Oguntuase, J. A.; Persson, L.-E.; Adeleke, E. O. Refinements of bennett type inequalities. (English) Zbl 07662420 Math. Inequal. Appl. 26, No. 1, 183-193 (2023). MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{J. A. Oguntuase} et al., Math. Inequal. Appl. 26, No. 1, 183--193 (2023; Zbl 07662420) Full Text: DOI OpenURL
Nursultanov, Erlan D.; Suragan, Durvudkhan Hardy-Littlewood-Stein inequalities for double trigonometric series. (English) Zbl 07662407 Math. Inequal. Appl. 26, No. 1, 1-15 (2023). MSC: 42A16 42B05 46E30 26D15 42A38 PDF BibTeX XML Cite \textit{E. D. Nursultanov} and \textit{D. Suragan}, Math. Inequal. Appl. 26, No. 1, 1--15 (2023; Zbl 07662407) Full Text: DOI OpenURL
Chen, Yiqun; Jia, Hongchao; Yang, Dachun Boundedness of fractional integrals on ball Campanato-type function spaces. (English) Zbl 07653553 Bull. Sci. Math. 182, Article ID 103210, 59 p. (2023). MSC: 47G40 42B20 47A30 42B30 46E35 42B25 42B35 PDF BibTeX XML Cite \textit{Y. Chen} et al., Bull. Sci. Math. 182, Article ID 103210, 59 p. (2023; Zbl 07653553) Full Text: DOI arXiv OpenURL
Kalybay, Aigerim; Oinarov, Ryskul On weighted inequalities for a class of quasilinear integral operators. (English) Zbl 07615872 Banach J. Math. Anal. 17, No. 1, Paper No. 3, 18 p. (2023). MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kalybay} and \textit{R. Oinarov}, Banach J. Math. Anal. 17, No. 1, Paper No. 3, 18 p. (2023; Zbl 07615872) Full Text: DOI OpenURL
Tamekue, Cyprien Null controllability of the parabolic spherical Grushin equation. (English) Zbl 07629528 ESAIM, Control Optim. Calc. Var. 28, Paper No. 70, 29 p. (2022). MSC: 93B05 93B07 93C20 53C17 PDF BibTeX XML Cite \textit{C. Tamekue}, ESAIM, Control Optim. Calc. Var. 28, Paper No. 70, 29 p. (2022; Zbl 07629528) Full Text: DOI arXiv OpenURL
Khaligova, Sevinc Z. Hardy-Littlewood-Stein-Weiss inequality in the generalized Morrey spaces. (English) Zbl 07610229 J. Contemp. Appl. Math. 12, No. 2, 29-36 (2022). MSC: 42B20 42B25 42B35 26D10 PDF BibTeX XML Cite \textit{S. Z. Khaligova}, J. Contemp. Appl. Math. 12, No. 2, 29--36 (2022; Zbl 07610229) Full Text: Link OpenURL
Goldstein, Gisèle Ruiz; Goldstein, Jerome A.; Kömbe, Ismail; Tellioğlu, Reyhan Nonexistence of positive solutions for nonlinear parabolic Robin problems and Hardy-Leray inequalities. (English) Zbl 1500.35013 Ann. Mat. Pura Appl. (4) 201, No. 6, 2927-2942 (2022). MSC: 35B09 35K20 35K92 26D10 46E35 PDF BibTeX XML Cite \textit{G. R. Goldstein} et al., Ann. Mat. Pura Appl. (4) 201, No. 6, 2927--2942 (2022; Zbl 1500.35013) Full Text: DOI OpenURL
Swarup Mondal, Shyam; Poria, Anirudha Weighted norm inequalities for the Opdam-Cherednik transform. (English) Zbl 07590371 Int. J. Math. 33, No. 9, Article ID 2250066, 21 p. (2022). MSC: 44A15 43A32 33C45 26D10 PDF BibTeX XML Cite \textit{S. Swarup Mondal} and \textit{A. Poria}, Int. J. Math. 33, No. 9, Article ID 2250066, 21 p. (2022; Zbl 07590371) Full Text: DOI arXiv OpenURL
Cerone, Pietro On Zeta and Dirichlet Beta function families as generators of generalized Mathieu series, providing approximation and bounds. (English) Zbl 07588233 Facta Univ., Ser. Math. Inf. 37, No. 2, 251-282 (2022). MSC: 11Mxx 26D15 33E20 PDF BibTeX XML Cite \textit{P. Cerone}, Facta Univ., Ser. Math. Inf. 37, No. 2, 251--282 (2022; Zbl 07588233) Full Text: DOI OpenURL
