Liu, Nan; Qin, Hongyu; Yang, Yin Unconditionally optimal \(H^1\)-norm error estimates of a fast and linearized Galerkin method for nonlinear subdiffusion equations. (English) Zbl 1483.65157 Comput. Math. Appl. 107, 70-81 (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 65M60 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{N. Liu} et al., Comput. Math. Appl. 107, 70--81 (2022; Zbl 1483.65157) Full Text: DOI OpenURL
Chen, Hu; Wang, Yue; Fu, Hongfei \( \alpha \)-robust \(H^1\)-norm error estimate of nonuniform Alikhanov scheme for fractional sub-diffusion equation. (English) Zbl 07443243 Appl. Math. Lett. 125, Article ID 107771, 7 p. (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{H. Chen} et al., Appl. Math. Lett. 125, Article ID 107771, 7 p. (2022; Zbl 07443243) Full Text: DOI OpenURL
Wen, Cao; Liu, Yang; Yin, Baoli; Li, Hong; Wang, Jinfeng Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model. (English) Zbl 1483.65161 Numer. Algorithms 88, No. 2, 523-553 (2021). Reviewer: Kai Diethelm (Schweinfurt) MSC: 65M60 35R11 65M12 65M15 65M55 PDF BibTeX XML Cite \textit{C. Wen} et al., Numer. Algorithms 88, No. 2, 523--553 (2021; Zbl 1483.65161) Full Text: DOI OpenURL
Wang, Yue; Chen, Hu; Sun, Tao \(\alpha\)-robust \(H^1\)-norm convergence analysis of ADI scheme for two-dimensional time-fractional diffusion equation. (English) Zbl 07371860 Appl. Numer. Math. 168, 75-83 (2021). MSC: 65M06 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Wang} et al., Appl. Numer. Math. 168, 75--83 (2021; Zbl 07371860) Full Text: DOI OpenURL
Carstensen, Carsten; Nataraj, Neela Adaptive Morley FEM for the von Kármán equations with optimal convergence rates. (English) Zbl 1467.65107 SIAM J. Numer. Anal. 59, No. 2, 696-719 (2021). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65N30 65N12 65N15 65N50 PDF BibTeX XML Cite \textit{C. Carstensen} and \textit{N. Nataraj}, SIAM J. Numer. Anal. 59, No. 2, 696--719 (2021; Zbl 1467.65107) Full Text: DOI arXiv OpenURL
Ren, Jincheng; Liao, Hong-lin; Zhang, Jiwei; Zhang, Zhimin Sharp \(H^1\)-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. (English) Zbl 1467.65086 J. Comput. Appl. Math. 389, Article ID 113352, 18 p. (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{J. Ren} et al., J. Comput. Appl. Math. 389, Article ID 113352, 18 p. (2021; Zbl 1467.65086) Full Text: DOI arXiv OpenURL
Li, Xin; Liao, Hong-lin; Zhang, Luming A second-order fast compact scheme with unequal time-steps for subdiffusion problems. (English) Zbl 1466.65072 Numer. Algorithms 86, No. 3, 1011-1039 (2021). MSC: 65M06 65M15 65M12 65T50 35K57 35R11 PDF BibTeX XML Cite \textit{X. Li} et al., Numer. Algorithms 86, No. 3, 1011--1039 (2021; Zbl 1466.65072) Full Text: DOI OpenURL
Zhang, Tie; Sheng, Ying The \(H^1\)-error analysis of the finite element method for solving the fractional diffusion equation. (English) Zbl 1452.65263 J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021). MSC: 65M60 65M06 65N30 65M12 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{Y. Sheng}, J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021; Zbl 1452.65263) Full Text: DOI OpenURL
Zhou, Yanhui A class of bubble enriched quadratic finite volume element schemes on triangular meshes. (English) Zbl 1483.65172 Int. J. Numer. Anal. Model. 17, No. 6, 872-899 (2020). MSC: 65N08 35R35 65N12 65N15 PDF BibTeX XML Cite \textit{Y. Zhou}, Int. J. Numer. Anal. Model. 17, No. 6, 872--899 (2020; Zbl 1483.65172) Full Text: Link OpenURL
Ren, Jincheng; Liao, Hong-lin; Zhang, Zhimin Superconvergence error estimate of a finite element method on nonuniform time meshes for reaction-subdiffusion equations. (English) Zbl 1452.65247 J. Sci. Comput. 84, No. 2, Paper No. 38, 23 p. (2020). MSC: 65M60 65M15 65N15 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{J. Ren} et al., J. Sci. Comput. 84, No. 2, Paper No. 38, 23 p. (2020; Zbl 1452.65247) Full Text: DOI OpenURL
Feng, Xinlong; He, Ruijian; Chen, Zhangxin \(H^1\)-superconvergence of finite difference method based on \(Q_1\)-element on quasi-uniform mesh for the 3D Poisson equation. (English) Zbl 1450.65137 Numer. Methods Partial Differ. Equations 36, No. 1, 29-48 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65N06 65N30 65N12 35J05 35J25 PDF BibTeX XML Cite \textit{X. Feng} et al., Numer. Methods Partial Differ. Equations 36, No. 1, 29--48 (2020; Zbl 1450.65137) Full Text: DOI OpenURL
Zhou, Yanhui; Wu, Jiming A unified analysis of a class of quadratic finite volume element schemes on triangular meshes. (English) Zbl 1448.65198 Adv. Comput. Math. 46, No. 5, Paper No. 71, 31 p. (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65N08 65N12 65N15 35J25 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. Wu}, Adv. Comput. Math. 46, No. 5, Paper No. 71, 31 p. (2020; Zbl 1448.65198) Full Text: DOI OpenURL
