Pugachev, V. S.; Sinitsyn, I. N. Lectures on functional analysis and applications (to appear). 2nd edition. (English) Zbl 07029832 Hackensack, NJ: World Scientific (ISBN 978-981-3203-17-4/hbk; 978-981-3203-18-1/pbk). 800 p. (2024). MSC: 46-01 47-01 PDF BibTeX XML Cite \textit{V. S. Pugachev} and \textit{I. N. Sinitsyn}, Lectures on functional analysis and applications (to appear). 2nd edition. Hackensack, NJ: World Scientific (2024; Zbl 07029832) Full Text: DOI
Cheshmavar, Jahangir; Dallaki, Ayyaneh; Baradaran, Javad On abstract results of operator representation of frames in Hilbert spaces. (English) Zbl 1515.42022 J. Pseudo-Differ. Oper. Appl. 14, No. 2, Paper No. 30, 12 p. (2023). Reviewer: Virender Dalal (Delhi) MSC: 42C15 47B99 PDF BibTeX XML Cite \textit{J. Cheshmavar} et al., J. Pseudo-Differ. Oper. Appl. 14, No. 2, Paper No. 30, 12 p. (2023; Zbl 1515.42022) Full Text: DOI arXiv
Simons, Stephen \(m\)th roots of the identity operator and the geometry conjecture. (English) Zbl 1502.46016 Proc. Am. Math. Soc. 150, No. 10, 4315-4323 (2022). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46C05 46C07 49J35 46A22 47H05 47H10 PDF BibTeX XML Cite \textit{S. Simons}, Proc. Am. Math. Soc. 150, No. 10, 4315--4323 (2022; Zbl 1502.46016) Full Text: DOI arXiv
Pahari, N. P.; Kohli, Teena; Ghimire, J. L. Frame systems in non-locally convex Banach spaces. (English) Zbl 1513.42133 Jordan J. Math. Stat. 15, No. 2, 231-242 (2022). MSC: 42C15 42C30 PDF BibTeX XML Cite \textit{N. P. Pahari} et al., Jordan J. Math. Stat. 15, No. 2, 231--242 (2022; Zbl 1513.42133) Full Text: DOI
Ghosh, Prasenjit; Samanta, T. K. Representation of uniform boundedness principle and Hahn-Banach theorem in linear \(n\)-normed space. (English) Zbl 1503.46019 J. Anal. 30, No. 2, 597-619 (2022). MSC: 46B99 PDF BibTeX XML Cite \textit{P. Ghosh} and \textit{T. K. Samanta}, J. Anal. 30, No. 2, 597--619 (2022; Zbl 1503.46019) Full Text: DOI arXiv
Fernández-Sánchez, J.; Maghsoudi, S.; Rodríguez-Vidanes, D. L.; Seoane-Sepúlveda, J. B. Classical vs. non-Archimedean analysis: an approach via algebraic genericity. (English) Zbl 1494.46017 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 2, Paper No. 72, 27 p. (2022). MSC: 46B87 26E30 46S10 32P05 PDF BibTeX XML Cite \textit{J. Fernández-Sánchez} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 2, Paper No. 72, 27 p. (2022; Zbl 1494.46017) Full Text: DOI
Jingshi, Xu A sandwich type Hahn-Banach theorem for convex and concave functionals. (English) Zbl 1512.46054 J. Math. Appl. 44, 119-122 (2021). MSC: 46N10 46A22 PDF BibTeX XML Cite \textit{X. Jingshi}, J. Math. Appl. 44, 119--122 (2021; Zbl 1512.46054) Full Text: DOI
Kawasaki, Hidefumi A discrete common fixed point theorem on L\(^\natural\)-convex sets. (English) Zbl 1486.47096 J. Nonlinear Convex Anal. 22, No. 11, 2525-2530 (2021). MSC: 47H10 46A22 39A12 PDF BibTeX XML Cite \textit{H. Kawasaki}, J. Nonlinear Convex Anal. 22, No. 11, 2525--2530 (2021; Zbl 1486.47096) Full Text: Link
Boccuto, Antonio Hahn-Banach-type theorems and subdifferentials for invariant and equivariant order continuous vector lattice-valued operators with applications to optimization. (English) Zbl 1491.46074 Tatra Mt. Math. Publ. 78, 139-156 (2021). MSC: 46N10 28B15 43A07 47N10 49K27 PDF BibTeX XML Cite \textit{A. Boccuto}, Tatra Mt. Math. Publ. 78, 139--156 (2021; Zbl 1491.46074) Full Text: DOI
Park, Sehie Extending KKM theory to a large scaled logical system. (English) Zbl 1480.54038 J. Nonlinear Convex Anal. 22, No. 6, 1045-1055 (2021). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 54-02 46A22 47H04 47H10 49J27 54C60 55M20 PDF BibTeX XML Cite \textit{S. Park}, J. Nonlinear Convex Anal. 22, No. 6, 1045--1055 (2021; Zbl 1480.54038)
Sohail; Sen, Ujjwal Witnessing nonseparability of bipartite quantum operations. (English) Zbl 07409917 Phys. Lett., A 404, Article ID 127411, 5 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{Sohail} and \textit{U. Sen}, Phys. Lett., A 404, Article ID 127411, 5 p. (2021; Zbl 07409917) Full Text: DOI arXiv
Ram, Madhu An analogy of Hahn-Banach separation theorem for nearly topological linear spaces. (English) Zbl 1485.46006 Ural Math. J. 7, No. 1, 81-86 (2021). Reviewer: Zoran Kadelburg (Beograd) MSC: 46A22 46A19 PDF BibTeX XML Cite \textit{M. Ram}, Ural Math. J. 7, No. 1, 81--86 (2021; Zbl 1485.46006) Full Text: DOI MNR
Ng, Wee Leng Banach-Steinhaus theorem for the space \(\mathcal{P}\) of all primitives of Henstock-Kurzweil integrable functions. (English) Zbl 1486.46029 N. Z. J. Math. 51, 79-83 (2021). Reviewer: José Mendoza (Madrid) MSC: 46B99 26A39 46A22 PDF BibTeX XML Cite \textit{W. L. Ng}, N. Z. J. Math. 51, 79--83 (2021; Zbl 1486.46029) Full Text: DOI
