Anal. 25, No. 6, 2222-2240 (2022). MSC: 39A13 26A33 26D20 33E12 PDF BibTeX XML Cite \textit{M. Fečkan} et al., Fract. Calc. Appl. Anal. 25, No. 6, 2222--2240 (2022; Zbl 1503.39004) Full Text: DOI OpenURL
Chiu, Kuo-Shou Yakubovich’s theorem for impulsive differential equations with piecewise constant argument of generalized type. (English) Zbl 07633763 Miskolc Math. Notes 23, No. 2, 579-594 (2022). MSC: 34K45 34K25 PDF BibTeX XML Cite \textit{K.-S. Chiu}, Miskolc Math. Notes 23, No. 2, 579--594 (2022; Zbl 07633763) Full Text: DOI OpenURL
Bohner, Martin; Tikare, Sanket Ulam stability for first-order nonlinear dynamic equations. (English) Zbl 07626821 Sarajevo J. Math. 18(31), No. 1, 83-96 (2022). MSC: 34N05 34D10 26E70 PDF BibTeX XML Cite \textit{M. Bohner} and \textit{S. Tikare}, Sarajevo J. Math. 18(31), No. 1, 83--96 (2022; Zbl 07626821) Full Text: DOI OpenURL
Elhadi, Smakdji Mohamed; Mouhamed, Denche; Hassane, Khellaf Estimation for bounded solutions of some nonlinear integral inequalities with delay in several variables. (English) Zbl 07612965 Aust. J. Math. Anal. Appl. 19, No. 2, Article No. 10, 19 p. (2022). MSC: 26D10 26D15 45D05 PDF BibTeX XML Cite \textit{S. M. Elhadi} et al., Aust. J. Math. Anal. Appl. 19, No. 2, Article No. 10, 19 p. (2022; Zbl 07612965) Full Text: Link OpenURL
Butt, Rabia Ilyas; Ur Rehman, Mujeeb Ulam’s type stability analysis of fractional difference equation with impulse: Gronwall inequality approach. (English) Zbl 1501.39005 Turk. J. Math. 46, No. 7, 2927-2941 (2022). MSC: 39A30 39A13 26A33 PDF BibTeX XML Cite \textit{R. I. Butt} and \textit{M. Ur Rehman}, Turk. J. Math. 46, No. 7, 2927--2941 (2022; Zbl 1501.39005) Full Text: DOI OpenURL
Ayari, Amira; Boukerrioua, Khaled Some new Gronwall-Bihari type inequalities associated with generalized fractional operators and applications. (English) Zbl 1496.26027 Rad Hrvat. Akad. Znan. Umjet., Mat. Znan. 551(26), 127-138 (2022). MSC: 26D15 26A33 26A42 34A08 34A12 47B38 PDF BibTeX XML Cite \textit{A. Ayari} and \textit{K. Boukerrioua}, Rad Hrvat. Akad. Znan. Umjet., Mat. Znan. 551(26), 127--138 (2022; Zbl 1496.26027) Full Text: DOI OpenURL
Caraballo, Tomás; Mchiri, Lassaad; Rhaima, Mohamed Ulam-Hyers-Rassias stability of neutral stochastic functional differential equations. (English) Zbl 1498.60204 Stochastics 94, No. 6, 959-971 (2022). MSC: 60H10 34F05 37H30 39B82 PDF BibTeX XML Cite \textit{T. Caraballo} et al., Stochastics 94, No. 6, 959--971 (2022; Zbl 1498.60204) Full Text: DOI OpenURL
Samatov, Bakhrom Tadzhiakhmatovich; Akbarov, Adakhambek Khasanbaevich; Zhuraev, Bakhodir Inomzhon Pursuit-evasion differential games with gr-constraints on controls. (English) Zbl 1498.49069 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 59, 67-84 (2022). MSC: 49N75 49N70 91A24 PDF BibTeX XML Cite \textit{B. T. Samatov} et al., Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 59, 67--84 (2022; Zbl 1498.49069) Full Text: DOI MNR OpenURL
La-inchua, Teerapong; Yotha, Narongsak Finite-time stability of a class of uncertain switched nonlinear systems with time-varying delay. (English) Zbl 07602873 Thai J. Math. 20, No. 2, 747-757 (2022). MSC: 34K39 34K20 93D40 PDF BibTeX XML Cite \textit{T. La-inchua} and \textit{N. Yotha}, Thai J. Math. 20, No. 2, 747--757 (2022; Zbl 07602873) Full Text: Link OpenURL
Berger, D.; Kühn, F.; Schilling, R. L. Lévy processes, generalized moments and uniform integrability. (English) Zbl 07596639 Probab. Math. Stat. 42, No. 1, 109-131 (2022). MSC: 60G51 60G44 60G40 26A12 26B35 PDF BibTeX XML Cite \textit{D. Berger} et al., Probab. Math. Stat. 42, No. 1, 109--131 (2022; Zbl 07596639) Full Text: DOI arXiv OpenURL
Vanterler da C. Sousa, J.; Abdeljawad, Thabet; Oliveira, D. S. Mild and classical solutions for fractional evolution differential equation. (English) Zbl 07587168 Palest. J. Math. 11, No. 2, 229-242 (2022). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34K30 34K37 34K05 47N20 34K10 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} et al., Palest. J. Math. 11, No. 2, 229--242 (2022; Zbl 07587168) Full Text: arXiv Link OpenURL
Anastassiou, George A. A variety of Gronwall inequalities of fractional variable order. (English) Zbl 1507.26010 J. Appl. Nonlinear Dyn. 11, No. 4, 915-927 (2022). MSC: 26A33 26D10 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, J. Appl. Nonlinear Dyn. 11, No. 4, 915--927 (2022; Zbl 1507.26010) Full Text: DOI OpenURL
Shukla, Anurag; Vijayakumar, V.; Nisar, Kottakkaran Sooppy A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order \(r\in(1,2)\). (English) Zbl 1498.34044 Chaos Solitons Fractals 154, Article ID 111615, 8 p. (2022). MSC: 34A08 34A37 34G20 93B05 PDF BibTeX XML Cite \textit{A. Shukla} et al., Chaos Solitons Fractals 154, Article ID 111615, 8 p. (2022; Zbl 1498.34044) Full Text: DOI OpenURL