Bradji, Abdallah A new optimal \(L^{\infty}(H^1)\)-error estimate of a SUSHI scheme for the time fractional diffusion equation. (English) Zbl 1454.65074 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 305-314 (2020). Reviewer: Victor Michel-Dansac (Strasbourg) MSC: 65M08 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{A. Bradji}, Springer Proc. Math. Stat. 323, 305--314 (2020; Zbl 1454.65074) Full Text: DOI OpenURL
Dong, Qiannan; Su, Shuai; Wu, Jiming Analysis of the decoupled and positivity-preserving DDFV schemes for diffusion problems on polygonal meshes. (English) Zbl 1436.65163 Adv. Comput. Math. 46, No. 2, Paper No. 12, 34 p. (2020). MSC: 65N08 65N12 65N15 65H10 35J25 PDF BibTeX XML Cite \textit{Q. Dong} et al., Adv. Comput. Math. 46, No. 2, Paper No. 12, 34 p. (2020; Zbl 1436.65163) Full Text: DOI OpenURL
Zhou, Yanhui; Wu, Jiming A family of quadratic finite volume element schemes over triangular meshes for elliptic equations. (English) Zbl 1437.65169 Comput. Math. Appl. 79, No. 9, 2473-2491 (2020). MSC: 65N08 65N15 65N12 35J15 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. Wu}, Comput. Math. Appl. 79, No. 9, 2473--2491 (2020; Zbl 1437.65169) Full Text: DOI OpenURL
Lan, Rihui; Sun, Pengtao A monolithic arbitrary Lagrangian-Eulerian finite element analysis for a Stokes/parabolic moving interface problem. (English) Zbl 1434.65264 J. Sci. Comput. 82, No. 3, Paper No. 59, 36 p. (2020). MSC: 65N30 65R20 65M12 65M15 35R05 76M10 65M06 76D07 76D10 74F10 35K10 PDF BibTeX XML Cite \textit{R. Lan} and \textit{P. Sun}, J. Sci. Comput. 82, No. 3, Paper No. 59, 36 p. (2020; Zbl 1434.65264) Full Text: DOI OpenURL
Li, Buyang; Wang, Jilu; Xu, Liwei A convergent linearized Lagrange finite element method for the magneto-hydrodynamic equations in two-dimensional nonsmooth and nonconvex domains. (English) Zbl 1432.76162 SIAM J. Numer. Anal. 58, No. 1, 430-459 (2020). MSC: 76M10 65N30 65M12 76W05 35Q35 PDF BibTeX XML Cite \textit{B. Li} et al., SIAM J. Numer. Anal. 58, No. 1, 430--459 (2020; Zbl 1432.76162) Full Text: DOI arXiv OpenURL
Ma, Ge; Dong, Lijiao; Hu, Shuangnian An \({H^1}\)-Galerkin mixed finite element method for semi-linear dual phase lagging heat conduction equations. (Chinese. English summary) Zbl 1449.65253 Math. Pract. Theory 49, No. 17, 251-258 (2019). MSC: 65M60 65M12 35K05 35R07 PDF BibTeX XML Cite \textit{G. Ma} et al., Math. Pract. Theory 49, No. 17, 251--258 (2019; Zbl 1449.65253) OpenURL
Shi, Dongyang; Wang, Junjun Unconditional superconvergence analysis of an \({H^1}\)-Galerkin mixed finite element method for two-dimensional Ginzburg-Landau equation. (English) Zbl 1449.65258 J. Comput. Math. 37, No. 4, 437-457 (2019). MSC: 65M60 65N12 65N30 35Q56 65N15 65M15 65M06 PDF BibTeX XML Cite \textit{D. Shi} and \textit{J. Wang}, J. Comput. Math. 37, No. 4, 437--457 (2019; Zbl 1449.65258) Full Text: DOI OpenURL
Wang, Junjun; Li, Qingfu; Shi, Dongyang Superconvergence analysis of a mixed finite element method for nonlinear parabolic equation. (Chinese. English summary) Zbl 1438.65298 Math. Numer. Sin. 41, No. 2, 191-211 (2019). MSC: 65N30 65N12 35K55 65M22 PDF BibTeX XML Cite \textit{J. Wang} et al., Math. Numer. Sin. 41, No. 2, 191--211 (2019; Zbl 1438.65298) OpenURL
Wang, Junjun; Guo, Lijuan Superconvergence analysis of a mixed finite element method for a kind of semilinear parabolic equations. (Chinese. English summary) Zbl 1438.65297 Math. Appl. 32, No. 1, 71-80 (2019). MSC: 65N30 65N12 65N15 35J61 65M32 65M15 PDF BibTeX XML Cite \textit{J. Wang} and \textit{L. Guo}, Math. Appl. 32, No. 1, 71--80 (2019; Zbl 1438.65297) OpenURL
Doss, L. Jones Tarcius; Nandini, A. P. A fourth-order \({H}^1\)-Galerkin mixed finite element method for Kuramoto-Sivashinsky equation. (English) Zbl 1418.65126 Numer. Methods Partial Differ. Equations 35, No. 2, 445-477 (2019). MSC: 65M60 65M15 65M12 35Q53 PDF BibTeX XML Cite \textit{L. J. T. Doss} and \textit{A. P. Nandini}, Numer. Methods Partial Differ. Equations 35, No. 2, 445--477 (2019; Zbl 1418.65126) Full Text: DOI OpenURL
Wang, Zhijun; Li, Xianzhi A nonconforming \({H^1}\)-Galerkin mixed finite element method for nonlinear Sobolev equations. (Chinese. English summary) Zbl 1424.65172 Math. Pract. Theory 48, No. 12, 193-199 (2018). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{X. Li}, Math. Pract. Theory 48, No. 12, 193--199 (2018; Zbl 1424.65172) OpenURL
Li, Xiaoli; Rui, Hongxing Two temporal second-order \(H^1\)-Galerkin mixed finite element schemes for distributed-order fractional sub-diffusion equations. (English) Zbl 1407.65197 Numer. Algorithms 79, No. 4, 1107-1130 (2018). MSC: 65M60 26A33 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Rui}, Numer. Algorithms 79, No. 4, 1107--1130 (2018; Zbl 1407.65197) Full Text: DOI OpenURL
Yang, Jinjin; He, Yinnian Stability and error analysis for the first-order Euler implicit/explicit scheme for the 3D MHD equations. (English) Zbl 1404.76167 Int. J. Comput. Methods 15, No. 1, Article ID 1750077, 46 p. (2018). MSC: 76M10 65M60 76W05 PDF BibTeX XML Cite \textit{J. Yang} and \textit{Y. He}, Int. J. Comput. Methods 15, No. 1, Article ID 1750077, 46 p. (2018; Zbl 1404.76167) Full Text: DOI OpenURL