Khabibullin, B. N.; Rozit, A. P.; Khabibullina, E. B. Order versions of the Hahn-Banach theorem and envelopes. II: Applications to function theory. (English. Russian original) Zbl 1481.46002 J. Math. Sci., New York 257, No. 3, 366-409 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 162, 93-135 (2019). Reviewer: Constantin Niculescu (Craiova) MSC: 46A40 46E05 31C05 PDF BibTeX XML Cite \textit{B. N. Khabibullin} et al., J. Math. Sci., New York 257, No. 3, 366--409 (2021; Zbl 1481.46002); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 162, 93--135 (2019) Full Text: DOI arXiv
Karlsson, Anders Hahn-Banach for metric functionals and horofunctions. (English) Zbl 1471.46019 J. Funct. Anal. 281, No. 2, Article ID 109030, 17 p. (2021). Reviewer: Zoran Kadelburg (Beograd) MSC: 46B85 54E35 46A22 05C25 PDF BibTeX XML Cite \textit{A. Karlsson}, J. Funct. Anal. 281, No. 2, Article ID 109030, 17 p. (2021; Zbl 1471.46019) Full Text: DOI arXiv
Usachev, Alexandr A direct approach to positive normalised traces on simply generated ideals. (English) Zbl 07317301 Stud. Math. 258, No. 1, 71-85 (2021). Reviewer: Elhadj Dahia (Bou Saâda) MSC: 47B10 47B37 46B45 46A45 PDF BibTeX XML Cite \textit{A. Usachev}, Stud. Math. 258, No. 1, 71--85 (2021; Zbl 07317301) Full Text: DOI
Effros, Edward G.; Ruan, Zhong-Jin Theory of operator spaces. Reprint of the 2000 Clarendon Press edition, published under the title Operator spaces. (English) Zbl 1492.46001 AMS Chelsea Publishing 386. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6505-6/pbk; 978-1-4704-7035-7/ebook). xv, 358 p. (2020). Reviewer: Dirk Werner (Berlin) MSC: 46-02 47-02 46L07 47L25 46B28 46M05 PDF BibTeX XML Cite \textit{E. G. Effros} and \textit{Z.-J. Ruan}, Theory of operator spaces. Reprint of the 2000 Clarendon Press edition, published under the title Operator spaces. Providence, RI: American Mathematical Society (AMS) (2020; Zbl 1492.46001) Full Text: DOI
Boccuto, Antonio Hahn-Banach and sandwich theorems for equivariant vector lattice-valued operators and applications. (English) Zbl 07439074 Tatra Mt. Math. Publ. 76, 11-34 (2020). MSC: 90C48 90C46 28B15 43A07 46N10 47N10 PDF BibTeX XML Cite \textit{A. Boccuto}, Tatra Mt. Math. Publ. 76, 11--34 (2020; Zbl 07439074) Full Text: DOI
Ishihara, Hajime The constructive Hahn-Banach theorem, revisited. (English) Zbl 1505.03135 Rezuş, Adrian (ed.), Contemporary logic and computing. London: College Publications. Landsc. Log. 1, 638-663 (2020). MSC: 03F60 46A22 PDF BibTeX XML Cite \textit{H. Ishihara}, Landsc. Log. 1, 638--663 (2020; Zbl 1505.03135)
Dong, Pingchuan; Dong, Zhe; Jiang, Haiyi Generalized Hahn-Banach theorem in nuclear mapping spaces. (Chinese. English summary) Zbl 1474.46004 Chin. Ann. Math., Ser. A 41, No. 4, 399-408 (2020). MSC: 46A22 46B07 46M10 PDF BibTeX XML Cite \textit{P. Dong} et al., Chin. Ann. Math., Ser. A 41, No. 4, 399--408 (2020; Zbl 1474.46004) Full Text: DOI
Fernández y Fernández-Arroyo, Fidel José The Hahn-Banach theorem: a proof of the equivalence between the analytic and geometric versions. (English) Zbl 1467.46003 Rend. Circ. Mat. Palermo (2) 69, No. 3, 911-916 (2020). Reviewer: Nacib Gurgel Albuquerque (João Pessoa) MSC: 46A22 46A03 46B99 PDF BibTeX XML Cite \textit{F. J. Fernández y Fernández-Arroyo}, Rend. Circ. Mat. Palermo (2) 69, No. 3, 911--916 (2020; Zbl 1467.46003) Full Text: DOI arXiv
Tarcsay, Zsigmond; Titkos, Tamás Operators on anti-dual pairs: self-adjoint extensions and the strong Parrott theorem. (English) Zbl 07303613 Can. Math. Bull. 63, No. 4, 813-824 (2020). MSC: 47A20 46A22 46A20 46K10 PDF BibTeX XML Cite \textit{Z. Tarcsay} and \textit{T. Titkos}, Can. Math. Bull. 63, No. 4, 813--824 (2020; Zbl 07303613) Full Text: DOI arXiv
El Amrani, Abdelkhalek; Razouki, Abdelhak; Hassani, Rachid A.; Babahmed, Mohamed On the \(\mathbb{K} \)-vector sequential topology on a non-Archimedean valued field. (English) Zbl 1468.46080 \(p\)-Adic Numbers Ultrametric Anal. Appl. 12, No. 3, 177-184 (2020). MSC: 46S10 46A03 46A19 PDF BibTeX XML Cite \textit{A. El Amrani} et al., \(p\)-Adic Numbers Ultrametric Anal. Appl. 12, No. 3, 177--184 (2020; Zbl 1468.46080) Full Text: DOI
Bachir, Mohammed; Flores, Gonzalo Index of symmetry and topological classification of asymmetric normed spaces. (English) Zbl 1460.46073 Rocky Mt. J. Math. 50, No. 6, 1951-1964 (2020). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46S99 46A22 46B20 54E52 PDF BibTeX XML Cite \textit{M. Bachir} and \textit{G. Flores}, Rocky Mt. J. Math. 50, No. 6, 1951--1964 (2020; Zbl 1460.46073) Full Text: DOI arXiv Euclid Link