Nikolova, Ludmila; Persson, Lars-Erik; Varošanec, Sanja; Yimer, Markos Fisseha Refinements of some classical inequalities via superquadraticity. (English) Zbl 07562163 J. Inequal. Appl. 2022, Paper No. 86, 15 p. (2022). MSC: 26D10 26D15 39B62 46E27 26A51 26B25 PDF BibTeX XML Cite \textit{L. Nikolova} et al., J. Inequal. Appl. 2022, Paper No. 86, 15 p. (2022; Zbl 07562163) Full Text: DOI OpenURL
Pezzolo, Fabio On multilinear Beckner systems. (English) Zbl 1501.45007 J. Math. Anal. Appl. 515, No. 2, Article ID 126446, 17 p. (2022). Reviewer: Alexander N. Tynda (Penza) MSC: 45G15 45F05 45F15 26D15 PDF BibTeX XML Cite \textit{F. Pezzolo}, J. Math. Anal. Appl. 515, No. 2, Article ID 126446, 17 p. (2022; Zbl 1501.45007) Full Text: DOI OpenURL
Sano, Megumi; Takahashi, Futoshi Critical Hardy inequality on the half-space via the harmonic transplantation. (English) Zbl 07542671 Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 158, 33 p. (2022). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D10 35J08 PDF BibTeX XML Cite \textit{M. Sano} and \textit{F. Takahashi}, Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 158, 33 p. (2022; Zbl 07542671) Full Text: DOI arXiv OpenURL
Avkhadiev, F. G. Hardy-type inequalities with sharp constants in domains lambda-close to convex. (English. Russian original) Zbl 1493.26046 Sib. Math. J. 63, No. 3, 395-411 (2022); translation from Sib. Mat. Zh. 63, No. 3, 481-499 (2022). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{F. G. Avkhadiev}, Sib. Math. J. 63, No. 3, 395--411 (2022; Zbl 1493.26046); translation from Sib. Mat. Zh. 63, No. 3, 481--499 (2022) Full Text: DOI OpenURL
Liu, Jun Fourier transform of variable anisotropic Hardy spaces with applications to Hardy-Littlewood inequalities. (English) Zbl 1489.42014 Math. Inequal. Appl. 25, No. 2, 447-465 (2022). MSC: 42B35 42B30 42B10 46E30 26D10 PDF BibTeX XML Cite \textit{J. Liu}, Math. Inequal. Appl. 25, No. 2, 447--465 (2022; Zbl 1489.42014) Full Text: DOI arXiv OpenURL
Awwad, E.; Saied, A. I. Some new multidimensional Hardy-type inequalities with general kernels on time scales. (English) Zbl 07531423 J. Math. Inequal. 16, No. 1, 393-412 (2022). MSC: 26D15 26D10 26E70 47G10 PDF BibTeX XML Cite \textit{E. Awwad} and \textit{A. I. Saied}, J. Math. Inequal. 16, No. 1, 393--412 (2022; Zbl 07531423) Full Text: DOI OpenURL
Nasibullin, Ramil Hardy and Rellich type inequalities with remainders. (English) Zbl 07511555 Czech. Math. J. 72, No. 1, 87-110 (2022). MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{R. Nasibullin}, Czech. Math. J. 72, No. 1, 87--110 (2022; Zbl 07511555) Full Text: DOI OpenURL
Anoop, V. P.; Parui, Sanjay Hardy-Littlewood-Sobolev inequality for upper half space. (English) Zbl 1486.42008 Ann. Math. Blaise Pascal 28, No. 2, 117-140 (2022). MSC: 42B10 42B35 42B37 26D15 PDF BibTeX XML Cite \textit{V. P. Anoop} and \textit{S. Parui}, Ann. Math. Blaise Pascal 28, No. 2, 117--140 (2022; Zbl 1486.42008) Full Text: DOI OpenURL
Wu, Shanhe; Samraiz, Muhammad; Iqbal, Sajid; Rahman, Gauhar On a class of fractional Hardy-type inequalities. (English) Zbl 1493.26087 Fractals 30, No. 1, Article ID 2240011, 19 p. (2022). MSC: 26D15 26A33 26D10 PDF BibTeX XML Cite \textit{S. Wu} et al., Fractals 30, No. 1, Article ID 2240011, 19 p. (2022; Zbl 1493.26087) Full Text: DOI OpenURL