Bohner, Martin; Scindia, Pallavi S.; Tikare, Sanket Qualitative results for nonlinear integro-dynamic equations via integral inequalities. (English) Zbl 1500.45004 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 106, 29 p. (2022). Reviewer: Eze Raymond Nwaeze (Montgomery) MSC: 45J05 26E70 26D10 26D15 45M10 PDF BibTeX XML Cite \textit{M. Bohner} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 106, 29 p. (2022; Zbl 1500.45004) Full Text: DOI OpenURL
Huang, Yuxiang; Zeng, Fanhai; Guo, Ling Error estimate of the fast L1 method for time-fractional subdiffusion equations. (English) Zbl 07567960 Appl. Math. Lett. 133, Article ID 108288, 8 p. (2022). MSC: 65M06 35R11 65M12 26A33 65M60 PDF BibTeX XML Cite \textit{Y. Huang} et al., Appl. Math. Lett. 133, Article ID 108288, 8 p. (2022; Zbl 07567960) Full Text: DOI OpenURL
Wang, Guotao; El-Deeb, Ahmed A.; El-Sennary, H. A. New retarded dynamic inequalities on time scales with applications. (English) Zbl 1503.26096 J. Math. Inequal. 16, No. 2, 561-574 (2022). MSC: 26E70 26D10 26D15 PDF BibTeX XML Cite \textit{G. Wang} et al., J. Math. Inequal. 16, No. 2, 561--574 (2022; Zbl 1503.26096) Full Text: DOI OpenURL
Li, Meng; Zhao, Jikun; Huang, Chengming; Chen, Shaochun Conforming and nonconforming VEMs for the fourth-order reaction-subdiffusion equation: a unified framework. (English) Zbl 1502.65130 IMA J. Numer. Anal. 42, No. 3, 2238-2300 (2022). MSC: 65M60 65M06 65N30 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{M. Li} et al., IMA J. Numer. Anal. 42, No. 3, 2238--2300 (2022; Zbl 1502.65130) Full Text: DOI OpenURL
Ben Makhlouf, Abdellatif; Arfaoui, Hassen; Boulaaras, Salah; Dhahri, Slim Finite time stability of 2D fractional hyperbolic system with time delay. (English) Zbl 1495.35027 J. Funct. Spaces 2022, Article ID 6125463, 8 p. (2022). MSC: 35B40 35R11 PDF BibTeX XML Cite \textit{A. Ben Makhlouf} et al., J. Funct. Spaces 2022, Article ID 6125463, 8 p. (2022; Zbl 1495.35027) Full Text: DOI OpenURL
Rezapour, Shahram; Ahmad, Bashir; Boutiara, Abdellatif; Nonlaopon, Kamsing; Etemad, Sina Existence and stability results for non-hybrid single-valued and fully hybrid multi-valued problems with multipoint-multistrip conditions. (English) Zbl 1506.34032 J. Inequal. Appl. 2022, Paper No. 82, 35 p. (2022). MSC: 34A38 34A08 34B10 28A33 PDF BibTeX XML Cite \textit{S. Rezapour} et al., J. Inequal. Appl. 2022, Paper No. 82, 35 p. (2022; Zbl 1506.34032) Full Text: DOI OpenURL
El-Deeb, Ahmed A.; Baleanu, Dumitru Some new dynamic Gronwall-Bellman-Pachpatte type inequalities with delay on time scales and certain applications. (English) Zbl 1506.26027 J. Inequal. Appl. 2022, Paper No. 45, 19 p. (2022). MSC: 26D15 26D10 26E70 PDF BibTeX XML Cite \textit{A. A. El-Deeb} and \textit{D. Baleanu}, J. Inequal. Appl. 2022, Paper No. 45, 19 p. (2022; Zbl 1506.26027) Full Text: DOI OpenURL
Sutar, Sagar T.; Kucche, Kishor D. Existence and data dependence results for fractional differential equations involving Atangana-Baleanu derivative. (English) Zbl 07560193 Rend. Circ. Mat. Palermo (2) 71, No. 2, 647-663 (2022). MSC: 34A08 26A33 34A12 26D10 PDF BibTeX XML Cite \textit{S. T. Sutar} and \textit{K. D. Kucche}, Rend. Circ. Mat. Palermo (2) 71, No. 2, 647--663 (2022; Zbl 07560193) Full Text: DOI OpenURL
Cen, Da-kang; Wang, Zhi-bo; Mo, Yan A compact difference scheme on graded meshes for the nonlinear fractional integro-differential equation with non-smooth solutions. (English) Zbl 1492.65232 Acta Math. Appl. Sin., Engl. Ser. 38, No. 3, 601-613 (2022). MSC: 65M06 65N06 65K10 65M12 65M15 35R09 45K05 26A33 35R11 PDF BibTeX XML Cite \textit{D.-k. Cen} et al., Acta Math. Appl. Sin., Engl. Ser. 38, No. 3, 601--613 (2022; Zbl 1492.65232) Full Text: DOI OpenURL
Ramezani, Mohadese; Mokhtari, Reza; Haase, Gundolf Analysis of stability and convergence for L-type formulas combined with a spatial finite element method for solving subdiffusion problems. (English) Zbl 1490.65207 ETNA, Electron. Trans. Numer. Anal. 55, 568-584 (2022). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{M. Ramezani} et al., ETNA, Electron. Trans. Numer. Anal. 55, 568--584 (2022; Zbl 1490.65207) Full Text: DOI Link OpenURL
Zhong, Xin \(L^\infty\) continuation principle to the compressible non-isothermal nematic liquid crystal flows with zero heat conduction and vacuum. (English) Zbl 1494.76006 Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 174, 20 p. (2022). MSC: 76A15 76N10 35Q35 PDF BibTeX XML Cite \textit{X. Zhong}, Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 174, 20 p. (2022; Zbl 1494.76006) Full Text: DOI OpenURL
