×

Sinc-approximations of fractional operators: a computing approach. (English) Zbl 1328.65051

Summary: We discuss a new approach to represent fractional operators by Sinc approximation using convolution integrals. A spin off of the convolution representation is an effective inverse Laplace transform. Several examples demonstrate the application of the method to different practical problems.

MSC:

65D05 Numerical interpolation
65D30 Numerical integration
44A35 Convolution as an integral transform
81-04 Software, source code, etc. for problems pertaining to quantum theory

Software:

Sinc-Pack
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Oldham, The Fractional Calculus (1974) · Zbl 0206.46601
[2] Abel, Auflösung einer mechanischen Aufgabe, J. Reine Angew. Math. 1 pp 153– (1826) · ERAM 001.0017cj · doi:10.1515/crll.1826.1.153
[3] Kilbas, Theory and Applications of Fractional Differential Equations (2006) · Zbl 1138.26300
[4] Freed, Fractional calculus in biomechanics: A 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad, Biomech. Mod. Mech. 5 pp 203– (2006) · doi:10.1007/s10237-005-0011-0
[5] Schmidt, FE Implementation of Viscoelastic Constitutive Stress-Strain Relations Involving Fractional Time Derivatives, Const. Model. Rubber 2 pp 79– (2001)
[6] Lubich, Convolution Quadrature and Discretized Operational Calculus I, Numer. Math. 52 pp 129– (1988) · Zbl 0637.65016 · doi:10.1007/BF01398686
[7] Lubich, Convolution Quadrature and Discretized Operational Calculus II, Numer. Math. 52 pp 413– (1988) · Zbl 0643.65094 · doi:10.1007/BF01462237
[8] Agrawal, Comparison of five numerical schemes for fractional differential equations, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering pp 43– (2007)
[9] Lubich, Runge-Kutta theory for Volterra and Abel integral equations of the second kind, Math. Comput. 41 pp 87– (1983) · Zbl 0538.65091 · doi:10.1090/S0025-5718-1983-0701626-6
[10] Yuan, A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives, J. Vib. Acoust. 124 pp 321– (2002) · doi:10.1115/1.1448322
[11] Momania, Homotopy perturbation method for non-linear partial differential equations of fractional order, Phys. Lett. A 365 pp 345– (2007) · Zbl 1203.65212 · doi:10.1016/j.physleta.2007.01.046
[12] Diethelm, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Eng. 194 pp 743– (2005) · Zbl 1119.65352 · doi:10.1016/j.cma.2004.06.006
[13] Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (2010) · Zbl 1215.34001
[14] Sabatier, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (2007) · Zbl 1116.00014
[15] McNamee, Whittaker’s Cardinal Function in Retrospect, Math. Comput. 23 pp 141– (1971) · Zbl 0216.48502
[16] Stenger, Collocating convolutions, Math. Comput. 64 pp 211– (1995) · Zbl 0828.65017 · doi:10.1090/S0025-5718-1995-1270624-7
[17] Adomian, Solving Frontier Problems of Physics: The Decomposition Method (1994) · Zbl 0802.65122
[18] Edwards, A Comparison of Adomiannal Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type 309 pp 1– (1997)
[19] Répaci, Nonlinear dynamical systems: On the accuracy of Adomian’s decomposition method, Appl. Math. Lett. 3 pp 35– (1990) · Zbl 0719.93041 · doi:10.1016/0893-9659(90)90042-A
[20] He, Approximate solution of non linear differential equations with convolution product nonlinearities, Comput. Meth. Appl. Mech. Eng. 167 pp 69– (1998) · Zbl 0932.65143 · doi:10.1016/S0045-7825(98)00109-1
[21] He, Variational iteration method–Some recent results and new interpretations, J. Comput. Appl. Math. 207 pp 3– (2007) · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[22] Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (2004) · Zbl 1051.76001