Ghosh, Prasenjit; Roy, Sanjay; Samanta, T. K. Uniform boundedness principle and Hahn-Banach theorem for \(b\)-linear functional related to linear 2-normed space. (English) Zbl 1463.46039 South East Asian J. Math. Math. Sci. 16, No. 2, 131-150 (2020). MSC: 46B99 PDF BibTeX XML Cite \textit{P. Ghosh} et al., South East Asian J. Math. Math. Sci. 16, No. 2, 131--150 (2020; Zbl 1463.46039) Full Text: arXiv Link
Wei, Wen Hsiang On the development of nonlinear operator theory. (English. Russian original) Zbl 07247837 Funct. Anal. Appl. 54, No. 1, 49-52 (2020); translation from Funkts. Anal. Prilozh. 54, No. 1, 63-68 (2020). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{W. H. Wei}, Funct. Anal. Appl. 54, No. 1, 49--52 (2020; Zbl 07247837); translation from Funkts. Anal. Prilozh. 54, No. 1, 63--68 (2020) Full Text: DOI arXiv
Pietsch, Albrecht More about singular traces on simply generated operator ideals. (English) Zbl 1483.47035 Arch. Math. 115, No. 3, 299-308 (2020). Reviewer: Daniele Puglisi (Catania) MSC: 47B10 47B37 46B45 46A45 PDF BibTeX XML Cite \textit{A. Pietsch}, Arch. Math. 115, No. 3, 299--308 (2020; Zbl 1483.47035) Full Text: DOI
Natarajan, P. N. Functional analysis and summability. (English) Zbl 1448.46001 Boca Raton, FL: CRC Press (ISBN 978-0-367-54449-2/hbk; 978-1-003-08936-0/ebook). xix, 220 p. (2020). MSC: 46-01 40-01 PDF BibTeX XML Cite \textit{P. N. Natarajan}, Functional analysis and summability. Boca Raton, FL: CRC Press (2020; Zbl 1448.46001) Full Text: DOI
Pietsch, Albrecht The existence of singular traces on simply generated operator ideals. (English) Zbl 1458.47040 Integral Equations Oper. Theory 92, No. 1, Paper No. 7, 23 p. (2020). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 47L20 47B37 46B45 46A45 PDF BibTeX XML Cite \textit{A. Pietsch}, Integral Equations Oper. Theory 92, No. 1, Paper No. 7, 23 p. (2020; Zbl 1458.47040) Full Text: DOI
Morillon, Marianne Multiple choices imply the Ingleton and Krein-Milman axioms. (English) Zbl 1477.03197 J. Symb. Log. 85, No. 1, 439-455 (2020). MSC: 03E25 46S10 46A22 03E35 PDF BibTeX XML Cite \textit{M. Morillon}, J. Symb. Log. 85, No. 1, 439--455 (2020; Zbl 1477.03197) Full Text: DOI arXiv
Mursaleen, Mohammad; Başar, Feyzi Sequence spaces. Topics in modern summability theory. (English) Zbl 1468.46003 Mathematics and its Applications: Modelling, Engineering, and Social Sciences. Boca Raton, FL: CRC Press (ISBN 978-0-367-81917-0/hbk; 978-1-032-17319-1/pbk; 978-1-003-01511-6/ebook). xx, 292 p. (2020). Reviewer: İbrahim Çanak (İzmir) MSC: 46-02 40-02 40Cxx 46A45 PDF BibTeX XML Cite \textit{M. Mursaleen} and \textit{F. Başar}, Sequence spaces. Topics in modern summability theory. Boca Raton, FL: CRC Press (2020; Zbl 1468.46003) Full Text: DOI
Schlagbauer, Konstantin; Schuster, Peter; Wessel, Daniel The Hahn-Banach theorem by disjunction elimination. (Der Satz von Hahn-Banach per Disjunktionselimination.) (German. English summary) Zbl 1480.03061 Confluentes Math. 11, No. 1, 79-93 (2019). MSC: 03F65 46S30 06F20 PDF BibTeX XML Cite \textit{K. Schlagbauer} et al., Confluentes Math. 11, No. 1, 79--93 (2019; Zbl 1480.03061) Full Text: DOI
Stonyakin, Fedor Sergeevich Hahn-Banach type theorems on functional separation for convex ordered normed cones. (English) Zbl 1463.46003 Eurasian Math. J. 10, No. 1, 59-79 (2019). MSC: 46A22 46A20 46B10 PDF BibTeX XML Cite \textit{F. S. Stonyakin}, Eurasian Math. J. 10, No. 1, 59--79 (2019; Zbl 1463.46003) Full Text: DOI MNR
Boccuto, Antonio Hahn-Banach-type theorems and applications to optimization for partially ordered vector space-valued invariant operators. (English) Zbl 1444.46003 Real Anal. Exch. 44, No. 2, 333-368 (2019). Reviewer: S. S. Kutateladze (Novosibirsk) MSC: 46A22 46A40 46N10 47N10 28B15 PDF BibTeX XML Cite \textit{A. Boccuto}, Real Anal. Exch. 44, No. 2, 333--368 (2019; Zbl 1444.46003) Full Text: DOI Euclid
Chávez-Domínguez, Javier Alejandro An Ando-Choi-Effros lifting theorem respecting subspaces. (English) Zbl 1441.46006 J. Lond. Math. Soc., II. Ser. 100, No. 3, 914-936 (2019). Reviewer: Dirk Werner (Berlin) MSC: 46B04 46A22 46B28 46B80 47B01 PDF BibTeX XML Cite \textit{J. A. Chávez-Domínguez}, J. Lond. Math. Soc., II. Ser. 100, No. 3, 914--936 (2019; Zbl 1441.46006) Full Text: DOI arXiv
Mendel, Manor A simple proof of the Johnson-Lindenstrauss extension theorem. (English) Zbl 1433.46004 Am. Math. Mon. 126, No. 9, 838-840 (2019). Reviewer: Dirk Werner (Berlin) MSC: 46A22 46T20 46B09 46C99 PDF BibTeX XML Cite \textit{M. Mendel}, Am. Math. Mon. 126, No. 9, 838--840 (2019; Zbl 1433.46004) Full Text: DOI arXiv
Çakan, Sümeyye; Yılmaz, Yılmaz A generalization of the Hahn-Banach theorem in seminormed quasilinear spaces. (English) Zbl 1436.46004 J. Math. Appl. 42, 79-94 (2019). MSC: 46A22 15A03 PDF BibTeX XML Cite \textit{S. Çakan} and \textit{Y. Yılmaz}, J. Math. Appl. 42, 79--94 (2019; Zbl 1436.46004) Full Text: DOI