He, Ruijian; Feng, Xinlong; Chen, Zhangxin \(H^1\)-superconvergence of a difference finite element method based on the \(P_1-P_1\)-conforming element on non-uniform meshes for the 3D Poisson equation. (English) Zbl 1471.65171 Math. Comput. 87, No. 312, 1659-1688 (2018). Reviewer: José Augusto Ferreira (Coimbra) MSC: 65N06 65N30 65N12 35J05 35B65 PDF BibTeX XML Cite \textit{R. He} et al., Math. Comput. 87, No. 312, 1659--1688 (2018; Zbl 1471.65171) Full Text: DOI OpenURL
Shi, Dongyang; Wang, Junjun; Yan, Fengna Unconditional superconvergence analysis of an \(H^1\)-Galerkin mixed finite element method for nonlinear Sobolev equations. (English) Zbl 1390.65120 Numer. Methods Partial Differ. Equations 34, No. 1, 145-166 (2018). Reviewer: T. C. Mohan (Chennai) MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{D. Shi} et al., Numer. Methods Partial Differ. Equations 34, No. 1, 145--166 (2018; Zbl 1390.65120) Full Text: DOI OpenURL
Wang, Jinfeng; Liu, Tianqi; Li, Hong; Liu, Yang; He, Siriguleng Second-order approximation scheme combined with \(H^1\)-Galerkin MFE method for nonlinear time fractional convection-diffusion equation. (English) Zbl 1412.65157 Comput. Math. Appl. 73, No. 6, 1182-1196 (2017). MSC: 65M60 65M12 35R11 65M15 65M06 PDF BibTeX XML Cite \textit{J. Wang} et al., Comput. Math. Appl. 73, No. 6, 1182--1196 (2017; Zbl 1412.65157) Full Text: DOI OpenURL
Shi, Z. G.; Zhao, Y. M.; Liu, F.; Tang, Y. F.; Wang, F. L.; Shi, Y. H. High accuracy analysis of an \(H^1\)-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations. (English) Zbl 1397.65191 Comput. Math. Appl. 74, No. 8, 1903-1914 (2017). MSC: 65M60 65M12 35R11 65M06 PDF BibTeX XML Cite \textit{Z. G. Shi} et al., Comput. Math. Appl. 74, No. 8, 1903--1914 (2017; Zbl 1397.65191) Full Text: DOI OpenURL
Shakya, Pratibha; Sinha, Rajen Kumar A priori and a posteriori error estimates of \(H^{1}\)-Galerkin mixed finite element method for parabolic optimal control problems. (English) Zbl 1386.49042 Optim. Control Appl. Methods 38, No. 6, 1056-1070 (2017). MSC: 49M25 35K20 35Q93 PDF BibTeX XML Cite \textit{P. Shakya} and \textit{R. K. Sinha}, Optim. Control Appl. Methods 38, No. 6, 1056--1070 (2017; Zbl 1386.49042) Full Text: DOI OpenURL
Wang, Fenling; Fan, Mingzhi; Shi, Dongyang High accuracy analysis of a new \({H^1}\)-Galerkin lowest order mixed finite element scheme for quasi-linear viscoelasticity equations. (Chinese. English summary) Zbl 1399.65338 Math. Appl. 30, No. 1, 40-55 (2017). MSC: 65N30 65N12 65M06 76A10 74D10 PDF BibTeX XML Cite \textit{F. Wang} et al., Math. Appl. 30, No. 1, 40--55 (2017; Zbl 1399.65338) OpenURL
Russell, B. Chase Homogenization in perforated domains and interior Lipschitz estimates. (English) Zbl 1373.35035 J. Differ. Equations 263, No. 6, 3396-3418 (2017). Reviewer: Marcus Waurick (Dresden) MSC: 35B27 74B05 35J57 PDF BibTeX XML Cite \textit{B. C. Russell}, J. Differ. Equations 263, No. 6, 3396--3418 (2017; Zbl 1373.35035) Full Text: DOI arXiv OpenURL
Wang, Jin-Feng; Zhang, Min; Li, Hong; Liu, Yang Finite difference/\(H^1\)-Galerkin MFE procedure for a fractional water wave model. (English) Zbl 1463.65378 J. Appl. Anal. Comput. 6, No. 2, 409-428 (2016). MSC: 65N30 65M60 35R11 65N12 65M06 35Q35 76B15 76M10 PDF BibTeX XML Cite \textit{J.-F. Wang} et al., J. Appl. Anal. Comput. 6, No. 2, 409--428 (2016; Zbl 1463.65378) Full Text: DOI OpenURL
Gaspoz, Fernando D.; Heine, Claus-Justus; Siebert, Kunibert G. Optimal grading of the newest vertex bisection and \(H^{1}\)-stability of the \(L_{2}\)-projection. (English) Zbl 1433.65291 IMA J. Numer. Anal. 36, No. 3, 1217-1241 (2016). MSC: 65N30 65N12 65N50 PDF BibTeX XML Cite \textit{F. D. Gaspoz} et al., IMA J. Numer. Anal. 36, No. 3, 1217--1241 (2016; Zbl 1433.65291) Full Text: DOI OpenURL
Shi, Dongyang; Wang, Junjun Superconvergence analysis of an \(H^1\)-Galerkin mixed finite element method for Sobolev equations. (English) Zbl 1361.65065 Comput. Math. Appl. 72, No. 6, 1590-1602 (2016). MSC: 65M12 65M20 65M60 35K20 PDF BibTeX XML Cite \textit{D. Shi} and \textit{J. Wang}, Comput. Math. Appl. 72, No. 6, 1590--1602 (2016; Zbl 1361.65065) Full Text: DOI OpenURL
Duc, Dinh Thanh; Hung, Ha Duy; Ky, Luong Dang On weak\(^*\)-convergence in the localized Hardy spaces \(H^1_\rho(\mathcal{X})\) and its application. (English) Zbl 1357.42022 Taiwanese J. Math. 20, No. 4, 897-907 (2016). MSC: 42B35 46E30 PDF BibTeX XML Cite \textit{D. T. Duc} et al., Taiwanese J. Math. 20, No. 4, 897--907 (2016; Zbl 1357.42022) Full Text: DOI arXiv OpenURL
Shi, Dongyang; Tang, Qili; Liao, Xin Asymptotic expansions and extrapolations of \(H^1\)-Galerkin mixed finite element method for strongly damped wave equation. (English) Zbl 07402797 Adv. Appl. Math. Mech. 7, No. 5, 610-624 (2015). MSC: 65M60 65M22 65M15 65B05 PDF BibTeX XML Cite \textit{D. Shi} et al., Adv. Appl. Math. Mech. 7, No. 5, 610--624 (2015; Zbl 07402797) Full Text: DOI OpenURL