Wang, Fuzhang; Hanif, Usama; Nosheen, Ammara; Khan, Khuram Ali; Ahmad, Hijaz; Nonlaopon, Kamsing Some Hardy-type inequalities for convex functions via delta fractional integrals. (English) Zbl 1495.26032 Fractals 30, No. 1, Article ID 2240004, 15 p. (2022). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{F. Wang} et al., Fractals 30, No. 1, Article ID 2240004, 15 p. (2022; Zbl 1495.26032) Full Text: DOI OpenURL
Krulić Himmelreich, Kristina Generalizations of Hardy type inequalities by Taylor’s formula. (English) Zbl 07478472 Math. Slovaca 72, No. 1, 67-84 (2022). PDF BibTeX XML Cite \textit{K. Krulić Himmelreich}, Math. Slovaca 72, No. 1, 67--84 (2022; Zbl 07478472) Full Text: DOI OpenURL
Kalaj, David; Melentijević, Petar; Zhu, Jian-Feng \(L^p\)-theory for Cauchy-transform on the unit disk. (English) Zbl 07457098 J. Funct. Anal. 282, No. 4, Article ID 109337, 35 p. (2022). MSC: 42B20 PDF BibTeX XML Cite \textit{D. Kalaj} et al., J. Funct. Anal. 282, No. 4, Article ID 109337, 35 p. (2022; Zbl 07457098) Full Text: DOI arXiv OpenURL
Kalybaĭ, Aĭgerit Aĭsultankyzy Two-sided estimates of norms of a class of matrix operators. (Russian. English summary) Zbl 07656924 Mat. Tr. 24, No. 2, 37-45 (2021). MSC: 47A30 47B37 PDF BibTeX XML Cite \textit{A. A. Kalybaĭ}, Mat. Tr. 24, No. 2, 37--45 (2021; Zbl 07656924) Full Text: DOI MNR OpenURL
Yang, Bicheng; Andrica, Dorin; Bagdasar, Ovidiu; Rassias, Michael Th. On two kinds of the Hardy-type integral inequalities in the whole plane with the equivalent forms. (English) Zbl 1496.26040 Parasidis, Ioannis. N. (ed.) et al., Mathematical analysis in interdisciplinary research. Cham: Springer. Springer Optim. Appl. 179, 1025-1048 (2021). MSC: 26D15 65B10 PDF BibTeX XML Cite \textit{B. Yang} et al., Springer Optim. Appl. 179, 1025--1048 (2021; Zbl 1496.26040) Full Text: DOI OpenURL
Tao, Chunxia Reversed Stein-Weiss inequalities with Poisson-type kernel and qualitative analysis of extremal functions. (English) Zbl 1492.42020 Adv. Nonlinear Stud. 21, No. 1, 167-187 (2021). Reviewer: Felipe Ponce-Vanegas (Bilbao) MSC: 42B37 35B40 45G15 PDF BibTeX XML Cite \textit{C. Tao}, Adv. Nonlinear Stud. 21, No. 1, 167--187 (2021; Zbl 1492.42020) Full Text: DOI OpenURL
Shen, Yansheng Existence of solutions for Choquard type elliptic problems with doubly critical nonlinearities. (English) Zbl 1487.35012 Adv. Nonlinear Stud. 21, No. 1, 77-93 (2021). MSC: 35A15 35B33 35D30 PDF BibTeX XML Cite \textit{Y. Shen}, Adv. Nonlinear Stud. 21, No. 1, 77--93 (2021; Zbl 1487.35012) Full Text: DOI OpenURL
Xue, Ye; Han, Zhiqing Existence and multiplicity of solutions for Schrödinger equations with sublinear nonlinearities. (English) Zbl 1484.35350 AIMS Math. 6, No. 6, 5479-5492 (2021). MSC: 35Q55 26D10 35J60 PDF BibTeX XML Cite \textit{Y. Xue} and \textit{Z. Han}, AIMS Math. 6, No. 6, 5479--5492 (2021; Zbl 1484.35350) Full Text: DOI OpenURL
Thongjob, Suriyakamol; Nonlaopon, Kamsing; Ntouyas, Sortiris K. Some \((p,q)\)-Hardy type inequalities for \((p,q)\)-integrable functions. (English) Zbl 1484.26094 AIMS Math. 6, No. 1, 77-89 (2021). MSC: 26D15 PDF BibTeX XML Cite \textit{S. Thongjob} et al., AIMS Math. 6, No. 1, 77--89 (2021; Zbl 1484.26094) Full Text: DOI OpenURL
Avkhadiev, Farit Gabidinovich Hardy type inequalities involving gradient of distance function. (Russian. English summary) Zbl 1499.26069 Ufim. Mat. Zh. 13, No. 3, 3-16 (2021); translation in Ufa Math. J. 13, No. 3, 3-16 (2021). MSC: 26D10 33C20 PDF BibTeX XML Cite \textit{F. G. Avkhadiev}, Ufim. Mat. Zh. 13, No. 3, 3--16 (2021; Zbl 1499.26069); translation in Ufa Math. J. 13, No. 3, 3--16 (2021) Full Text: DOI MNR OpenURL