Ho, Kwok-Pun Interpolation of sublinear operators which map into Riesz spaces and applications. (English) Zbl 1429.46016 Proc. Am. Math. Soc. 147, No. 8, 3479-3492 (2019). MSC: 46B70 46A40 46A22 42B25 PDF BibTeX XML Cite \textit{K.-P. Ho}, Proc. Am. Math. Soc. 147, No. 8, 3479--3492 (2019; Zbl 1429.46016) Full Text: DOI
Gao, Niushan; Leung, Denny H.; Xanthos, Foivos A local Hahn-Banach theorem and its applications. (English) Zbl 1502.46001 Arch. Math. 112, No. 5, 521-529 (2019). MSC: 46A22 46A20 46B42 60A10 PDF BibTeX XML Cite \textit{N. Gao} et al., Arch. Math. 112, No. 5, 521--529 (2019; Zbl 1502.46001) Full Text: DOI arXiv
Amarante, Massimiliano The sandwich theorem via Pataraia’s fixed point theorem. (English) Zbl 1430.46054 Positivity 23, No. 1, 97-100 (2019). MSC: 46N10 46A22 PDF BibTeX XML Cite \textit{M. Amarante}, Positivity 23, No. 1, 97--100 (2019; Zbl 1430.46054) Full Text: DOI
Yang, Zhifeng; Feng, Zhaosheng Approximate controllability of Euler-Bernoulli viscoelastic systems. (English) Zbl 1406.93061 Electron. J. Differ. Equ. 2019, Paper No. 19, 16 p. (2019). MSC: 93B05 93C20 35Q93 PDF BibTeX XML Cite \textit{Z. Yang} and \textit{Z. Feng}, Electron. J. Differ. Equ. 2019, Paper No. 19, 16 p. (2019; Zbl 1406.93061) Full Text: Link
Lau, Anthony To-Ming; Yao, Liangjin Amenability and Fan-Glicksberg theorem for set-valued mappings. (English) Zbl 1449.43001 Carpathian J. Math. 34, No. 3, 341-346 (2018). MSC: 43A07 43A60 46A22 PDF BibTeX XML Cite \textit{A. T. M. Lau} and \textit{L. Yao}, Carpathian J. Math. 34, No. 3, 341--346 (2018; Zbl 1449.43001)
Aksoy, Asuman Güven; Peng, Qidi Constructing an element of a Banach space with given deviation from its nested subspaces. (English) Zbl 1412.41011 Khayyam J. Math. 4, No. 1, 59-76 (2018). MSC: 41A25 41A50 46B20 PDF BibTeX XML Cite \textit{A. G. Aksoy} and \textit{Q. Peng}, Khayyam J. Math. 4, No. 1, 59--76 (2018; Zbl 1412.41011) Full Text: DOI arXiv
Stonyakin, F. S. A sublinear analog of the Banach-Mazur theorem in separated convex cones with norm. (English. Russian original) Zbl 1409.46046 Math. Notes 104, No. 1, 111-120 (2018); translation from Mat. Zametki 104, No. 1, 118-130 (2018). MSC: 46N10 46B40 PDF BibTeX XML Cite \textit{F. S. Stonyakin}, Math. Notes 104, No. 1, 111--120 (2018; Zbl 1409.46046); translation from Mat. Zametki 104, No. 1, 118--130 (2018) Full Text: DOI
González, M.; Perez-Garcia, C. Non-Archimedean Hahn-Banach theorems and injective Banach spaces. (English) Zbl 1406.46059 Escassut, Alain (ed.) et al., Advances in ultrametric analysis. 14th international conference on \(p\)-adic functional analysis, Université d’Auvergne, Aurillac, France, June 30 – July 4, 2016. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3491-5/hbk; 978-1-4704-4676-5/ebook). Contemporary Mathematics 704, 231-249 (2018). MSC: 46S10 46A22 PDF BibTeX XML Cite \textit{M. González} and \textit{C. Perez-Garcia}, Contemp. Math. 704, 231--249 (2018; Zbl 1406.46059) Full Text: DOI
Grzybowski, Jerzy; Pallaschke, Diethard; Przybycień, Hubert; Urbański, Ryszard On some consequences of Mazur-Orlicz theorem to Hahn-Banach-Lagrange theorem. (English) Zbl 1418.90245 Optimization 67, No. 7, 1005-1015 (2018). MSC: 90C29 PDF BibTeX XML Cite \textit{J. Grzybowski} et al., Optimization 67, No. 7, 1005--1015 (2018; Zbl 1418.90245) Full Text: DOI
Ovchinnikov, Sergei Functional analysis. An introductory course. (English) Zbl 1398.46001 Universitext. Cham: Springer (ISBN 978-3-319-91511-1/pbk; 978-3-319-91512-8/ebook). xii, 205 p. (2018). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 46-01 47-01 46Bxx 46Cxx PDF BibTeX XML Cite \textit{S. Ovchinnikov}, Functional analysis. An introductory course. Cham: Springer (2018; Zbl 1398.46001) Full Text: DOI
Kadets, Vladimir A course in functional analysis and measure theory. Translated from the Russian by Andrei Iacob. (English) Zbl 1408.46002 Universitext. Cham: Springer (ISBN 978-3-319-92003-0/pbk; 978-3-319-92004-7/ebook). xxii, 539 p. (2018). Reviewer: Dirk Werner (Berlin) MSC: 46-01 28-01 47-01 PDF BibTeX XML Cite \textit{V. Kadets}, A course in functional analysis and measure theory. Translated from the Russian by Andrei Iacob. Cham: Springer (2018; Zbl 1408.46002) Full Text: DOI
Shih, Mau-Hsiang; Tsai, Feng-Sheng; Hsu, Sheng-Yi A determination of Helly numbers of convex sets in topological vector spaces. (English) Zbl 1390.52013 J. Nonlinear Convex Anal. 19, No. 1, 115-121 (2018). MSC: 52A35 46A55 52A07 PDF BibTeX XML Cite \textit{M.-H. Shih} et al., J. Nonlinear Convex Anal. 19, No. 1, 115--121 (2018; Zbl 1390.52013) Full Text: Link