Derbazi, Choukri; Baitiche, Zidane Uniqueness and Ulam-Hyers-Mittag-Leffler stability results for the delayed fractional multiterm differential equation involving the \(\Phi\)-Caputo fractional derivative. (English) Zbl 1507.34088 Rocky Mt. J. Math. 52, No. 3, 887-897 (2022). MSC: 34K37 34L05 34K27 47N20 44A10 33E12 PDF BibTeX XML Cite \textit{C. Derbazi} and \textit{Z. Baitiche}, Rocky Mt. J. Math. 52, No. 3, 887--897 (2022; Zbl 1507.34088) Full Text: DOI arXiv Link OpenURL
Shah, Syed Omar; Khan, Zubair Stability in terms of Hyers-Ulam of non-linear Volterra Fredholm integro-delay dynamic system on time scales with fractional integrable impulses. (English) Zbl 1489.45009 Appl. Anal. Optim. 6, No. 1, 109-122 (2022). MSC: 45J05 34N05 34D20 34A37 45M10 PDF BibTeX XML Cite \textit{S. O. Shah} and \textit{Z. Khan}, Appl. Anal. Optim. 6, No. 1, 109--122 (2022; Zbl 1489.45009) Full Text: Link OpenURL
Li, Dongfang; She, Mianfu; Sun, Hai-wei; Yan, Xiaoqiang A novel discrete fractional Grönwall-type inequality and its application in pointwise-in-time error estimates. (English) Zbl 1491.65112 J. Sci. Comput. 91, No. 1, Paper No. 27, 26 p. (2022). MSC: 65M70 65M06 65N35 65M12 65M15 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{D. Li} et al., J. Sci. Comput. 91, No. 1, Paper No. 27, 26 p. (2022; Zbl 1491.65112) Full Text: DOI OpenURL
Zhang, Guowei Positive solutions to three classes of non-local fourth-order problems with derivative-dependent nonlinearities. (English) Zbl 1499.34197 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 11, 27 p. (2022). MSC: 34B18 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{G. Zhang}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 11, 27 p. (2022; Zbl 1499.34197) Full Text: DOI OpenURL
Shah, Syed Omar; Zada, Akbar Hyers-Ulam stability of non-linear Volterra integro-delay dynamic system with fractional integrable impulses on time scales. (English) Zbl 1487.34172 Iran. J. Math. Sci. Inform. 17, No. 1, 85-97 (2022). MSC: 34N05 34G20 34A37 35B35 45J05 PDF BibTeX XML Cite \textit{S. O. Shah} and \textit{A. Zada}, Iran. J. Math. Sci. Inform. 17, No. 1, 85--97 (2022; Zbl 1487.34172) Full Text: Link OpenURL
Basu, R. An iterative scheme for the oscillation criteria of a nonlinear delay differential equation with several deviating arguments. (English) Zbl 1487.34122 Asian-Eur. J. Math. 15, No. 4, Article ID 2250071, 10 p. (2022). MSC: 34K11 PDF BibTeX XML Cite \textit{R. Basu}, Asian-Eur. J. Math. 15, No. 4, Article ID 2250071, 10 p. (2022; Zbl 1487.34122) Full Text: DOI OpenURL
Patel, Rohit; Shukla, Anurag; Nieto, Juan J.; Vijayakumar, Velusamy; Jadon, Shimpi Singh New discussion concerning to optimal control for semilinear population dynamics system in Hilbert spaces. (English) Zbl 1492.49046 Nonlinear Anal., Model. Control 27, No. 3, 496-512 (2022). MSC: 49S05 49J27 92D25 PDF BibTeX XML Cite \textit{R. Patel} et al., Nonlinear Anal., Model. Control 27, No. 3, 496--512 (2022; Zbl 1492.49046) Full Text: DOI OpenURL
Zhang, Li; Huang, Jin; Li, Hu Splitting extrapolation algorithms for solving linear delay Volterra integral equations with a spatial variable. (English) Zbl 1502.65284 Appl. Numer. Math. 178, 372-385 (2022). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{L. Zhang} et al., Appl. Numer. Math. 178, 372--385 (2022; Zbl 1502.65284) Full Text: DOI OpenURL
Kim, Young-Ho Gronwall-type moment inequalities for a stochastic process. (English) Zbl 1492.60048 J. Math. Inequal. 16, No. 1, 51-61 (2022). MSC: 60E15 60G07 60H05 PDF BibTeX XML Cite \textit{Y.-H. Kim}, J. Math. Inequal. 16, No. 1, 51--61 (2022; Zbl 1492.60048) Full Text: DOI OpenURL
Zhou, Jie; Yao, Xing; Wang, Wansheng Two-grid finite element methods for nonlinear time-fractional parabolic equations. (English) Zbl 07525417 Numer. Algorithms 90, No. 2, 709-730 (2022). MSC: 65Mxx PDF BibTeX XML Cite \textit{J. Zhou} et al., Numer. Algorithms 90, No. 2, 709--730 (2022; Zbl 07525417) Full Text: DOI OpenURL
Chiu, Kuo-Shou Periodic solutions of impulsive differential equations with piecewise alternately advanced and retarded argument of generalized type. (English) Zbl 1500.34057 Rocky Mt. J. Math. 52, No. 1, 87-103 (2022). Reviewer: Leonid Berezanski (Be’er Sheva) MSC: 34K13 34K45 26D10 47N20 PDF BibTeX XML Cite \textit{K.-S. Chiu}, Rocky Mt. J. Math. 52, No. 1, 87--103 (2022; Zbl 1500.34057) Full Text: DOI Link OpenURL