Ahmad, Dawood; Khan, Khuram Ali; Nosheen, Ammara Inequalities of Hardy-type for multiple integrals on time scales. (English) Zbl 1480.26014 J. Prime Res. Math. 17, No. 1, 21-34 (2021). MSC: 26D15 26B15 26E70 PDF BibTeX XML Cite \textit{D. Ahmad} et al., J. Prime Res. Math. 17, No. 1, 21--34 (2021; Zbl 1480.26014) Full Text: Link OpenURL
Awwad, Essam Some new generalizations of weighted dynamic Hardy-Knopp type inequalities with kernels. (English) Zbl 1490.26015 J. Math. Inequal. 15, No. 4, 1561-1579 (2021). MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{E. Awwad}, J. Math. Inequal. 15, No. 4, 1561--1579 (2021; Zbl 1490.26015) Full Text: DOI OpenURL
Hussain, Amjad; Sarfraz, Naqash; Khan, Ilyas; Alsubie, Abdelaziz; Hamadneh, Nawaf N. The boundedness of commutators of rough \(p\)-adic fractional Hardy type operators on Herz-type spaces. (English) Zbl 07465101 J. Inequal. Appl. 2021, Paper No. 123, 13 p. (2021). MSC: 42B35 42B25 42B20 11S80 26D10 PDF BibTeX XML Cite \textit{A. Hussain} et al., J. Inequal. Appl. 2021, Paper No. 123, 13 p. (2021; Zbl 07465101) Full Text: DOI OpenURL
Thongjob, Suriyakamol; Nonlaopon, Kamsing; Tariboon, Jessada; Ntouyas, Sortiris K. Generalizations of some integral inequalities related to Hardy type integral inequalities via \((p,q)\)-calculus. (English) Zbl 07465083 J. Inequal. Appl. 2021, Paper No. 105, 17 p. (2021). MSC: 26D15 26D10 39A13 33D15 33D05 PDF BibTeX XML Cite \textit{S. Thongjob} et al., J. Inequal. Appl. 2021, Paper No. 105, 17 p. (2021; Zbl 07465083) Full Text: DOI OpenURL
Saker, S. H.; Alzabut, J.; Saied, A. I.; O’Regan, D. New characterizations of weights on dynamic inequalities involving a Hardy operator. (English) Zbl 07465052 J. Inequal. Appl. 2021, Paper No. 73, 24 p. (2021). MSC: 26D15 26D10 26E70 34N05 26D20 PDF BibTeX XML Cite \textit{S. H. Saker} et al., J. Inequal. Appl. 2021, Paper No. 73, 24 p. (2021; Zbl 07465052) Full Text: DOI OpenURL
Hamiaz, Adnane; Abuelela, Waleed; Saker, Samir H.; Baleanu, Dumitru Some new dynamic inequalities with several functions of Hardy type on time scales. (English) Zbl 07464982 J. Inequal. Appl. 2021, Paper No. 3, 15 p. (2021). MSC: 26E70 26D15 26D10 34A40 PDF BibTeX XML Cite \textit{A. Hamiaz} et al., J. Inequal. Appl. 2021, Paper No. 3, 15 p. (2021; Zbl 07464982) Full Text: DOI OpenURL
Gesztesy, Fritz; Pang, Michael M. H.; Stanfill, Jonathan Bessel-type operators and a refinement of Hardy’s inequality. (English) Zbl 1491.26015 Gesztesy, Fritz (ed.) et al., From operator theory to orthogonal polynomials, combinatorics, and number theory. A volume in honor of Lance Littlejohn’s 70th birthday. Cham: Birkhäuser. Oper. Theory: Adv. Appl. 285, 143-172 (2021). MSC: 26D10 47E05 34L99 PDF BibTeX XML Cite \textit{F. Gesztesy} et al., Oper. Theory: Adv. Appl. 285, 143--172 (2021; Zbl 1491.26015) Full Text: DOI arXiv OpenURL
Goldstein, Gisèle Ruiz; Goldstein, Jerome A.; Kömbe, Ismail; Bakim, Sümeyye Nonexistence results for parabolic equations involving the \(p\)-Laplacian and Hardy-Leray-type inequalities on Riemannian manifolds. (English) Zbl 1480.35290 J. Evol. Equ. 21, No. 3, 3675-3701 (2021). MSC: 35K92 35A01 35B33 35K20 35R01 PDF BibTeX XML Cite \textit{G. R. Goldstein} et al., J. Evol. Equ. 21, No. 3, 3675--3701 (2021; Zbl 1480.35290) Full Text: DOI OpenURL