Simons, Stephen Bootstrapping the Mazur-Orlicz-König theorem and the Hahn-Banach Lagrange theorem. (English) Zbl 1400.46002 J. Convex Anal. 25, No. 2, 691-699 (2018). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46A22 46N10 PDF BibTeX XML Cite \textit{S. Simons}, J. Convex Anal. 25, No. 2, 691--699 (2018; Zbl 1400.46002) Full Text: arXiv Link
Suárez de la Fuente, Jesús Subspaces of \(\ell_{1}\) satisfying Grothendieck’s theorem. (English) Zbl 1388.46011 Bull. Sci. Math. 143, 73-81 (2018). Reviewer: Daniele Puglisi (Catania) MSC: 46B03 46B25 46A22 PDF BibTeX XML Cite \textit{J. Suárez de la Fuente}, Bull. Sci. Math. 143, 73--81 (2018; Zbl 1388.46011) Full Text: DOI
Ruiz Galán, M. Elementary convex techniques for equilibrium, minimax and variational problems. (English) Zbl 1411.90339 Optim. Lett. 12, No. 1, 137-154 (2018). MSC: 90C33 90C47 PDF BibTeX XML Cite \textit{M. Ruiz Galán}, Optim. Lett. 12, No. 1, 137--154 (2018; Zbl 1411.90339) Full Text: DOI
Sinha, Parijat; Mishra, Divya; Lal, Ghanshyam Fuzzy anti 2-bounded linear functional. (English) Zbl 1400.46060 J. Fuzzy Math. 25, No. 2, 393-402 (2017). MSC: 46S40 46A22 PDF BibTeX XML Cite \textit{P. Sinha} et al., J. Fuzzy Math. 25, No. 2, 393--402 (2017; Zbl 1400.46060)
Lau, Anthony To-Ming; Yao, Liangjin Hahn-Banach extension and optimization related to fixed point properties and amenability. (English) Zbl 1437.46065 J. Nonlinear Var. Anal. 1, No. 1, 127-143 (2017). MSC: 46N10 46A22 46B20 43A20 47H10 47H04 47H05 PDF BibTeX XML Cite \textit{A. T. M. Lau} and \textit{L. Yao}, J. Nonlinear Var. Anal. 1, No. 1, 127--143 (2017; Zbl 1437.46065) Full Text: Link
Randriambololona, Hugues On metric convexity, the discrete Hahn-Banach theorem, separating systems and sets of points forming only acute angles. (English) Zbl 1406.52035 Int. J. Inf. Coding Theory 4, No. 2-3, 159-169 (2017). MSC: 52C10 94A60 PDF BibTeX XML Cite \textit{H. Randriambololona}, Int. J. Inf. Coding Theory 4, No. 2--3, 159--169 (2017; Zbl 1406.52035) Full Text: DOI arXiv
Wang, Jianyong The theorems of embedding normed cones into normed linear spaces and the Hahn-Banach extension theorems. (Chinese. English summary) Zbl 1399.46022 Acta Math. Sci., Ser. A, Chin. Ed. 37, No. 6, 1040-1052 (2017). MSC: 46B40 46B20 46A22 PDF BibTeX XML Cite \textit{J. Wang}, Acta Math. Sci., Ser. A, Chin. Ed. 37, No. 6, 1040--1052 (2017; Zbl 1399.46022)
Horvath, Charles Some general principles in tropical convexities. (English) Zbl 1397.14078 ESAIM, Proc. Surv. 57, 48-63 (2017). Reviewer: Mircea Balaj (Oradea) MSC: 14T05 52A01 46A22 47H10 54H25 PDF BibTeX XML Cite \textit{C. Horvath}, ESAIM, Proc. Surv. 57, 48--63 (2017; Zbl 1397.14078) Full Text: DOI
Stonyakin, F. S. Sequential analogues of the Lyapunov and Krein-Milman theorems in Fréchet spaces. (English. Russian original) Zbl 1390.46004 J. Math. Sci., New York 225, No. 2, 322-344 (2017); translation from Sovrem. Mat., Fundam. Napravl. 57, 162-183 (2015). Reviewer: Vladimir Kadets (Kharkiv) MSC: 46A04 46A55 46G10 PDF BibTeX XML Cite \textit{F. S. Stonyakin}, J. Math. Sci., New York 225, No. 2, 322--344 (2017; Zbl 1390.46004); translation from Sovrem. Mat., Fundam. Napravl. 57, 162--183 (2015) Full Text: DOI
Bessenyei, Mihály; Popovics, Bella Convex structures induced by Chebyshev systems. (English) Zbl 1379.52001 Indag. Math., New Ser. 28, No. 6, 1126-1133 (2017). Reviewer: Eszter Gselmann (Debrecen) MSC: 52A01 26A51 39B62 52A10 52A35 PDF BibTeX XML Cite \textit{M. Bessenyei} and \textit{B. Popovics}, Indag. Math., New Ser. 28, No. 6, 1126--1133 (2017; Zbl 1379.52001) Full Text: DOI
Galán, M. Ruiz A theorem of the alternative with an arbitrary number of inequalities and quadratic programming. (English) Zbl 1373.90171 J. Glob. Optim. 69, No. 2, 427-442 (2017). MSC: 90C46 90C20 46A22 26B25 PDF BibTeX XML Cite \textit{M. R. Galán}, J. Glob. Optim. 69, No. 2, 427--442 (2017; Zbl 1373.90171) Full Text: DOI arXiv
Steinwart, Ingo Representation of quasi-monotone functionals by families of separating hyperplanes. (English) Zbl 1381.46004 Math. Nachr. 290, No. 11-12, 1859-1883 (2017). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46A22 26B25 46N10 46N30 91B30 PDF BibTeX XML Cite \textit{I. Steinwart}, Math. Nachr. 290, No. 11--12, 1859--1883 (2017; Zbl 1381.46004) Full Text: DOI arXiv
Montiel López, P.; Ruiz Galán, M. Revisiting the Hahn-Banach theorem and nonlinear infinite programming. (English) Zbl 1432.49036 J. Math. Anal. Appl. 455, No. 2, 1037-1050 (2017). MSC: 49K27 46A22 90C05 90C30 90C48 PDF BibTeX XML Cite \textit{P. Montiel López} and \textit{M. Ruiz Galán}, J. Math. Anal. Appl. 455, No. 2, 1037--1050 (2017; Zbl 1432.49036) Full Text: DOI arXiv
Mihara, Tomoki Hahn-Banach theorem and duality theory on non-Archimedean locally convex spaces. (English) Zbl 1387.46052 J. Convex Anal. 24, No. 2, 587-619 (2017). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46S10 47S10 46A22 12J25 16D90 PDF BibTeX XML Cite \textit{T. Mihara}, J. Convex Anal. 24, No. 2, 587--619 (2017; Zbl 1387.46052) Full Text: arXiv Link