Chen, Hu; Shi, Yanhua; Zhang, Jiwei; Zhao, Yanmin Sharp error estimate of a Grünwald-Letnikov scheme for reaction-subdiffusion equations. (English) Zbl 07496454 Numer. Algorithms 89, No. 4, 1465-1477 (2022). MSC: 65Mxx PDF BibTeX XML Cite \textit{H. Chen} et al., Numer. Algorithms 89, No. 4, 1465--1477 (2022; Zbl 07496454) Full Text: DOI OpenURL
Chiu, Kuo-Shou Existence and global exponential stability of equilibrium for impulsive neural network models with generalized piecewise constant delay. (English) Zbl 1485.93483 Asian-Eur. J. Math. 15, No. 1, Article ID 2250001, 22 p. (2022). MSC: 93D23 93C27 93B70 93C43 PDF BibTeX XML Cite \textit{K.-S. Chiu}, Asian-Eur. J. Math. 15, No. 1, Article ID 2250001, 22 p. (2022; Zbl 1485.93483) Full Text: DOI OpenURL
Chiu, Kuo-Shou Stability analysis of periodic solutions in alternately advanced and retarded neural network models with impulses. (English) Zbl 1489.93098 Taiwanese J. Math. 26, No. 1, 137-176 (2022). MSC: 93D23 93B70 93C27 34A37 34K13 34K20 PDF BibTeX XML Cite \textit{K.-S. Chiu}, Taiwanese J. Math. 26, No. 1, 137--176 (2022; Zbl 1489.93098) Full Text: DOI OpenURL
Chiu, Kuo-Shou; Li, Tongxing New stability results for bidirectional associative memory neural networks model involving generalized piecewise constant delay. (English) Zbl 07478821 Math. Comput. Simul. 194, 719-743 (2022). MSC: 92B20 34A36 34K13 34K20 PDF BibTeX XML Cite \textit{K.-S. Chiu} and \textit{T. Li}, Math. Comput. Simul. 194, 719--743 (2022; Zbl 07478821) Full Text: DOI OpenURL
Shang, Shijie; Zhang, Tusheng Stochastic heat equations with logarithmic nonlinearity. (English) Zbl 07471728 J. Differ. Equations 313, 85-121 (2022). MSC: 60H15 35R60 35K05 60J65 PDF BibTeX XML Cite \textit{S. Shang} and \textit{T. Zhang}, J. Differ. Equations 313, 85--121 (2022; Zbl 07471728) Full Text: DOI arXiv OpenURL
Chiu, Kuo-Shou Periodicity and stability analysis of impulsive neural network models with generalized piecewise constant delays. (English) Zbl 1481.93113 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 659-689 (2022). MSC: 93D23 93D20 93B70 93C27 93C43 34A37 34K13 34K20 PDF BibTeX XML Cite \textit{K.-S. Chiu}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 659--689 (2022; Zbl 1481.93113) Full Text: DOI OpenURL
Deng, Ting; Huang, Jin; Wen, Xiaoxia; Liu, Hongyan Discrete collocation method for solving two-dimensional linear and nonlinear fuzzy Volterra integral equations. (English) Zbl 1482.65234 Appl. Numer. Math. 171, 389-407 (2022). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{T. Deng} et al., Appl. Numer. Math. 171, 389--407 (2022; Zbl 1482.65234) Full Text: DOI OpenURL
Marin, M.; Vlase, S.; Öchsner, A. Qualitative results in thermoelasticity of type III for dipolar bodies. (English) Zbl 07660034 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 29, No. 1, 127-142 (2021). MSC: 74F05 PDF BibTeX XML Cite \textit{M. Marin} et al., An. Științ. Univ. ``Ovidius'' Constanța, Ser. Mat. 29, No. 1, 127--142 (2021; Zbl 07660034) Full Text: DOI OpenURL
Boukerrioua, Khaled; Diabi, Dallel; Meramria, Meissoun; Hammami, Mohamed Ali Sufficient conditions for uniform exponential stability of some classes of dynamic equations on time scales and applications. (English) Zbl 07619481 Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 41, No. 1, Math., 60-70 (2021). MSC: 74H55 93D20 26E70 35A23 PDF BibTeX XML Cite \textit{K. Boukerrioua} et al., Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 41, No. 1, Math., 60--70 (2021; Zbl 07619481) Full Text: Link OpenURL
Kumar, Parveen; Kumar, Ankit; Vats, Ramesh K.; Kumar, Avadhesh Trajectory controllability of integro-differential systems of fractional order \(\gamma \in (1,2]\) in a Banach space with deviated argument. (English) Zbl 1497.34010 Chadli, Ouayl (ed.) et al., Mathematical analysis and applications, MAA 2020. Selected papers based on the presentations at the conference, Jamshedpur, India, November 2–4, 2020. Singapore: Springer. Springer Proc. Math. Stat. 381, 95-102 (2021). MSC: 34A08 34K30 93B05 PDF BibTeX XML Cite \textit{P. Kumar} et al., Springer Proc. Math. Stat. 381, 95--102 (2021; Zbl 1497.34010) Full Text: DOI OpenURL
Webb, Jeffrey R. L. A fractional Gronwall inequality and the asymptotic behaviour of global solutions of Caputo fractional problems. (English) Zbl 1493.34035 Electron. J. Differ. Equ. 2021, Paper No. 80, 22 p. (2021). MSC: 34A08 34A12 26A33 26D10 PDF BibTeX XML Cite \textit{J. R. L. Webb}, Electron. J. Differ. Equ. 2021, Paper No. 80, 22 p. (2021; Zbl 1493.34035) Full Text: Link OpenURL
Chen, Yuting; Li, Xiaoyan; Liu, Song Finite-time stability of ABC type fractional delay difference equations. (English) Zbl 1496.39003 Chaos Solitons Fractals 152, Article ID 111430, 9 p. (2021). MSC: 39A13 39A30 26A33 93D40 PDF BibTeX XML Cite \textit{Y. Chen} et al., Chaos Solitons Fractals 152, Article ID 111430, 9 p. (2021; Zbl 1496.39003) Full Text: DOI OpenURL