Díaz Calle, Jorge L.; Devloo, Philippe R. B.; Gomes, Sônia M. Implementation of continuous \(hp\)-adaptive finite element spaces without limitations on hanging sides and distribution of approximation orders. (English) Zbl 1443.65323 Comput. Math. Appl. 70, No. 5, 1051-1069 (2015). MSC: 65N30 65N50 PDF BibTeX XML Cite \textit{J. L. Díaz Calle} et al., Comput. Math. Appl. 70, No. 5, 1051--1069 (2015; Zbl 1443.65323) Full Text: DOI OpenURL
Schwab, Christoph Exponential convergence of simplicial hp-FEM for \(H^1\)-functions with isotropic singularities. (English) Zbl 1352.65548 Kirby, Robert M. (ed.) et al., Spectral and high order methods for partial differential equations, ICOSAHOM 2014. Selected papers from the ICOSAHOM conference, June 23–27, 2014, Salt Lake City, UT, USA. Cham: Springer (ISBN 978-3-319-19799-9/hbk; 978-3-319-19800-2/ebook). Lecture Notes in Computational Science and Engineering 106, 435-444 (2015). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 65N30 35J25 65N12 65N50 PDF BibTeX XML Cite \textit{C. Schwab}, Lect. Notes Comput. Sci. Eng. 106, 435--444 (2015; Zbl 1352.65548) Full Text: DOI OpenURL
Wang, Pingli; Shi, Dongyang A low-order \(H^1\)-Galerkin mixed finite elements method of the generalized nerve conductive equations. (Chinese. English summary) Zbl 1349.65492 Math. Pract. Theory 45, No. 10, 229-237 (2015). MSC: 65M60 65M12 35L20 92C20 35Q92 PDF BibTeX XML Cite \textit{P. Wang} and \textit{D. Shi}, Math. Pract. Theory 45, No. 10, 229--237 (2015; Zbl 1349.65492) OpenURL
Zhou, Shuke; Wang, Ting Superconvergence analysis of the lowest order \(H^1\)-Galerkin nonconforming mixed finite element for generalized nerve conduction type equations. (Chinese. English summary) Zbl 1349.65500 J. Xinyang Norm. Univ., Nat. Sci. 28, No. 4, 482-485 (2015). MSC: 65M60 65M12 35Q92 92C20 65M20 PDF BibTeX XML Cite \textit{S. Zhou} and \textit{T. Wang}, J. Xinyang Norm. Univ., Nat. Sci. 28, No. 4, 482--485 (2015; Zbl 1349.65500) Full Text: DOI OpenURL
Duan, Huoyuan; Tan, Roger C. E.; Yang, Suh-Yuh; You, Cheng-Shu An SPD stabilized finite element method for the Stokes equations. (English) Zbl 1329.76165 IMA J. Numer. Anal. 35, No. 4, 1812-1841 (2015). MSC: 76M10 65N30 65N12 76D07 PDF BibTeX XML Cite \textit{H. Duan} et al., IMA J. Numer. Anal. 35, No. 4, 1812--1841 (2015; Zbl 1329.76165) Full Text: DOI OpenURL
Liu, Yang; Du, Yanwei; Li, Hong; Wang, Jinfeng An \(H^1\)-Galerkin mixed finite element method for time fractional reaction-diffusion equation. (English) Zbl 1319.65097 J. Appl. Math. Comput. 47, No. 1-2, 103-117 (2015). MSC: 65M60 35K57 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{Y. Liu} et al., J. Appl. Math. Comput. 47, No. 1--2, 103--117 (2015; Zbl 1319.65097) Full Text: DOI OpenURL
Chen, Fengxin Crank-Nicolson fully discrete \(H^1\)-Galerkin mixed finite element approximation of one nonlinear integrodifferential model. (English) Zbl 1462.65181 Abstr. Appl. Anal. 2014, Article ID 534902, 8 p. (2014). Reviewer: Abdallah Bradji (Annaba) MSC: 65N30 65N12 65M06 65M15 35R09 45K05 PDF BibTeX XML Cite \textit{F. Chen}, Abstr. Appl. Anal. 2014, Article ID 534902, 8 p. (2014; Zbl 1462.65181) Full Text: DOI OpenURL
Zhou, Jiaquan; Shi, Dongwei; Yang, Guozeng A new \(H^1\)-Galerkin nonconforming mixed finite element scheme for heat equations. (Chinese. English summary) Zbl 1340.65233 Math. Pract. Theory 44, No. 13, 259-264 (2014). MSC: 65M60 65M15 35K05 65M12 PDF BibTeX XML Cite \textit{J. Zhou} et al., Math. Pract. Theory 44, No. 13, 259--264 (2014; Zbl 1340.65233) OpenURL
Tripathy, Madhusmita; Sinha, Rajen Kumar Convergence of \(H^1\)-Galerkin mixed finite element method for parabolic problems with reduced regularity on initial data. (Russian, English) Zbl 1340.65191 Sib. Zh. Vychisl. Mat. 17, No. 3, 273-288 (2014); translation in Numer. Analysis Appl. 7, No. 3, 227-240 (2014). MSC: 65M12 65M60 65M15 35K20 65M20 PDF BibTeX XML Cite \textit{M. Tripathy} and \textit{R. K. Sinha}, Sib. Zh. Vychisl. Mat. 17, No. 3, 273--288 (2014; Zbl 1340.65191); translation in Numer. Analysis Appl. 7, No. 3, 227--240 (2014) Full Text: DOI OpenURL
He, Siriguleng; Li, Hong; Liu, Yang A splitting \(H^1\) mixed space-time discontinuous Galerkin method for pseudo hyperbolic equations. (Chinese. English summary) Zbl 1324.65123 Numer. Math., Nanjing 36, No. 2, 140-158 (2014). MSC: 65M60 65M15 65M12 35L82 PDF BibTeX XML Cite \textit{S. He} et al., Numer. Math., Nanjing 36, No. 2, 140--158 (2014; Zbl 1324.65123) OpenURL
Wang, Jinfeng; Liu, Yang; Li, Hong; Mu, Sen A novel spliting scheme based on the \(H^1\)-Galerkin mixed method for Sobolev equations. (Chinese. English summary) Zbl 1313.65249 Numer. Math., Nanjing 36, No. 1, 32-48 (2014). MSC: 65M20 35K55 65M06 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{J. Wang} et al., Numer. Math., Nanjing 36, No. 1, 32--48 (2014; Zbl 1313.65249) OpenURL
Krasniqi, Xhevat Z.; Kórus, Péter; Móricz, Ferenc Necessary conditions for the \(L^{p}\)-convergence \((0<p<1)\) of single and double trigonometric series. (English) Zbl 1340.42009 Math. Bohem. 139, No. 1, 75-88 (2014). Reviewer: Martin Grigoryan (Yerevan) MSC: 42A16 42A20 42B05 42B30 42B99 PDF BibTeX XML Cite \textit{X. Z. Krasniqi} et al., Math. Bohem. 139, No. 1, 75--88 (2014; Zbl 1340.42009) Full Text: Link OpenURL