Shilibekova, Dina Uncertainty type principles for radial derivatives. (English) Zbl 1481.26025 Ashyralyev, Allaberen (ed.) et al., Functional analysis in interdisciplinary applications II. Collected papers based on the presentations at the mini-symposium, held as part of the fourth international conference on analysis and applied mathematics, ICAAM, September 6–9, 2018. Cham: Springer. Springer Proc. Math. Stat. 351, 249-256 (2021). MSC: 26D15 81S07 PDF BibTeX XML Cite \textit{D. Shilibekova}, Springer Proc. Math. Stat. 351, 249--256 (2021; Zbl 1481.26025) Full Text: DOI OpenURL
Duy, Nguyen Tuan Some Hardy type inequalities with Finsler norms. (English) Zbl 1490.26017 Math. Slovaca 71, No. 2, 317-330 (2021). Reviewer: Wing-Sum Cheung (Hong Kong) MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{N. T. Duy}, Math. Slovaca 71, No. 2, 317--330 (2021; Zbl 1490.26017) Full Text: DOI OpenURL
Gambini, Alessandro Diophantine approximation with one prime, two squares of primes and one \(k\)th power of a prime. (English) Zbl 1492.11079 Open Math. 19, 373-387 (2021). MSC: 11D75 11J25 11P32 11P55 PDF BibTeX XML Cite \textit{A. Gambini}, Open Math. 19, 373--387 (2021; Zbl 1492.11079) Full Text: DOI arXiv OpenURL
Ahmed, Irshaad; Umar, Fakhra Some interpolation formulae for limiting approximation spaces. (English) Zbl 1486.46022 Pure Appl. Funct. Anal. 6, No. 3, 497-509 (2021). MSC: 46B70 41A65 26D15 47B10 PDF BibTeX XML Cite \textit{I. Ahmed} and \textit{F. Umar}, Pure Appl. Funct. Anal. 6, No. 3, 497--509 (2021; Zbl 1486.46022) Full Text: Link OpenURL
Ben Salem, Néjib Hardy-Littlewood-Sobolev-type inequality for the fractional Littlewood-Paley \(g\)-function in Jacobi analysis. (English) Zbl 1476.42014 Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4439-4452 (2021). MSC: 42B25 42B10 44A15 43A32 26D10 PDF BibTeX XML Cite \textit{N. Ben Salem}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4439--4452 (2021; Zbl 1476.42014) Full Text: DOI OpenURL
Baker, Roger Some Diophantine equations and inequalities with primes. (English) Zbl 1484.11195 Funct. Approximatio, Comment. Math. 64, No. 2, 203-250 (2021). Reviewer: D. R. Heath-Brown (Oxford) MSC: 11P32 11P55 11N36 11D75 PDF BibTeX XML Cite \textit{R. Baker}, Funct. Approximatio, Comment. Math. 64, No. 2, 203--250 (2021; Zbl 1484.11195) Full Text: DOI arXiv OpenURL
Huang, Jing; Zhai, Wenguang; Zhang, Deyu Diophantine inequalities over Piatetski-Shapiro primes. (English) Zbl 1480.11088 Front. Math. China 16, No. 3, 749-770 (2021). Reviewer: István Gaál (Debrecen) MSC: 11J25 11L03 11P32 11P55 PDF BibTeX XML Cite \textit{J. Huang} et al., Front. Math. China 16, No. 3, 749--770 (2021; Zbl 1480.11088) Full Text: DOI OpenURL
You, Minghui; Sun, Xia On a Hilbert-type inequality with the kernel involving extended Hardy operator. (English) Zbl 1480.26022 J. Math. Inequal. 15, No. 3, 1239-1253 (2021). MSC: 26D15 PDF BibTeX XML Cite \textit{M. You} and \textit{X. Sun}, J. Math. Inequal. 15, No. 3, 1239--1253 (2021; Zbl 1480.26022) Full Text: DOI OpenURL
Temirkhanova, Ainur M.; Beszhanova, Aigul T. On a discrete Hilbert-Stieltjes inequality. (English) Zbl 1488.26144 Mat. Zh. 21, No. 1, 15-24 (2021). MSC: 26D15 47B37 PDF BibTeX XML Cite \textit{A. M. Temirkhanova} and \textit{A. T. Beszhanova}, Mat. Zh. 21, No. 1, 15--24 (2021; Zbl 1488.26144) OpenURL