Helton, J. William; Klep, Igor; McCullough, Scott The tracial Hahn-Banach theorem, polar duals, matrix convex sets, and projections of free spectrahedra. (English) Zbl 1457.14123 J. Eur. Math. Soc. (JEMS) 19, No. 6, 1845-1897 (2017). Reviewer: S. S. Kutateladze (Novosibirsk) MSC: 14P10 47L25 90C22 46B25 81P47 15A22 15B48 PDF BibTeX XML Cite \textit{J. W. Helton} et al., J. Eur. Math. Soc. (JEMS) 19, No. 6, 1845--1897 (2017; Zbl 1457.14123) Full Text: DOI arXiv
Oja, Eve; Põldvere, Märt; Viil, Tauri On totally smooth subspaces of Banach spaces: the Vlasov theorem revisited. (English) Zbl 1382.46008 Stud. Math. 238, No. 1, 91-99 (2017). Reviewer: Dirk Werner (Berlin) MSC: 46B04 46A22 PDF BibTeX XML Cite \textit{E. Oja} et al., Stud. Math. 238, No. 1, 91--99 (2017; Zbl 1382.46008) Full Text: DOI
Sasane, Amol A friendly approach to functional analysis. (English) Zbl 1371.46001 Essential Textbooks in Mathematics. Hackensack, NJ: World Scientific (ISBN 978-1-78634-333-8/hbk; 978-1-78634-334-5/pbk). xiv, 379 p. (2017). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 46-01 47-01 PDF BibTeX XML Cite \textit{A. Sasane}, A friendly approach to functional analysis. Hackensack, NJ: World Scientific (2017; Zbl 1371.46001)
Shalit, Orr Moshe A first course in functional analysis. (English) Zbl 1367.46001 Boca Raton, FL: CRC Press (ISBN 978-1-4987-7161-0/hbk; 978-1-4987-7162-7/ebook). xv, 240 p. (2017). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 46-01 47-01 PDF BibTeX XML Cite \textit{O. M. Shalit}, A first course in functional analysis. Boca Raton, FL: CRC Press (2017; Zbl 1367.46001) Full Text: Link
Vasudeva, Harkrishan Lal [Shirali, Satish] Elements of Hilbert spaces and operator theory. With contributions from Satish Shirali. (English) Zbl 1368.46002 Singapore: Springer (ISBN 978-981-10-3019-2/hbk; 978-981-10-3020-8/ebook). xiii, 522 p. (2017). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 46-01 46Cxx 47Axx PDF BibTeX XML Cite \textit{H. L. Vasudeva}, Elements of Hilbert spaces and operator theory. With contributions from Satish Shirali. Singapore: Springer (2017; Zbl 1368.46002) Full Text: DOI
Cerreia-Vioglio, S.; Maccheroni, F.; Marinacci, M. Hilbert \(A\)-modules. (English) Zbl 1364.46044 J. Math. Anal. Appl. 446, No. 1, 970-1017 (2017). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 46H25 46A22 46S50 PDF BibTeX XML Cite \textit{S. Cerreia-Vioglio} et al., J. Math. Anal. Appl. 446, No. 1, 970--1017 (2017; Zbl 1364.46044) Full Text: DOI
Stonyakin, Fedor Sergeevich An analogue of the Hahn-Banach theorem for functionals on abstract convex cones. (English) Zbl 1463.46002 Eurasian Math. J. 7, No. 3, 89-99 (2016). MSC: 46A22 46A20 46B10 PDF BibTeX XML Cite \textit{F. S. Stonyakin}, Eurasian Math. J. 7, No. 3, 89--99 (2016; Zbl 1463.46002) Full Text: DOI MNR
Dăneţ, Rodica-Mihaela A Mazur-Orlicz type theorem in interval analysis and its consequences. (English) Zbl 1408.46005 de Jeu, Marcel (ed.) et al., Ordered structures and applications. Positivity VII (Zaanen centennial conference), Leiden, the Netherlands, July 22–26, 2013. Basel: Birkhäuser/Springer. Trends Math., 127-159 (2016). MSC: 46A22 46S99 06F05 PDF BibTeX XML Cite \textit{R.-M. Dăneţ}, in: Ordered structures and applications. Positivity VII (Zaanen centennial conference), Leiden, the Netherlands, July 22--26, 2013. Basel: Birkhäuser/Springer. 127--159 (2016; Zbl 1408.46005) Full Text: DOI
Klep, Igor Matrix convex sets. (Slovenian. English summary) Zbl 1367.46047 Obz. Mat. Fiz. 63, No. 3, 81-99 (2016). MSC: 46L07 46A22 13J30 PDF BibTeX XML Cite \textit{I. Klep}, Obz. Mat. Fiz. 63, No. 3, 81--99 (2016; Zbl 1367.46047)
Abbaszadeh, S.; Eshaghi Gordji, M. On the quadratic support of strongly convex functions. (English) Zbl 1360.39016 Int. J. Nonlinear Anal. Appl. 7, No. 1, 15-20 (2016). MSC: 39B62 PDF BibTeX XML Cite \textit{S. Abbaszadeh} and \textit{M. Eshaghi Gordji}, Int. J. Nonlinear Anal. Appl. 7, No. 1, 15--20 (2016; Zbl 1360.39016) Full Text: DOI
Borovikov, I. A. Dual Clifford modules. (English. Russian original) Zbl 1359.15018 Dokl. Math. 94, No. 2, 523-526 (2016); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 470, No. 3, 251-254 (2016). MSC: 15A66 16D80 PDF BibTeX XML Cite \textit{I. A. Borovikov}, Dokl. Math. 94, No. 2, 523--526 (2016; Zbl 1359.15018); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 470, No. 3, 251--254 (2016) Full Text: DOI