Shi, Dong-yang; Liao, Xin; Tang, Qi-li Highly efficient \(H^1\)-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation. (English) Zbl 1294.65094 Appl. Math. Mech., Engl. Ed. 35, No. 7, 897-912 (2014). MSC: 65M60 65M12 45K05 PDF BibTeX XML Cite \textit{D.-y. Shi} et al., Appl. Math. Mech., Engl. Ed. 35, No. 7, 897--912 (2014; Zbl 1294.65094) Full Text: DOI OpenURL
Liu, Xinwu; Huang, Lihong An efficient algorithm for adaptive total variation based image decomposition and restoration. (English) Zbl 1293.94017 Int. J. Appl. Math. Comput. Sci. 24, No. 2, 405-415 (2014). MSC: 94A08 68U10 PDF BibTeX XML Cite \textit{X. Liu} and \textit{L. Huang}, Int. J. Appl. Math. Comput. Sci. 24, No. 2, 405--415 (2014; Zbl 1293.94017) Full Text: DOI OpenURL
Alghamdi, Mohammed A.; Mursaleen, Momammad; Alotaibi, Abdullah Logarithmic density and logarithmic statistical convergence. (English) Zbl 1379.40001 Adv. Difference Equ. 2013, Paper No. 227, 6 p. (2013). MSC: 40A05 40A30 PDF BibTeX XML Cite \textit{M. A. Alghamdi} et al., Adv. Difference Equ. 2013, Paper No. 227, 6 p. (2013; Zbl 1379.40001) Full Text: DOI OpenURL
Zhang, Yadong; Shi, Dongyang Superconvergence of an \(H^1\)-Galerkin nonconforming mixed finite element method for a parabolic equation. (English) Zbl 1350.65098 Comput. Math. Appl. 66, No. 11, 2362-2375 (2013). MSC: 65M20 65M60 65M12 65M15 35K20 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{D. Shi}, Comput. Math. Appl. 66, No. 11, 2362--2375 (2013; Zbl 1350.65098) Full Text: DOI OpenURL
Zhou, Zhaojie; Chen, Fengxin; Chen, Huanzhen Convergence analysis for \( H^1\)-Galerkin mixed finite element approximation of one nonlinear integro-differential model. (English) Zbl 1329.65233 Appl. Math. Comput. 220, 783-791 (2013). MSC: 65M60 65M12 45K05 PDF BibTeX XML Cite \textit{Z. Zhou} et al., Appl. Math. Comput. 220, 783--791 (2013; Zbl 1329.65233) Full Text: DOI OpenURL
Shi, Dongyang; Guo, Cheng; Wang, Haihong A nonconforming \(H^1\)-Galerkin expanded mixed finite element method for semilinear parabolic partial differential equations. (Chinese. English summary) Zbl 1289.65227 Chin. J. Eng. Math. 30, No. 2, 252-262 (2013). MSC: 65M60 65M12 65M15 65M20 35K58 35K59 PDF BibTeX XML Cite \textit{D. Shi} et al., Chin. J. Eng. Math. 30, No. 2, 252--262 (2013; Zbl 1289.65227) Full Text: DOI OpenURL
Shi, Dong-Yang; Tang, Qi-Li Nonconforming \(H^{1}\)-Galerkin mixed finite element method for strongly damped wave equations. (English) Zbl 1284.65138 Numer. Funct. Anal. Optim. 34, No. 12, 1348-1369 (2013). Reviewer: Răzvan Răducanu (Iaşi) MSC: 65M60 65M12 35L70 65M50 PDF BibTeX XML Cite \textit{D.-Y. Shi} and \textit{Q.-L. Tang}, Numer. Funct. Anal. Optim. 34, No. 12, 1348--1369 (2013; Zbl 1284.65138) Full Text: DOI OpenURL
Karkulik, Michael; Pavlicek, David; Praetorius, Dirk On 2D newest vertex bisection: optimality of mesh-closure and \(H ^{1}\)-stability of \(L _{2}\)-projection. (English) Zbl 1302.65267 Constr. Approx. 38, No. 2, 213-234 (2013); erratum ibid. 42, No. 3, 349-352 (2015). Reviewer: Sonia Pérez Díaz (Madrid) MSC: 65N50 65N30 65Y20 65D18 PDF BibTeX XML Cite \textit{M. Karkulik} et al., Constr. Approx. 38, No. 2, 213--234 (2013; Zbl 1302.65267) Full Text: DOI arXiv OpenURL
Chen, Zeqian; Xu, Quanhua; Yin, Zhi Harmonic analysis on quantum tori. (English) Zbl 1278.46056 Commun. Math. Phys. 322, No. 3, 755-805 (2013). MSC: 46L65 42B05 42B20 42B25 42B30 46L52 PDF BibTeX XML Cite \textit{Z. Chen} et al., Commun. Math. Phys. 322, No. 3, 755--805 (2013; Zbl 1278.46056) Full Text: DOI arXiv OpenURL
He, Siriguleng; Li, Hong; Liu, Yang \(H^1\) space-time discontinuous finite element method for convection-diffusion equations. (English) Zbl 1457.65110 Appl. Math. Mech., Engl. Ed. 34, No. 3, 371-384 (2013). MSC: 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{S. He} et al., Appl. Math. Mech., Engl. Ed. 34, No. 3, 371--384 (2013; Zbl 1457.65110) Full Text: DOI OpenURL
Tripathy, Madhusmita; Sinha, Rajen Kumar A posteriori error estimates for \(H^1\)-Galerkin mixed finite-element method for parabolic problems. (English) Zbl 1262.65133 Appl. Anal. 92, No. 4, 855-868 (2013). MSC: 65M60 65M15 65M12 PDF BibTeX XML Cite \textit{M. Tripathy} and \textit{R. K. Sinha}, Appl. Anal. 92, No. 4, 855--868 (2013; Zbl 1262.65133) Full Text: DOI OpenURL
Shi, Dongyang; Tang, Qili; Dong, Xiaojing Superconvergence analysis of \(H^1\)-Galerkin mixed finite element method for strongly damped wave equations. (Chinese. English summary) Zbl 1274.65259 Math. Numer. Sin. 34, No. 3, 317-328 (2012). MSC: 65M12 65M60 35L70 65M20 65M15 PDF BibTeX XML Cite \textit{D. Shi} et al., Math. Numer. Sin. 34, No. 3, 317--328 (2012; Zbl 1274.65259) OpenURL
Liu, Yang; Li, Hong; He, Siriguleng; Gao, Wei; Fang, Zhichao An \(H^1\)-Galerkin mixed element method and numerical simulation for the fourth-order parabolic partial differential equations. (Chinese. English summary) Zbl 1274.65272 Math. Numer. Sin. 34, No. 3, 259-274 (2012). MSC: 65M60 65M12 65M15 35K30 65M20 PDF BibTeX XML Cite \textit{Y. Liu} et al., Math. Numer. Sin. 34, No. 3, 259--274 (2012; Zbl 1274.65272) OpenURL