Kalybay, Aigerim A.; Baiarystanov, Askar O. Exact estimate of norm of integral operator with Oinarov condition. (English) Zbl 1488.26068 Mat. Zh. 21, No. 1, 6-14 (2021). MSC: 26D10 PDF BibTeX XML Cite \textit{A. A. Kalybay} and \textit{A. O. Baiarystanov}, Mat. Zh. 21, No. 1, 6--14 (2021; Zbl 1488.26068) OpenURL
Saleh, Khairul; Ahmad, Izhar Hardy-Littlewood-Pólya type inequalities for generalized convex functions. (English) Zbl 1499.26062 Southeast Asian Bull. Math. 45, No. 1, 119-126 (2021). MSC: 26D07 26B25 PDF BibTeX XML Cite \textit{K. Saleh} and \textit{I. Ahmad}, Southeast Asian Bull. Math. 45, No. 1, 119--126 (2021; Zbl 1499.26062) OpenURL
Kolomoitsev, Yurii; Tikhonov, Sergey Hardy-Littlewood and Ulyanov inequalities. (English) Zbl 07403469 Memoirs of the American Mathematical Society 1325. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4758-8/pbk; 978-1-4704-6628-2/ebook). viii, 118 p. (2021). MSC: 41-02 41A63 42B15 26D10 46E35 26A33 41A17 26C05 41A10 PDF BibTeX XML Cite \textit{Y. Kolomoitsev} and \textit{S. Tikhonov}, Hardy-Littlewood and Ulyanov inequalities. Providence, RI: American Mathematical Society (AMS) (2021; Zbl 07403469) Full Text: DOI arXiv OpenURL
Shah, Firdous A.; Nisar, Kottakkaran S.; Lone, Waseem Z.; Tantary, Azhar Y. Uncertainty principles for the quadratic-phase Fourier transforms. (English) Zbl 1472.42010 Math. Methods Appl. Sci. 44, No. 13, 10416-10431 (2021). MSC: 42A38 26D10 42C20 PDF BibTeX XML Cite \textit{F. A. Shah} et al., Math. Methods Appl. Sci. 44, No. 13, 10416--10431 (2021; Zbl 1472.42010) Full Text: DOI OpenURL
Blake Allan, S.; Gesztesy, Fritz On critical dipoles in dimensions \(n \geq 3\). (English) Zbl 1472.35012 J. Differ. Equations 300, 881-924 (2021). MSC: 35A23 35J10 35J30 47A63 47F05 PDF BibTeX XML Cite \textit{S. Blake Allan} and \textit{F. Gesztesy}, J. Differ. Equations 300, 881--924 (2021; Zbl 1472.35012) Full Text: DOI arXiv OpenURL
Liflyand, Elijah Harmonic analysis on the real line. A path in the theory. (English) Zbl 07384466 Pathways in Mathematics. Cham: Birkhäuser (ISBN 978-3-030-81891-3/hbk; 978-3-030-81894-4/pbk; 978-3-030-81892-0/ebook). ix, 197 p. (2021). MSC: 42-01 43-01 42A38 42B10 42B30 42A24 PDF BibTeX XML Cite \textit{E. Liflyand}, Harmonic analysis on the real line. A path in the theory. Cham: Birkhäuser (2021; Zbl 07384466) Full Text: DOI OpenURL
Antunes, Pedro R. S.; Benguria, Rafael D.; Lotoreichik, Vladimir; Ourmières-Bonafos, Thomas A variational formulation for Dirac operators in bounded domains. Applications to spectral geometric inequalities. (English) Zbl 1472.81090 Commun. Math. Phys. 386, No. 2, 781-818 (2021). Reviewer: Michael Perelmuter (Kyïv) MSC: 81Q10 81R25 30H20 30H10 35J10 35P05 58J50 47J20 49J40 PDF BibTeX XML Cite \textit{P. R. S. Antunes} et al., Commun. Math. Phys. 386, No. 2, 781--818 (2021; Zbl 1472.81090) Full Text: DOI arXiv Link OpenURL
Agarwal, R. P.; O’Regan, D.; Saker, S. H. Self-improving properties of a generalized Muckenhoupt class. (English) Zbl 1499.42088 Acta Math. Hung. 164, No. 1, 113-134 (2021). Reviewer: Constantin Niculescu (Craiova) MSC: 42B25 26D07 42C10 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Acta Math. Hung. 164, No. 1, 113--134 (2021; Zbl 1499.42088) Full Text: DOI OpenURL
Naito, Manabu Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations. I. (English) Zbl 1478.34064 Opusc. Math. 41, No. 1, 71-94 (2021). Reviewer: Kōdai Fujimoto (Osaka) MSC: 34D05 34C10 26D10 PDF BibTeX XML Cite \textit{M. Naito}, Opusc. Math. 41, No. 1, 71--94 (2021; Zbl 1478.34064) Full Text: DOI OpenURL