Galán, Manuel Ruiz The Gordan theorem and its implications for minimax theory. (English) Zbl 1357.90172 J. Nonlinear Convex Anal. 17, No. 12, 2385-2405 (2016). MSC: 90C46 49K35 46A22 PDF BibTeX XML Cite \textit{M. R. Galán}, J. Nonlinear Convex Anal. 17, No. 12, 2385--2405 (2016; Zbl 1357.90172) Full Text: Link
Borovikov, I. A. On linear functionals on Clifford modules and their extensions. (English. Russian original) Zbl 1361.15031 Proc. Steklov Inst. Math. 293, 99-106 (2016); translation from Tr. Mat. Inst. Steklova 293, 105-112 (2016). Reviewer: John D. Dixon (Ottawa) MSC: 15A66 46A22 PDF BibTeX XML Cite \textit{I. A. Borovikov}, Proc. Steklov Inst. Math. 293, 99--106 (2016; Zbl 1361.15031); translation from Tr. Mat. Inst. Steklova 293, 105--112 (2016) Full Text: DOI
Montiel López, P.; Ruiz Galán, M. Nonlinear programming via König’s maximum theorem. (English) Zbl 1360.90238 J. Optim. Theory Appl. 170, No. 3, 838-852 (2016). Reviewer: Regina Sandra Burachik (Adelaide) MSC: 90C30 52A41 46A22 90C46 26B25 PDF BibTeX XML Cite \textit{P. Montiel López} and \textit{M. Ruiz Galán}, J. Optim. Theory Appl. 170, No. 3, 838--852 (2016; Zbl 1360.90238) Full Text: DOI
Yurdakadim, T.; Khan, M. K.; Miller, H. I.; Orhan, C. Generalized limits and statistical convergence. (English) Zbl 1360.46014 Mediterr. J. Math. 13, No. 3, 1135-1149 (2016). MSC: 46B45 40G15 40H05 PDF BibTeX XML Cite \textit{T. Yurdakadim} et al., Mediterr. J. Math. 13, No. 3, 1135--1149 (2016; Zbl 1360.46014) Full Text: DOI
Saheli, M. Hahn Banach theorem on fuzzy normed linear spaces. (English) Zbl 1355.46064 Ann. Fuzzy Math. Inform. 11, No. 2, 293-300 (2016). MSC: 46S40 46A22 PDF BibTeX XML Cite \textit{M. Saheli}, Ann. Fuzzy Math. Inform. 11, No. 2, 293--300 (2016; Zbl 1355.46064) Full Text: Link
Farenick, Douglas Fundamentals of functional analysis. (English) Zbl 1364.46001 Universitext. Cham: Springer (ISBN 978-3-319-45631-7/pbk; 978-3-319-45633-1/ebook). xiv, 451 p. (2016). Reviewer: Vegard Lima (Ålesund) MSC: 46-01 54-01 28-01 47-01 PDF BibTeX XML Cite \textit{D. Farenick}, Fundamentals of functional analysis. Cham: Springer (2016; Zbl 1364.46001) Full Text: DOI
Kozlov, Valery V. Invariant measures of smooth dynamical systems, generalized functions and summation methods. (English. Russian original) Zbl 1417.37088 Izv. Math. 80, No. 2, 342-358 (2016); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 80, No. 2, 63-80 (2016). Reviewer: Pengfei Zhang (Norman) MSC: 37C05 37C10 37C40 40G05 46A22 PDF BibTeX XML Cite \textit{V. V. Kozlov}, Izv. Math. 80, No. 2, 342--358 (2016; Zbl 1417.37088); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 80, No. 2, 63--80 (2016) Full Text: DOI
Cerreia-Vioglio, S.; Kupper, M.; Maccheroni, F.; Marinacci, M.; Vogelpoth, N. Conditional \(L_{p}\)-spaces and the duality of modules over \(f\)-algebras. (English) Zbl 1359.46046 J. Math. Anal. Appl. 444, No. 2, 1045-1070 (2016). MSC: 46H25 PDF BibTeX XML Cite \textit{S. Cerreia-Vioglio} et al., J. Math. Anal. Appl. 444, No. 2, 1045--1070 (2016; Zbl 1359.46046) Full Text: DOI
Borwein, Jonathan M.; Giladi, Ohad Some remarks on convex analysis in topological groups. (English) Zbl 1358.46006 J. Convex Anal. 23, No. 2, 313-332 (2016). Reviewer: Nicolas Hadjisavvas (Nikaia) MSC: 46A55 52A01 22A99 PDF BibTeX XML Cite \textit{J. M. Borwein} and \textit{O. Giladi}, J. Convex Anal. 23, No. 2, 313--332 (2016; Zbl 1358.46006) Full Text: arXiv Link
Ruiz Galán, M. A sharp Lagrange multiplier theorem for nonlinear programs. (English) Zbl 1359.90137 J. Glob. Optim. 65, No. 3, 513-530 (2016). Reviewer: Nada Djuranović-Miličić (Belgrade) MSC: 90C30 90C46 26B25 46A22 PDF BibTeX XML Cite \textit{M. Ruiz Galán}, J. Glob. Optim. 65, No. 3, 513--530 (2016; Zbl 1359.90137) Full Text: DOI
Limaye, Balmohan V. Linear functional analysis for scientists and engineers. (English) Zbl 1352.46001 Singapore: Springer (ISBN 978-981-10-0970-9/hbk; 978-981-10-0972-3/ebook). xiv, 254 p. (2016). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 46-01 PDF BibTeX XML Cite \textit{B. V. Limaye}, Linear functional analysis for scientists and engineers. Singapore: Springer (2016; Zbl 1352.46001) Full Text: DOI
Komornik, Vilmos Lectures on functional analysis and the Lebesgue integral. Translated from the French by the author. (English) Zbl 1350.46002 Universitext. London: Springer (ISBN 978-1-4471-6810-2/hbk; 978-1-4471-6811-9/ebook). xx, 403 p. (2016). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 46-01 28-01 41-01 47-01 PDF BibTeX XML Cite \textit{V. Komornik}, Lectures on functional analysis and the Lebesgue integral. Translated from the French by the author. London: Springer (2016; Zbl 1350.46002) Full Text: DOI
Badora, Roman The Hahn-Banach theorem almost everywhere. (English) Zbl 1352.46004 Aequationes Math. 90, No. 1, 173-179 (2016). Reviewer: Lydia Außenhofer (Passau) MSC: 46A22 PDF BibTeX XML Cite \textit{R. Badora}, Aequationes Math. 90, No. 1, 173--179 (2016; Zbl 1352.46004) Full Text: DOI