Zhou, Jiaquan; Shi, Dongwei; Zhang, Yongsheng An \(H^1\)-Galerkin nonconforming mixed finite element method for the solution of the Schrödinger equation. (Chinese. English summary) Zbl 1265.65207 J. Anhui Univ., Nat. Sci. 36, No. 1, 38-43 (2012). MSC: 65M60 65M12 65M15 35Q55 PDF BibTeX XML Cite \textit{J. Zhou} et al., J. Anhui Univ., Nat. Sci. 36, No. 1, 38--43 (2012; Zbl 1265.65207) OpenURL
Lv, Junliang; Li, Yonghai Optimal biquadratic finite volume element methods on quadrilateral meshes. (English) Zbl 1263.65117 SIAM J. Numer. Anal. 50, No. 5, 2379-2399 (2012). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65N30 65N15 PDF BibTeX XML Cite \textit{J. Lv} and \textit{Y. Li}, SIAM J. Numer. Anal. 50, No. 5, 2379--2399 (2012; Zbl 1263.65117) Full Text: DOI OpenURL
Cohen, Albert; DeVore, Ronald; Nochetto, Ricardo H. Convergence rates of AFEM with \(H^{-1}\) data. (English) Zbl 1416.65440 Found. Comput. Math. 12, No. 5, 671-718 (2012). MSC: 65N30 65N15 41A25 65N50 65Y20 PDF BibTeX XML Cite \textit{A. Cohen} et al., Found. Comput. Math. 12, No. 5, 671--718 (2012; Zbl 1416.65440) Full Text: DOI OpenURL
Chen, Gui-Qiang; Perepelitsa, Mikhail Shallow water equations: viscous solutions and inviscid limit. (English) Zbl 1388.35124 Z. Angew. Math. Phys. 63, No. 6, 1067-1084 (2012). MSC: 35L60 35D40 76D09 35Q30 35Q31 35L65 35L45 35B35 76N17 76B15 35L80 35Q35 35B25 PDF BibTeX XML Cite \textit{G.-Q. Chen} and \textit{M. Perepelitsa}, Z. Angew. Math. Phys. 63, No. 6, 1067--1084 (2012; Zbl 1388.35124) Full Text: DOI OpenURL
Tripathy, Madhusmita; Sinha, Rajen Kumar Superconvergence of \(H ^{1}\)-Galerkin mixed finite element methods for second-order elliptic equations. (English) Zbl 1253.65173 Numer. Funct. Anal. Optim. 33, No. 3, 320-337 (2012). Reviewer: Zhiming Chen (Beijing) MSC: 65N12 65N30 65N15 35J25 PDF BibTeX XML Cite \textit{M. Tripathy} and \textit{R. K. Sinha}, Numer. Funct. Anal. Optim. 33, No. 3, 320--337 (2012; Zbl 1253.65173) Full Text: DOI OpenURL
Ding, Yuqiong; Li, Yonghai Finite volume element method with Lagrangian cubic functions. (English) Zbl 1271.65134 J. Syst. Sci. Complex. 24, No. 5, 991-1006 (2011). MSC: 65N08 65N30 35J05 65N12 65N50 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{Y. Li}, J. Syst. Sci. Complex. 24, No. 5, 991--1006 (2011; Zbl 1271.65134) Full Text: DOI OpenURL
Zhao, Yanmin; Shi, Dongwei; Wu, Liang Nonconforming \(H^{1}\)-Galerkin mixed finite element method for dispersive-dissipative wave equation. (English) Zbl 1252.65172 Zhou, Qihai (ed.), Theoretical and mathematical foundations of computer science. Second international conference, ICTMF 2011, Singapore, May 5–6, 2011. Selected papers. Berlin: Springer (ISBN 978-3-642-24998-3/pbk; 978-3-642-24999-0/ebook). Communications in Computer and Information Science 164, 9-14 (2011). MSC: 65M60 35L20 65M12 65M15 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Commun. Comput. Inf. Sci. 164, 9--14 (2011; Zbl 1252.65172) Full Text: DOI OpenURL
Kohn, R. V.; Versieux, H. M. Numerical analysis of a steepest-descent PDE model for surface relaxation below the roughening temperature. (English) Zbl 1219.82241 SIAM J. Numer. Anal. 48, No. 5, 1781-1800 (2010). MSC: 82D80 65M55 65M12 35G25 35R70 74H15 82-08 PDF BibTeX XML Cite \textit{R. V. Kohn} and \textit{H. M. Versieux}, SIAM J. Numer. Anal. 48, No. 5, 1781--1800 (2010; Zbl 1219.82241) Full Text: DOI Link OpenURL
Liu, Yang; Li, Hong A new mixed finite element method for fourth-order heavy damping wave equation. (Chinese. English summary) Zbl 1224.65227 Math. Numer. Sin. 32, No. 2, 157-170 (2010). MSC: 65M60 35L76 65M15 65M12 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{H. Li}, Math. Numer. Sin. 32, No. 2, 157--170 (2010; Zbl 1224.65227) OpenURL
Bi, Chunjia; Geng, Jiaqiang Discontinuous finite volume element method for parabolic problems. (English) Zbl 1189.65203 Numer. Methods Partial Differ. Equations 26, No. 2, 367-383 (2010). Reviewer: Fernando Casas (Castellon) MSC: 65M08 65M60 65M12 65M20 65M15 35K20 PDF BibTeX XML Cite \textit{C. Bi} and \textit{J. Geng}, Numer. Methods Partial Differ. Equations 26, No. 2, 367--383 (2010; Zbl 1189.65203) Full Text: DOI OpenURL
Liu, Yang; Li, Hong; Wang, Jinfeng Error estimates of \(H^1\)-Galerkin mixed finite element method for Schrödinger equation. (English) Zbl 1199.65314 Appl. Math., Ser. B (Engl. Ed.) 24, No. 1, 83-89 (2009). MSC: 65M20 65M60 65M15 65M12 35Q40 81Q05 PDF BibTeX XML Cite \textit{Y. Liu} et al., Appl. Math., Ser. B (Engl. Ed.) 24, No. 1, 83--89 (2009; Zbl 1199.65314) Full Text: DOI OpenURL
Weisz, Ferenc Inequalities in summability theory of Fourier series. (English) Zbl 1191.42006 J. Math. Inequal. 3, No. 3, 357-368 (2009). Reviewer: Delfina Roux (Milano) MSC: 42B08 46E40 42B30 42A38 PDF BibTeX XML Cite \textit{F. Weisz}, J. Math. Inequal. 3, No. 3, 357--368 (2009; Zbl 1191.42006) Full Text: DOI Link OpenURL