Benaissa, Bouharket Some bilinear Hardy-Steklov type integral inequalities. (English) Zbl 1469.26020 Numer. Funct. Anal. Optim. 42, No. 5, 510-522 (2021). MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{B. Benaissa}, Numer. Funct. Anal. Optim. 42, No. 5, 510--522 (2021; Zbl 1469.26020) Full Text: DOI OpenURL
Velicu, Andrei Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities. (English) Zbl 1478.35011 Commun. Contemp. Math. 23, No. 6, Article ID 2050024, 25 p. (2021). Reviewer: Meng Qu (Wuhu) MSC: 35A23 26D10 42B10 43A32 70F10 PDF BibTeX XML Cite \textit{A. Velicu}, Commun. Contemp. Math. 23, No. 6, Article ID 2050024, 25 p. (2021; Zbl 1478.35011) Full Text: DOI arXiv OpenURL
Kufner, Alois; Persson, Lars-Erik On weighted Fourier inequalities – some new scales of equivalent conditions. (English) Zbl 1471.42012 J. Math. Inequal. 15, No. 2, 879-898 (2021). MSC: 42A38 26D15 46E30 PDF BibTeX XML Cite \textit{A. Kufner} and \textit{L.-E. Persson}, J. Math. Inequal. 15, No. 2, 879--898 (2021; Zbl 1471.42012) Full Text: DOI OpenURL
Lorente, María; Martín-Reyes, Francisco J. Some mixed weak type inequalities. (English) Zbl 1471.26012 J. Math. Inequal. 15, No. 2, 811-826 (2021). MSC: 26D15 42B25 PDF BibTeX XML Cite \textit{M. Lorente} and \textit{F. J. Martín-Reyes}, J. Math. Inequal. 15, No. 2, 811--826 (2021; Zbl 1471.26012) Full Text: DOI OpenURL
Saker, Samir H.; Saied, Ahmed I.; Anderson, Douglas R. Some new characterizations of weights in dynamic inequalities involving monotonic functions. (English) Zbl 1473.26031 Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 49, 22 p. (2021). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D15 26E70 PDF BibTeX XML Cite \textit{S. H. Saker} et al., Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 49, 22 p. (2021; Zbl 1473.26031) Full Text: DOI OpenURL
Saker, S. H.; Chu, Jifeng Discrete Hardy’s type inequalities and structure of discrete class of weights satisfy reverse Hölder’s inequality. (English) Zbl 1468.26021 Math. Inequal. Appl. 24, No. 2, 521-541 (2021). MSC: 26D15 40D25 42C10 43A55 46A35 46B15 PDF BibTeX XML Cite \textit{S. H. Saker} and \textit{J. Chu}, Math. Inequal. Appl. 24, No. 2, 521--541 (2021; Zbl 1468.26021) Full Text: DOI OpenURL
Edmunds, David E.; Meskhi, Alexander A multilinear Rellich inequality. (English) Zbl 1468.26013 Math. Inequal. Appl. 24, No. 1, 265-274 (2021). MSC: 26D10 26A42 35A22 35A23 PDF BibTeX XML Cite \textit{D. E. Edmunds} and \textit{A. Meskhi}, Math. Inequal. Appl. 24, No. 1, 265--274 (2021; Zbl 1468.26013) Full Text: DOI OpenURL
Li, Sanhua; Cai, Yingchun On a binary Diophantine inequality involving prime numbers. (English) Zbl 1469.11398 Ramanujan J. 54, No. 3, 571-589 (2021). MSC: 11P32 11D75 11P55 PDF BibTeX XML Cite \textit{S. Li} and \textit{Y. Cai}, Ramanujan J. 54, No. 3, 571--589 (2021; Zbl 1469.11398) Full Text: DOI OpenURL
Tikhonov, Sergey Yu. Weighted Fourier inequalities and boundedness of variation. (English) Zbl 1462.42010 Proc. Steklov Inst. Math. 312, 282-300 (2021) and Tr. Mat. Inst. Steklova 312, 294-312 (2021). MSC: 42A38 42B20 26D07 PDF BibTeX XML Cite \textit{S. Yu. Tikhonov}, Proc. Steklov Inst. Math. 312, 282--300 (2021; Zbl 1462.42010) Full Text: DOI OpenURL