Vijayakumar, Velusamy; Shukla, Anurag; Nisar, Kottakkaran Sooppy; Jamshed, Wasim; Rezapour, Shahram A note on the approximate controllability of second-order integro-differential evolution control systems via resolvent operators. (English) Zbl 1494.34168 Adv. Difference Equ. 2021, Paper No. 484, 13 p. (2021). MSC: 34K30 47N20 47A10 93B05 PDF BibTeX XML Cite \textit{V. Vijayakumar} et al., Adv. Difference Equ. 2021, Paper No. 484, 13 p. (2021; Zbl 1494.34168) Full Text: DOI OpenURL
Mchiri, Lassaad; Ben Makhlouf, Abdellatif; Baleanu, Dumitru; Rhaima, Mohamed Finite-time stability of linear stochastic fractional-order systems with time delay. (English) Zbl 1494.34043 Adv. Difference Equ. 2021, Paper No. 345, 10 p. (2021). MSC: 34A08 93D40 26A33 PDF BibTeX XML Cite \textit{L. Mchiri} et al., Adv. Difference Equ. 2021, Paper No. 345, 10 p. (2021; Zbl 1494.34043) Full Text: DOI OpenURL
Aleem, Maryam; Ur Rehman, Mujeeb; Alzabut, Jehad; Etemad, Sina; Rezapour, Shahram On solutions of nonlinear BVPs with general boundary conditions by using a generalized Riesz-Caputo operator. (English) Zbl 1494.34005 Adv. Difference Equ. 2021, Paper No. 303, 28 p. (2021). MSC: 34A08 26A33 34B10 34B15 PDF BibTeX XML Cite \textit{M. Aleem} et al., Adv. Difference Equ. 2021, Paper No. 303, 28 p. (2021; Zbl 1494.34005) Full Text: DOI OpenURL
Fang, Bo; Liu, Yujiao; Xu, Run A new class of nonlinear Gronwall-Bellman delay integral inequalities with power and its applications. (English) Zbl 1494.26026 Adv. Difference Equ. 2021, Paper No. 243, 21 p. (2021). MSC: 26D10 26D15 45G10 26A33 PDF BibTeX XML Cite \textit{B. Fang} et al., Adv. Difference Equ. 2021, Paper No. 243, 21 p. (2021; Zbl 1494.26026) Full Text: DOI OpenURL
El-Deeb, A. A.; Rashid, Saima On some new double dynamic inequalities associated with Leibniz integral rule on time scales. (English) Zbl 1494.26071 Adv. Difference Equ. 2021, Paper No. 125, 22 p. (2021). MSC: 26E70 26D10 26D20 PDF BibTeX XML Cite \textit{A. A. El-Deeb} and \textit{S. Rashid}, Adv. Difference Equ. 2021, Paper No. 125, 22 p. (2021; Zbl 1494.26071) Full Text: DOI OpenURL
Khan, Zareen A.; Jarad, Fahd; Khan, Aziz; Khan, Hasib Nonlinear discrete fractional sum inequalities related to the theory of discrete fractional calculus with applications. (English) Zbl 1494.26009 Adv. Difference Equ. 2021, Paper No. 100, 13 p. (2021). MSC: 26A33 39A13 26D15 PDF BibTeX XML Cite \textit{Z. A. Khan} et al., Adv. Difference Equ. 2021, Paper No. 100, 13 p. (2021; Zbl 1494.26009) Full Text: DOI OpenURL
Du, Feifei; Lu, Jun-Guo New approach to finite-time stability for fractional-order BAM neural networks with discrete and distributed delays. (English) Zbl 1498.34211 Chaos Solitons Fractals 151, Article ID 111225, 13 p. (2021). MSC: 34K37 26A33 34K20 92B20 93D40 PDF BibTeX XML Cite \textit{F. Du} and \textit{J.-G. Lu}, Chaos Solitons Fractals 151, Article ID 111225, 13 p. (2021; Zbl 1498.34211) Full Text: DOI OpenURL
Xu, Jiafa; Pervaiz, Bakhtawar; Zada, Akbar; Shah, Syed Omar Stability analysis of causal integral evolution impulsive systems on time scales. (English) Zbl 07557576 Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 3, 781-800 (2021). MSC: 34K42 45J05 26E70 34K30 34K27 34K45 34N05 PDF BibTeX XML Cite \textit{J. Xu} et al., Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 3, 781--800 (2021; Zbl 07557576) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Sharif, Abdulrahman A.; Ghadle, Kirtiwant P. Existence, uniqueness and stability results of fractional Volterra-Fredholm integro differential equations of \(\psi\)-Hilfer type. (English) Zbl 1492.45007 Discontin. Nonlinearity Complex. 10, No. 3, 535-545 (2021). MSC: 45J05 26A33 45D05 45B05 47N20 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., Discontin. Nonlinearity Complex. 10, No. 3, 535--545 (2021; Zbl 1492.45007) Full Text: DOI OpenURL
Mokhtari, Reza; Ramezani, Mohadese; Haase, Gundolf Stability and convergence analyses of the FDM based on some L-type formulae for solving the subdiffusion equation. (English) Zbl 1499.65420 Numer. Math., Theory Methods Appl. 14, No. 4, 945-971 (2021). MSC: 65M06 65M12 65N06 26A33 35R11 PDF BibTeX XML Cite \textit{R. Mokhtari} et al., Numer. Math., Theory Methods Appl. 14, No. 4, 945--971 (2021; Zbl 1499.65420) Full Text: DOI OpenURL
Li, Tingting; Xu, Ziheng; Fan, Shengjun General time interval multidimensional BSDEs with generators satisfying a weak stochastic-monotonicity condition. (English) Zbl 1491.60085 Probab. Uncertain. Quant. Risk 6, No. 4, 301-318 (2021). MSC: 60H10 PDF BibTeX XML Cite \textit{T. Li} et al., Probab. Uncertain. Quant. Risk 6, No. 4, 301--318 (2021; Zbl 1491.60085) Full Text: DOI arXiv OpenURL