Yi, Dokkyun; Kim, Do-Hyung; Kim, Eunyoun; Yang, Sung-Dae Convergence of a fixed point iteration method for the OSV model. (English) Zbl 1177.94035 Appl. Math. Comput. 215, No. 5, 1780-1790 (2009). MSC: 94A08 PDF BibTeX XML Cite \textit{D. Yi} et al., Appl. Math. Comput. 215, No. 5, 1780--1790 (2009; Zbl 1177.94035) Full Text: DOI OpenURL
Tripathy, Madhusmita; Sinha, Rajen K. Superconvergence of \(H^{1}\)-Galerkin mixed finite element methods for parabolic problems. (English) Zbl 1179.65118 Appl. Anal. 88, No. 8, 1213-1231 (2009). Reviewer: H. P. Dikshit (Bhopal) MSC: 65M12 65M60 65M15 35K20 PDF BibTeX XML Cite \textit{M. Tripathy} and \textit{R. K. Sinha}, Appl. Anal. 88, No. 8, 1213--1231 (2009; Zbl 1179.65118) Full Text: DOI OpenURL
Yang, Min; Chen, Chuanjun ADI quadratic finite volume element methods for second order hyperbolic problems. (English) Zbl 1179.65128 J. Appl. Math. Comput. 31, No. 1-2, 395-411 (2009). Reviewer: H. P. Dikshit (Bhopal) MSC: 65M60 65M08 65M15 65F10 65M22 35L20 PDF BibTeX XML Cite \textit{M. Yang} and \textit{C. Chen}, J. Appl. Math. Comput. 31, No. 1--2, 395--411 (2009; Zbl 1179.65128) Full Text: DOI OpenURL
Elliott, C. M.; Smitheman, S. A. Numerical analysis of the TV regularization and \(H^{-1}\) fidelity model for decomposing an image into cartoon plus texture. (English) Zbl 1169.94003 IMA J. Numer. Anal. 29, No. 3, 651-689 (2009). MSC: 94A08 PDF BibTeX XML Cite \textit{C. M. Elliott} and \textit{S. A. Smitheman}, IMA J. Numer. Anal. 29, No. 3, 651--689 (2009; Zbl 1169.94003) Full Text: DOI OpenURL
Liu, Yang; Li, Hong \(H^1\)-Galerkin mixed finite element methods for pseudo-hyperbolic equations. (English) Zbl 1178.65119 Appl. Math. Comput. 212, No. 2, 446-457 (2009); corrigendum ibid. 218, No. 19, 10008 (2012). Reviewer: Weizhong Dai (Ruston) MSC: 65M60 65M15 35L82 65M20 65M12 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{H. Li}, Appl. Math. Comput. 212, No. 2, 446--457 (2009; Zbl 1178.65119) Full Text: DOI OpenURL
Liu, Yang; Ma, Rong; Li, Hong Error estimation for symmetric regularized long wave equation by \(H^1\)-Galerkin mixed finite element method. (Chinese. English summary) Zbl 1199.65310 J. Inn. Mong. Norm. Univ., Nat. Sci. 37, No. 3, 377-380 (2008). MSC: 65M15 65M60 35L75 65M20 65M12 PDF BibTeX XML Cite \textit{Y. Liu} et al., J. Inn. Mong. Norm. Univ., Nat. Sci. 37, No. 3, 377--380 (2008; Zbl 1199.65310) OpenURL
Sundari, M. Tangential convergence of bounded harmonic functions on generalized Siegel domains. (English) Zbl 1171.22006 J. Aust. Math. Soc. 85, No. 3, 419-430 (2008). Reviewer: Eberhard Oeljeklaus (Bremen) MSC: 22E30 43A20 32M15 PDF BibTeX XML Cite \textit{M. Sundari}, J. Aust. Math. Soc. 85, No. 3, 419--430 (2008; Zbl 1171.22006) Full Text: DOI arXiv OpenURL
Wang, Huangqing; Li, Hong H\(^1\)-Galerkin mixed element method for convection-diffusion equation. (Chinese. English summary) Zbl 1174.65531 J. Bohai Univ., Nat. Sci. 29, No. 1, 43-46 (2008). MSC: 65N30 35J25 65N15 65N12 PDF BibTeX XML Cite \textit{H. Wang} and \textit{H. Li}, J. Bohai Univ., Nat. Sci. 29, No. 1, 43--46 (2008; Zbl 1174.65531) OpenURL
Aguilera, Néstor E.; Morin, Pedro Approximating optimization problems over convex functions. (English) Zbl 1157.65036 Numer. Math. 111, No. 1, 1-34 (2008). Reviewer: Jan Lovíšek (Bratislava) MSC: 65K10 90C25 52B55 49J10 49M37 90C22 PDF BibTeX XML Cite \textit{N. E. Aguilera} and \textit{P. Morin}, Numer. Math. 111, No. 1, 1--34 (2008; Zbl 1157.65036) Full Text: DOI arXiv Link OpenURL
Wang, Huanqing; Li, Hong; Wang, Huakuen An \(H^1\)-Galerkin mixed finite element method for semi-linear parabolic equation. (Chinese. English summary) Zbl 1150.65419 J. Bohai Univ., Nat. Sci. 28, No. 4, 335-337 (2007). MSC: 65M60 35K55 65M12 65M15 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Bohai Univ., Nat. Sci. 28, No. 4, 335--337 (2007; Zbl 1150.65419) OpenURL
Dai, Feng A strong convergence theorem for \(H^1({\mathbb T}^n)\). (English) Zbl 1099.42007 Stud. Math. 173, No. 2, 167-184 (2006). Reviewer: Ferenc Móricz (Szeged) MSC: 42B08 42B30 PDF BibTeX XML Cite \textit{F. Dai}, Stud. Math. 173, No. 2, 167--184 (2006; Zbl 1099.42007) Full Text: DOI OpenURL
Kuo, Tsang-Hai Estimates on the approximation of solutions to certain quasilinear elliptic equations. (English) Zbl 1159.35318 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 63, No. 5-7, e427-e434 (2005). MSC: 35D05 35J25 46E35 PDF BibTeX XML Cite \textit{T.-H. Kuo}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 63, No. 5--7, e427--e434 (2005; Zbl 1159.35318) Full Text: DOI OpenURL
Inahama, Yuzuru Convergence of finite dimensional distributions of heat kernel measures on loop groups. (English) Zbl 1018.60060 J. Funct. Anal. 198, No. 2, 311-340 (2003). Reviewer: Jacques Franchi (Strasbourg) MSC: 60H07 58J65 58D20 PDF BibTeX XML Cite \textit{Y. Inahama}, J. Funct. Anal. 198, No. 2, 311--340 (2003; Zbl 1018.60060) Full Text: DOI OpenURL