Borwein, Jonathan A very complicated proof of the minimax theorem. (English) Zbl 1337.46049 Minimax Theory Appl. 1, No. 1, 21-27 (2016). MSC: 46N10 49K35 46A22 46A55 90C25 PDF BibTeX XML Cite \textit{J. Borwein}, Minimax Theory Appl. 1, No. 1, 21--27 (2016; Zbl 1337.46049) Full Text: Link
Dinh, N.; Mo, T. H. Generalizations of the Hahn-Banach theorem revisited. (English) Zbl 1357.46005 Taiwanese J. Math. 19, No. 4, 1285-1304 (2015). MSC: 46A22 39B62 49J53 PDF BibTeX XML Cite \textit{N. Dinh} and \textit{T. H. Mo}, Taiwanese J. Math. 19, No. 4, 1285--1304 (2015; Zbl 1357.46005) Full Text: DOI
Baias, A. R.; Trif, T. Extensions of closed convex processes. (English) Zbl 1349.54048 Carpathian J. Math. 31, No. 1, 31-37 (2015). MSC: 54C60 54C20 PDF BibTeX XML Cite \textit{A. R. Baias} and \textit{T. Trif}, Carpathian J. Math. 31, No. 1, 31--37 (2015; Zbl 1349.54048)
Ben-El-Mechaiekh, Hichem Intersection theorems for closed convex sets and applications. (English) Zbl 1341.52002 Missouri J. Math. Sci. 27, No. 1, 47-63 (2015). Reviewer: Mircea Balaj (Oradea) MSC: 52A07 32F32 32F27 47H04 47H10 47N10 PDF BibTeX XML Cite \textit{H. Ben-El-Mechaiekh}, Missouri J. Math. Sci. 27, No. 1, 47--63 (2015; Zbl 1341.52002) Full Text: arXiv Euclid
Lee, Jung-Jin Hahn-Banach type extension theorems on \(p\)-operator spaces. (English) Zbl 1343.46061 Oper. Matrices 9, No. 3, 675-685 (2015). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 46L52 46L07 PDF BibTeX XML Cite \textit{J.-J. Lee}, Oper. Matrices 9, No. 3, 675--685 (2015; Zbl 1343.46061) Full Text: DOI arXiv Link
Jahn, Thomas; Kupitz, Yaakov S.; Martini, Horst; Richter, Christian Minsum location extended to gauges and to convex sets. (English) Zbl 1329.52010 J. Optim. Theory Appl. 166, No. 3, 711-746 (2015). Reviewer: S. S. Kutateladze (Novosibirsk) MSC: 52A41 46N10 46A22 46B20 49K10 49N15 52A20 52A21 90B85 90C25 90C46 PDF BibTeX XML Cite \textit{T. Jahn} et al., J. Optim. Theory Appl. 166, No. 3, 711--746 (2015; Zbl 1329.52010) Full Text: DOI arXiv
Dinh, Nguyen; Mo, Tran Hong Farkas lemma for convex systems revisited and applications to sublinear-convex optimization problems. (English) Zbl 1319.49034 Vietnam J. Math. 43, No. 2, 297-321 (2015). MSC: 49K27 49J52 46A22 46A55 46N10 49N15 90C46 PDF BibTeX XML Cite \textit{N. Dinh} and \textit{T. H. Mo}, Vietnam J. Math. 43, No. 2, 297--321 (2015; Zbl 1319.49034) Full Text: DOI
Dăneţ, Rodica-Mihaela; Popescu, Marian-Valentin; Popescu, Nicoleta Simultaneous extensions of a family of linear operators. (English) Zbl 1331.46005 Oper. Matrices 9, No. 1, 95-112 (2015). Reviewer: Şafak Alpay (Ankara) MSC: 46A22 47B60 47B65 PDF BibTeX XML Cite \textit{R.-M. Dăneţ} et al., Oper. Matrices 9, No. 1, 95--112 (2015; Zbl 1331.46005) Full Text: Link
Dinh, N.; Ernst, E.; López, M. A.; Volle, M. An approximate Hahn-Banach theorem for positively homogeneous functions. (English) Zbl 1325.46003 Optimization 64, No. 5, 1321-1328 (2015). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46A22 46A20 PDF BibTeX XML Cite \textit{N. Dinh} et al., Optimization 64, No. 5, 1321--1328 (2015; Zbl 1325.46003) Full Text: DOI
Przebieracz, Barbara A proof of the Mazur-Orlicz theorem via the Markov-Kakutani common fixed point theorem, and vice versa. (English) Zbl 1332.46006 Fixed Point Theory Appl. 2015, Paper No. 10, 9 p. (2015). MSC: 46A22 47H10 PDF BibTeX XML Cite \textit{B. Przebieracz}, Fixed Point Theory Appl. 2015, Paper No. 10, 9 p. (2015; Zbl 1332.46006) Full Text: DOI
Eisele, Karl-Theodor; Taieb, Sonia Weak topologies for modules over rings of bounded random variables. (English) Zbl 1308.46058 J. Math. Anal. Appl. 421, No. 2, 1334-1357 (2015). Reviewer: Mart Abel (Tartu) MSC: 46H25 PDF BibTeX XML Cite \textit{K.-T. Eisele} and \textit{S. Taieb}, J. Math. Anal. Appl. 421, No. 2, 1334--1357 (2015; Zbl 1308.46058) Full Text: DOI
Alegre, Carmen; Romaguera, Salvador The Hahn-Banach extension theorem for fuzzy normed spaces revisited. (English) Zbl 1472.46079 Abstr. Appl. Anal. 2014, Article ID 151472, 7 p. (2014). MSC: 46S40 46A22 PDF BibTeX XML Cite \textit{C. Alegre} and \textit{S. Romaguera}, Abstr. Appl. Anal. 2014, Article ID 151472, 7 p. (2014; Zbl 1472.46079) Full Text: DOI
Kesavan, S. Functional analysis. Corrected reprint of the 2009 hardback edition. (English) Zbl 1368.46001 Texts and Readings in Mathematics 52. New Delhi: Hindustan Book Agency (ISBN 978-93-80250-62-5/pbk). xii, 269 p. (2014). MSC: 46-01 47-01 00A05 PDF BibTeX XML Cite \textit{S. Kesavan}, Functional analysis. Corrected reprint of the 2009 hardback edition. New Delhi: Hindustan Book Agency (2014; Zbl 1368.46001)