[23] Odibata, Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comput. 197 pp 467– (2008) · Zbl 1141.65092 · doi:10.1016/j.amc.2007.07.068
[24] Tataria, On the convergence of He’s variational iteration method, J. Comput. Appl. Math. 207 pp 121– (2007) · Zbl 1120.65112 · doi:10.1016/j.cam.2006.07.017
[25] Liang, Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation, Commun. Nonlinear Sci. Numer. Simul. 14 pp 4057– (2009) · Zbl 1221.65281 · doi:10.1016/j.cnsns.2009.02.016
[26] Stenger, Summary of Sinc numerical methods, J. Comput. Appl. Math. 121 pp 379– (2000) · Zbl 0964.65010 · doi:10.1016/S0377-0427(00)00348-4
[27] Gavrilyuk, Data-Sparse Approximation to a Class of Operator-Valued Functions, Math. Comput. 74 pp 681– (2005) · Zbl 1066.65060 · doi:10.1090/S0025-5718-04-01703-X
[28] Khoromskij, Fast and Accurate Tensor Approximation of a Multivariate Convolution with Linear Scaling in Dimension, J. Comput. Appl. Math. 234 pp 3122– (2010) · Zbl 1197.65216 · doi:10.1016/j.cam.2010.02.004
[29] Stenger, Handbook of Sinc Numerical Methods (2011)
[30] Kowalski, Selected Topics in Approximation and Computation (1995)
[31] Stenger, Numerical Methods Based on Sinc and Analytic Functions (1993) · Zbl 0803.65141
[32] Burchard, N-Width and Entropy of Hp-Classes in Lq(-1, 1), SIAM J. Math. Anal. 16 pp 405– (1985) · Zbl 0554.41030 · doi:10.1137/0516029
[33] Stenger, The Lebesgue Constant for Sinc Approximations, New Perspectives on Approximation and Sampling Theory pp 319– (2014)
[34] Capuro, A new dissipation model based on memory mechanism, Pure Appl. Geophys. 91 pp 134– (1971) · Zbl 1213.74005 · doi:10.1007/BF00879562
[35] Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (1999) · Zbl 0924.34008
[36] Baumann, Fractional Calculus and Sinc Methods, Fract. Calc. Appl. Anal. 14 pp 1– (2011) · Zbl 1273.65103 · doi:10.2478/s13540-011-0035-3
[37] Han, Proof of Stenger’s conjecture on matrix of Sinc methods, J. Comput. Appl. Math. 255 pp 805– (2014) · Zbl 1291.15023 · doi:10.1016/j.cam.2013.07.001
[38] Miller, An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) · Zbl 0789.26002
[39] Daftardar-Gejji, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl. 328 pp 1026– (2007) · Zbl 1115.34006 · doi:10.1016/j.jmaa.2006.06.007
[40] Levinson, A nonlinear equation arising in the theory of superfluidity, J. Math. Anal. Appl. 1 pp 1– (1960) · Zbl 0094.08501 · doi:10.1016/0022-247X(60)90028-7
[41] Lin, Hydrodynamics of Liquid Helium II, Phys. Rev. Lett. 2 pp 245– (1959) · doi:10.1103/PhysRevLett.2.245
[42] Dietheln, Numerical solution of the Bagley Torvik equation, BIT Numer. Math. 42 pp 490– (2002)
[43] Diethelm, Efficient solution of multi-term fractional differential equations using P(EC)mE methods, Computing 71 pp 305– (2003) · Zbl 1035.65066 · doi:10.1007/s00607-003-0033-3
[44] Glöckle, A fractional calculus approach to self-similar protein dynamics, Biophys. J. 68 pp 46– (1995) · doi:10.1016/S0006-3495(95)80157-8
[45] Austin, Dynamics of ligand binding to myoglobin, Biochemistry 14 pp 5355– (1975) · doi:10.1021/bi00695a021
[46] Nonnenmacher, A Fractal Scaling Law for Protein Gating Kinetics, Phys. Lett. A 140 pp 323– (1989) · doi:10.1016/0375-9601(89)90628-2
[47] Baumann, Mathematica for Theoretical Physics I and II (2013)
[48] Roy, On the Realization of a Constant-Argument Immittance or Fractional Operator, IEEE Trans. Circuit Theory 14 pp 264– (1967) · doi:10.1109/TCT.1967.1082706
[49] Wang, Modeling Ultracapacitors as Fractional-Order Systems, New Trends in Nanotechnology and Fractional Calculus Applications pp 257– (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.