Sousa, J. Vanterler da C.; Oliveira, D. S.; Capelas de Oliveira, E. A note on the mild solutions of Hilfer impulsive fractional differential equations. (English) Zbl 1486.34116 Chaos Solitons Fractals 147, Article ID 110944, 13 p. (2021). MSC: 34G20 34A08 34A37 34D10 34A12 PDF BibTeX XML Cite \textit{J. V. da C. Sousa} et al., Chaos Solitons Fractals 147, Article ID 110944, 13 p. (2021; Zbl 1486.34116) Full Text: DOI arXiv OpenURL
Wang, Jingfeng; Bai, Chuanzhi Finite-time stability of \(q\)-fractional damped difference systems with time delay. (English) Zbl 07533412 AIMS Math. 6, No. 11, 12011-12027 (2021). MSC: 39A30 39A13 26A33 26D15 PDF BibTeX XML Cite \textit{J. Wang} and \textit{C. Bai}, AIMS Math. 6, No. 11, 12011--12027 (2021; Zbl 07533412) Full Text: DOI OpenURL
Vanterler da Costa Sousa, José; Tavares, L. S.; de Oliveira, Edmundo Capelas Existence and uniqueness of mild and strong solutions for fractional evolution equation. (English) Zbl 1498.34047 Palest. J. Math. 10, No. 2, 592-600 (2021). MSC: 34A08 34G20 34A12 26D10 47N20 PDF BibTeX XML Cite \textit{J. Vanterler da Costa Sousa} et al., Palest. J. Math. 10, No. 2, 592--600 (2021; Zbl 1498.34047) Full Text: Link OpenURL
Abdo, Mohammed S.; Abdeljawad, Thabet; Kucche, Kishor D.; Alqudah, Manar A.; Ali, Saeed M.; Jeelani, Mdi Begum On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative. (English) Zbl 1487.34146 Adv. Difference Equ. 2021, Paper No. 65, 17 p. (2021). MSC: 34K37 34B10 34K20 PDF BibTeX XML Cite \textit{M. S. Abdo} et al., Adv. Difference Equ. 2021, Paper No. 65, 17 p. (2021; Zbl 1487.34146) Full Text: DOI OpenURL
Alzabut, Jehad; Adjabi, Yassine; Sudsutad, Weerawat; Rehman, Mutti-Ur New generalizations for Gronwall type inequalities involving a \(\psi\)-fractional operator and their applications. (English) Zbl 1484.26043 AIMS Math. 6, No. 5, 5053-5077 (2021). MSC: 26D15 26A33 34A08 PDF BibTeX XML Cite \textit{J. Alzabut} et al., AIMS Math. 6, No. 5, 5053--5077 (2021; Zbl 1484.26043) Full Text: DOI OpenURL
Seemab, Arjumand; ur Rehman, Mujeeb; Alzabut, Jehad; Adjabi, Yassine; Abdo, Mohammed S. Langevin equation with nonlocal boundary conditions involving a \(\psi\)-Caputo fractional operators of different orders. (English) Zbl 1484.34040 AIMS Math. 6, No. 7, 6749-6780 (2021). MSC: 34A08 34B10 PDF BibTeX XML Cite \textit{A. Seemab} et al., AIMS Math. 6, No. 7, 6749--6780 (2021; Zbl 1484.34040) Full Text: DOI arXiv OpenURL
Hamoud, Ahmed A. Uniqueness and stability results for Caputo fractional Volterra-Fredholm integro-differential equations. (English) Zbl 07510954 J. Sib. Fed. Univ., Math. Phys. 14, No. 3, 313-325 (2021). MSC: 26Axx 34Axx 45Jxx PDF BibTeX XML Cite \textit{A. A. Hamoud}, J. Sib. Fed. Univ., Math. Phys. 14, No. 3, 313--325 (2021; Zbl 07510954) Full Text: DOI MNR OpenURL
Segi Rahmat, Rafi Mohamad The Gronwall’s inequality on the \((q,h)\)-time scale. (English) Zbl 1483.39002 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 3, 183-196 (2021). MSC: 39A12 26E70 39A70 PDF BibTeX XML Cite \textit{R. M. Segi Rahmat}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 3, 183--196 (2021; Zbl 1483.39002) Full Text: Link OpenURL
Zaky, Mahmoud A.; Hendy, Ahmed S. Convergence analysis of an \(L1\)-continuous Galerkin method for nonlinear time-space fractional Schrödinger equations. (English) Zbl 1480.65275 Int. J. Comput. Math. 98, No. 7, 1420-1437 (2021). MSC: 65M60 35Q55 35R11 65M12 PDF BibTeX XML Cite \textit{M. A. Zaky} and \textit{A. S. Hendy}, Int. J. Comput. Math. 98, No. 7, 1420--1437 (2021; Zbl 1480.65275) Full Text: DOI OpenURL
Tan, Li; Yuan, Chenggui A note on strong convergence of implicit scheme for SDEs under local one-sided Lipschitz conditions. (English) Zbl 1480.65023 Int. J. Comput. Math. 98, No. 2, 238-251 (2021). MSC: 65C30 65L20 PDF BibTeX XML Cite \textit{L. Tan} and \textit{C. Yuan}, Int. J. Comput. Math. 98, No. 2, 238--251 (2021; Zbl 1480.65023) Full Text: DOI arXiv OpenURL
Khan, Zareen A.; Ahmad, Hijaz Qualitative properties of solutions of fractional differential and difference equations arising in physical models. (English) Zbl 1489.39005 Fractals 29, No. 5, Article ID 2140024, 10 p. (2021). Reviewer: Rui Ferreira (Lisboa) MSC: 39A13 39A70 34A08 26A33 PDF BibTeX XML Cite \textit{Z. A. Khan} and \textit{H. Ahmad}, Fractals 29, No. 5, Article ID 2140024, 10 p. (2021; Zbl 1489.39005) Full Text: DOI OpenURL