Li, Xianggui; Chen, Guangnan; Yu, Xijun Finite element methods for Hamilton-Jacobi equations. (Chinese. English summary) Zbl 1010.65039 Acta Math. Appl. Sin. 25, No. 2, 263-271 (2002). Reviewer: Song Jiang (Beijing) MSC: 65M60 49L25 65M12 35L45 35Q72 PDF BibTeX XML Cite \textit{X. Li} et al., Acta Math. Appl. Sin. 25, No. 2, 263--271 (2002; Zbl 1010.65039) OpenURL
Pani, Amiya K.; Fairweather, Graeme \(H^1\)-Galerkin mixed finite element methods for parabolic partial integro-differential equations. (English) Zbl 1008.65101 IMA J. Numer. Anal. 22, No. 2, 231-252 (2002). Reviewer: Josef Kofroň (Praha) MSC: 65R20 45K05 76S05 PDF BibTeX XML Cite \textit{A. K. Pani} and \textit{G. Fairweather}, IMA J. Numer. Anal. 22, No. 2, 231--252 (2002; Zbl 1008.65101) Full Text: DOI OpenURL
Carstensen, Carsten Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for \(H^1\)-stability of the \(L^2\)-projection onto finite element spaces. (English) Zbl 0989.65123 Math. Comput. 71, No. 237, 157-163 (2002). Reviewer: Michael Jung (Dresden) MSC: 65N12 65N30 65N50 35J25 PDF BibTeX XML Cite \textit{C. Carstensen}, Math. Comput. 71, No. 237, 157--163 (2002; Zbl 0989.65123) Full Text: DOI OpenURL
Bramble, James H.; Pasciak, Joseph E.; Steinbach, Olaf On the stability of the \(L^2\) projection in \(H^1(\omega)\). (English) Zbl 0989.65122 Math. Comput. 71, No. 237, 147-156 (2002). Reviewer: Michael Jung (Dresden) MSC: 65N12 65N50 35J25 PDF BibTeX XML Cite \textit{J. H. Bramble} et al., Math. Comput. 71, No. 237, 147--156 (2002; Zbl 0989.65122) Full Text: DOI OpenURL
Li, Gongchun; Xie, Shusen Stability and convergence of the Douglas scheme for a three dimensional parabolic equation. (Chinese. English summary) Zbl 1020.65055 J. Ocean Univ. Qingdao 31, No. 4, 626-632 (2001). MSC: 65M12 65Nxx 35K15 65M06 65M15 PDF BibTeX XML Cite \textit{G. Li} and \textit{S. Xie}, J. Ocean Univ. Qingdao 31, No. 4, 626--632 (2001; Zbl 1020.65055) OpenURL
Bart, V. A. Estimates for the norms of the Carleman-Goluzin-Krylov operators in the disk algebra and the Hardy space \(H^1\). (English. Russian original) Zbl 0987.32001 J. Math. Sci., New York 105, No. 5, 2330-2346 (2001); translation from Probl. Mat. Anal. 21, 45-67 (2000). Reviewer: V.Grebenev (Novosibirsk) MSC: 32A35 32H02 PDF BibTeX XML Cite \textit{V. A. Bart}, Probl. Mat. Anal. 21, 45--67 (2000; Zbl 0987.32001); translation from Probl. Mat. Anal. 21, 45--67 (2000) OpenURL
Ewing, R. E.; Lazarov, R. D.; Lin, Y. Finite volume element approximations of nonlocal in time one-dimensional flows in porous media. (English) Zbl 0969.76052 Computing 64, No. 2, 157-182 (2000). MSC: 76M12 76S05 65R20 45K05 PDF BibTeX XML Cite \textit{R. E. Ewing} et al., Computing 64, No. 2, 157--182 (2000; Zbl 0969.76052) Full Text: DOI OpenURL
Mabrouk, Mongi; Samadi, Hassan Linear and semi-linear problems on reinforcement by thin layers. (Problèmes linéaires et semi-linéaires de renforcement par des couches minces.) (French. Abridged English version) Zbl 0956.74043 C. R. Acad. Sci., Paris, Sér. I, Math. 329, No. 8, 747-752 (1999). MSC: 74Q05 74E30 35B27 PDF BibTeX XML Cite \textit{M. Mabrouk} and \textit{H. Samadi}, C. R. Acad. Sci., Paris, Sér. I, Math. 329, No. 8, 747--752 (1999; Zbl 0956.74043) Full Text: DOI OpenURL
Kangro, Urve; Nicolaides, Roy Divergence boundary conditions for vector Helmholtz equations with divergence constraints. (English) Zbl 0947.35048 M2AN, Math. Model. Numer. Anal. 33, No. 3, 479-492 (1999). Reviewer: Dimitar Kolev (Sofia) MSC: 35J25 65N12 35J05 65N30 PDF BibTeX XML Cite \textit{U. Kangro} and \textit{R. Nicolaides}, M2AN, Math. Model. Numer. Anal. 33, No. 3, 479--492 (1999; Zbl 0947.35048) Full Text: DOI EuDML Link OpenURL
Qin, Yuming Asymptotic behavior for global smooth solution to a one-dimensional nonlinear thermoviscoelastic system. (English) Zbl 0933.74019 J. Partial Differ. Equations 12, No. 2, 111-134 (1999). Reviewer: K.N.Srivastava (Bhopal) MSC: 74F05 74D99 35Q72 PDF BibTeX XML Cite \textit{Y. Qin}, J. Partial Differ. Equations 12, No. 2, 111--134 (1999; Zbl 0933.74019) OpenURL
Cheng, Aijie Improvement on stability and convergence of ADI schemes. (English) Zbl 0931.65095 Appl. Math. Mech., Engl. Ed. 20, No. 1, 76-83 (1999). Reviewer: L.G.Vulkov (Russe) MSC: 65M12 35K55 65H10 65M06 65M15 PDF BibTeX XML Cite \textit{A. Cheng}, Appl. Math. Mech., Engl. Ed. 20, No. 1, 76--83 (1999; Zbl 0931.65095) Full Text: DOI OpenURL
Durán, R. G.; Hervella-Nieto, L.; Liberman, E.; Rodríguez, R.; Solomin, J. Approximation of the vibration modes of a plate by Reissner-Mindlin equations. (English) Zbl 0945.74030 Math. Comput. 68, No. 228, 1447-1463 (1999). Reviewer: M.Mişicu (Bucureşti) MSC: 74H45 74K20 74H15 74S05 65N30 PDF BibTeX XML Cite \textit{R. G. Durán} et al., Math. Comput. 68, No. 228, 1447--1463 (1999; Zbl 0945.74030) Full Text: DOI OpenURL
Ernst, Emil Ellipticity loss in isotropic elasticity. (English) Zbl 0927.74007 J. Elasticity 51, No. 3, 203-211 (1998). MSC: 74B05 35Q72 35B30 PDF BibTeX XML Cite \textit{E. Ernst}, J. Elasticity 51, No. 3, 203--211 (1998; Zbl 0927.74007) Full Text: DOI OpenURL