Mohammadi, Hakimeh; Baleanu, Dumitru; Etemad, Sina; Rezapour, Shahram Criteria for existence of solutions for a Liouville-Caputo boundary value problem via generalized Gronwall’s inequality. (English) Zbl 1504.34012 J. Inequal. Appl. 2021, Paper No. 36, 19 p. (2021). MSC: 34A08 34A40 34B10 26A33 47N20 PDF BibTeX XML Cite \textit{H. Mohammadi} et al., J. Inequal. Appl. 2021, Paper No. 36, 19 p. (2021; Zbl 1504.34012) Full Text: DOI OpenURL
Chatzarakis, George E.; Grace, Said R.; Jadloyská, Irena Oscillation tests for linear difference equations with non-monotone arguments. (English) Zbl 1481.39009 Tatra Mt. Math. Publ. 79, 81-100 (2021). MSC: 39A21 39A06 PDF BibTeX XML Cite \textit{G. E. Chatzarakis} et al., Tatra Mt. Math. Publ. 79, 81--100 (2021; Zbl 1481.39009) Full Text: DOI OpenURL
Rubbioni, Paola Asymptotic stability of solutions for some classes of impulsive differential equations with distributed delay. (English) Zbl 1477.34107 Nonlinear Anal., Real World Appl. 61, Article ID 103324, 17 p. (2021). MSC: 34K45 34K20 34K30 PDF BibTeX XML Cite \textit{P. Rubbioni}, Nonlinear Anal., Real World Appl. 61, Article ID 103324, 17 p. (2021; Zbl 1477.34107) Full Text: DOI OpenURL
Wang, Sen; Jiang, Wei The existence analysis of solutions for initial value problems of nonlinear conformable fractional delayed differential equations. (English) Zbl 1488.34428 J. Shanghai Norm. Univ., Nat. Sci. 50, No. 3, 362-375 (2021). MSC: 34K37 47N20 34A45 PDF BibTeX XML Cite \textit{S. Wang} and \textit{W. Jiang}, J. Shanghai Norm. Univ., Nat. Sci. 50, No. 3, 362--375 (2021; Zbl 1488.34428) Full Text: DOI OpenURL
Márquez Albés, Ignacio Notes on the linear equation with Stieltjes derivatives. (English) Zbl 1499.34099 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 42, 18 p. (2021). MSC: 34A30 26A24 26D10 34A12 PDF BibTeX XML Cite \textit{I. Márquez Albés}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 42, 18 p. (2021; Zbl 1499.34099) Full Text: DOI OpenURL
Chiu, Kuo-Shou; Córdova-Lepe, Fernando Global exponential periodicity and stability of neural network models with generalized piecewise constant delay. (English) Zbl 1478.93541 Math. Slovaca 71, No. 2, 491-512 (2021). MSC: 93D23 93D20 93B70 93C43 34K13 34K20 PDF BibTeX XML Cite \textit{K.-S. Chiu} and \textit{F. Córdova-Lepe}, Math. Slovaca 71, No. 2, 491--512 (2021; Zbl 1478.93541) Full Text: DOI OpenURL
Lima, K. B.; Vanterler da C. Sousa, J.; de Oliveira, E. Capelas Ulam-Hyers type stability for \(\psi\)-Hilfer fractional differential equations with impulses and delay. (English) Zbl 1476.34151 Comput. Appl. Math. 40, No. 8, Paper No. 293, 20 p. (2021). MSC: 34K20 34K37 34K45 PDF BibTeX XML Cite \textit{K. B. Lima} et al., Comput. Appl. Math. 40, No. 8, Paper No. 293, 20 p. (2021; Zbl 1476.34151) Full Text: DOI OpenURL
Chiu, Kuo-Shou Global exponential stability of bidirectional associative memory neural networks model with piecewise alternately advanced and retarded argument. (English) Zbl 1476.92005 Comput. Appl. Math. 40, No. 8, Paper No. 263, 31 p. (2021). MSC: 92B20 34D23 34A36 26D10 PDF BibTeX XML Cite \textit{K.-S. Chiu}, Comput. Appl. Math. 40, No. 8, Paper No. 263, 31 p. (2021; Zbl 1476.92005) Full Text: DOI OpenURL
Frederico, Gastão S. F.; da C. Sousa, J. Vanterler; Babakhani, Azizollah Existence and uniqueness of global solution for a Cauchy problem and \(g\)-variational calculus. (English) Zbl 1476.34043 Comput. Appl. Math. 40, No. 6, Paper No. 233, 23 p. (2021). MSC: 34A12 34A40 47Gxx 49S05 70H03 PDF BibTeX XML Cite \textit{G. S. F. Frederico} et al., Comput. Appl. Math. 40, No. 6, Paper No. 233, 23 p. (2021; Zbl 1476.34043) Full Text: DOI OpenURL
Agrawal, Sarita; Sahoo, Swadesh Kumar Nehari’s univalence criteria, pre-Schwarzian derivative and applications. (English) Zbl 1473.30006 Indian J. Pure Appl. Math. 52, No. 1, 193-204 (2021). MSC: 30C45 26D10 26D20 30C20 30C55 33C05 34A12 PDF BibTeX XML Cite \textit{S. Agrawal} and \textit{S. K. Sahoo}, Indian J. Pure Appl. Math. 52, No. 1, 193--204 (2021; Zbl 1473.30006) Full Text: DOI arXiv OpenURL
Zhang, Hui; Jiang, Xiaoyun; Zeng, Fanhai An \(H^1\) convergence of the spectral method for the time-fractional non-linear diffusion equations. (English) Zbl 1490.65228 Adv. Comput. Math. 47, No. 5, Paper No. 63, 25 p. (2021). MSC: 65M70 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{H. Zhang} et al., Adv. Comput. Math. 47, No. 5, Paper No. 63, 25 p. (2021; Zbl 1490.65228) Full Text: DOI OpenURL
Du, Feifei; Jia, Baoguo A generalized fractional \((q, h)\)-Gronwall inequality and its applications to nonlinear fractional delay \((q, h)\)-difference systems. (English) Zbl 1473.39027 Math. Methods Appl. Sci. 44, No. 13, 10513-10529 (2021). MSC: 39A30 39A13 26A33 33E12 PDF BibTeX XML Cite \textit{F. Du} and \textit{B. Jia}, Math. Methods Appl. Sci. 44, No. 13, 10513--10529 (2021; Zbl 1473.39027) Full Text: DOI OpenURL
Nguyen, Minh Dien Generalized weakly singular Gronwall-type inequalities and their applications to fractional differential equations. (English) Zbl 1483.26010 Rocky Mt. J. Math. 51, No. 2, 689-707 (2021). Reviewer: Chuanzhi Bai (Huaian) MSC: 26A33 26D10 34A08 34A12 PDF BibTeX XML Cite \textit{M. D. Nguyen}, Rocky Mt. J. Math. 51, No. 2, 689--707 (2021; Zbl 1483.26010) OpenURL
Durdiev, U. D. The problem of determining the electric prehistory of the electrically conductive medium. (English) Zbl 1488.35620 Uzb. Math. J. 65, No. 1, 48-56 (2021). MSC: 35R30 35Q60 78A46 PDF BibTeX XML Cite \textit{U. D. Durdiev}, Uzb. Math. J. 65, No. 1, 48--56 (2021; Zbl 1488.35620) Full Text: DOI OpenURL
Pang, Denghao; Jiang, Wei; Liu, Song; Niazi, Azmat Ullah Khan Well-posedness and iterative formula for fractional oscillator equations with delays. (English) Zbl 1477.34104 Math. Methods Appl. Sci. 44, No. 10, 7943-7955 (2021). MSC: 34K37 34K06 34K07 37C60 PDF BibTeX XML Cite \textit{D. Pang} et al., Math. Methods Appl. Sci. 44, No. 10, 7943--7955 (2021; Zbl 1477.34104) Full Text: DOI OpenURL
Thabet, Sabri T. M.; Etemad, Sina; Rezapour, Shahram Two fractional hybrid and non-hybrid boundary value problems. (English) Zbl 1476.34038 Math. Methods Appl. Sci. 44, No. 7, 5839-5856 (2021). MSC: 34A08 34D20 47N20 26D10 34B15 PDF BibTeX XML Cite \textit{S. T. M. Thabet} et al., Math. Methods Appl. Sci. 44, No. 7, 5839--5856 (2021; Zbl 1476.34038) Full Text: DOI OpenURL
Hendy, Ahmed S.; Zaky, Mahmoud A.; De Staelen, Rob H. A general framework for the numerical analysis of high-order finite difference solvers for nonlinear multi-term time-space fractional partial differential equations with time delay. (English) Zbl 1486.65105 Appl. Numer. Math. 169, 108-121 (2021). MSC: 65M06 65M12 65D30 35B65 26A33 35R11 35R07 PDF BibTeX XML Cite \textit{A. S. Hendy} et al., Appl. Numer. Math. 169, 108--121 (2021; Zbl 1486.65105) Full Text: DOI OpenURL
Bazm, Sohrab; Lima, Pedro; Nemati, Somayeh Analysis of the Euler and trapezoidal discretization methods for the numerical solution of nonlinear functional Volterra integral equations of Urysohn type. (English) Zbl 1472.65162 J. Comput. Appl. Math. 398, Article ID 113628, 11 p. (2021). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{S. Bazm} et al., J. Comput. Appl. Math. 398, Article ID 113628, 11 p. (2021; Zbl 1472.65162) Full Text: DOI OpenURL
Hudde, Anselm; Hutzenthaler, Martin; Mazzonetto, Sara A stochastic Gronwall inequality and applications to moments, strong completeness, strong local Lipschitz continuity, and perturbations. (English. French summary) Zbl 1491.60082 Ann. Inst. Henri Poincaré, Probab. Stat. 57, No. 2, 603-626 (2021). MSC: 60H10 60E15 PDF BibTeX XML Cite \textit{A. Hudde} et al., Ann. Inst. Henri Poincaré, Probab. Stat. 57, No. 2, 603--626 (2021; Zbl 1491.60082) Full Text: DOI arXiv OpenURL
Zhang, Xiaorui; Wang, Lianglong Existence and uniqueness of solutions of initial value problems for a class of Riemann-Liouville fractional mixed difference and summation equations. (Chinese. English summary) Zbl 1474.39043 J. Anhui Norm. Univ., Nat. Sci. 44, No. 1, 22-27 (2021). MSC: 39A27 39A20 26A33 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{L. Wang}, J. Anhui Norm. Univ., Nat. Sci. 44, No. 1, 22--27 (2021; Zbl 1474.39043) Full Text: DOI OpenURL
Ascione, Giacomo Abstract Cauchy problems for the generalized fractional calculus. (English) Zbl 1470.34157 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 209, Article ID 112339, 22 p. (2021). MSC: 34G20 34A08 34A12 26D15 PDF BibTeX XML Cite \textit{G. Ascione}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 209, Article ID 112339, 22 p. (2021; Zbl 1470.34157) Full Text: DOI arXiv OpenURL
Jia, Junqing; Zhang, Hui; Xu, Huanying; Jiang, Xiaoyun An efficient second order stabilized scheme for the two dimensional time fractional Allen-Cahn equation. (English) Zbl 1475.65145 Appl. Numer. Math. 165, 216-231 (2021). MSC: 65M70 65M06 65N35 42C10 26A33 35R11 76T30 35Q35 PDF BibTeX XML Cite \textit{J. Jia} et al., Appl. Numer. Math. 165, 216--231 (2021; Zbl 1475.65145) Full Text: DOI OpenURL
Torres, R.; Pinto, M.; Castillo, S.; Kostić, M. Uniform approximation of impulsive Hopfield cellular neural networks by piecewise constant arguments on \([\tau,\infty)\). (English) Zbl 1492.34083 Acta Appl. Math. 171, Paper No. 8, 23 p. (2021). Reviewer: Leonid Berezanski (Be’er Sheva) MSC: 34K45 92B20 34K07 PDF BibTeX XML Cite \textit{R. Torres} et al., Acta Appl. Math. 171, Paper No. 8, 23 p. (2021; Zbl 1492.34083) Full Text: DOI OpenURL