Dimitrov, Dimitar K.; Gadjev, Ivan; Nikolov, Geno; Uluchev, Rumen Hardy’s inequalities in finite dimensional Hilbert spaces. (English) Zbl 1470.26024 Proc. Am. Math. Soc. 149, No. 6, 2515-2529 (2021). Reviewer: S. L. Kalla (Ballwin) MSC: 26D10 15A42 26D15 33C45 PDF BibTeX XML Cite \textit{D. K. Dimitrov} et al., Proc. Am. Math. Soc. 149, No. 6, 2515--2529 (2021; Zbl 1470.26024) Full Text: DOI arXiv OpenURL
di Blasio, Giuseppina; Pisante, Giovanni; Psaradakis, Georgios A weighted anisotropic Sobolev type inequality and its applications to Hardy inequalities. (English) Zbl 1473.46041 Math. Ann. 379, No. 3-4, 1343-1362 (2021). MSC: 46E35 53C60 58J60 26D10 PDF BibTeX XML Cite \textit{G. di Blasio} et al., Math. Ann. 379, No. 3--4, 1343--1362 (2021; Zbl 1473.46041) Full Text: DOI arXiv OpenURL
Naito, Manabu Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations. II. (English) Zbl 07332703 Arch. Math., Brno 57, No. 1, 41-60 (2021). MSC: 34C11 26D10 34C10 PDF BibTeX XML Cite \textit{M. Naito}, Arch. Math., Brno 57, No. 1, 41--60 (2021; Zbl 07332703) Full Text: DOI OpenURL
Franceschi, Valentina; Prandi, Dario Hardy-type inequalities for the Carnot-Carathéodory distance in the Heisenberg group. (English) Zbl 1470.35010 J. Geom. Anal. 31, No. 3, 2455-2480 (2021). MSC: 35A23 35R03 53C17 PDF BibTeX XML Cite \textit{V. Franceschi} and \textit{D. Prandi}, J. Geom. Anal. 31, No. 3, 2455--2480 (2021; Zbl 1470.35010) Full Text: DOI arXiv OpenURL
Rassias, Michael Th.; Yang, Bicheng; Raigorodskii, Andrei A new Hardy-Mulholland-type inequality with a mixed kernel. (English) Zbl 1454.26041 Adv. Oper. Theory 6, No. 2, Paper No. 27, 20 p. (2021). MSC: 26D15 47A62 PDF BibTeX XML Cite \textit{M. Th. Rassias} et al., Adv. Oper. Theory 6, No. 2, Paper No. 27, 20 p. (2021; Zbl 1454.26041) Full Text: DOI OpenURL
Calvez, Vincent; Carrillo, José Antonio; Hoffmann, Franca Uniqueness of stationary states for singular Keller-Segel type models. (English) Zbl 1458.35004 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112222, 25 p. (2021). MSC: 35A02 92C17 35B38 35B40 26D10 35J62 PDF BibTeX XML Cite \textit{V. Calvez} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112222, 25 p. (2021; Zbl 1458.35004) Full Text: DOI arXiv OpenURL
Anthonio, Y. O.; Rauf, K. Hardy-type inequalities for convex functions. (English) Zbl 1444.26015 Int. J. Math. Comput. Sci. 16, No. 1, 263-271 (2021). MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{Y. O. Anthonio} and \textit{K. Rauf}, Int. J. Math. Comput. Sci. 16, No. 1, 263--271 (2021; Zbl 1444.26015) Full Text: Link OpenURL
Chen, Qian; Yang, Bicheng A reverse Hardy-Hilbert-type integral inequality involving one derivative function. (English) Zbl 1503.26046 J. Inequal. Appl. 2020, Paper No. 259, 12 p. (2020). MSC: 26D15 33B15 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{B. Yang}, J. Inequal. Appl. 2020, Paper No. 259, 12 p. (2020; Zbl 1503.26046) Full Text: DOI OpenURL
Rassias, Michael Th.; Yang, Bicheng; Raigorodskii, Andrei On Hardy-type integral inequalities in the whole plane related to the extended Hurwitz-zeta function. (English) Zbl 1503.26075 J. Inequal. Appl. 2020, Paper No. 94, 24 p. (2020). MSC: 26D15 11M35 33B15 PDF BibTeX XML Cite \textit{M. Th. Rassias} et al., J. Inequal. Appl. 2020, Paper No. 94, 24 p. (2020; Zbl 1503.26075) Full Text: DOI OpenURL
Ge, Wenxu; Li, Weiping; Zhao, Feng The integral part of a nonlinear form with a square, a cube and a biquadrate. (English) Zbl 1475.11132 Open Math. 18, 1272-1280 (2020). MSC: 11J25 11P32 11P55 PDF BibTeX XML Cite \textit{W. Ge} et al., Open Math. 18, 1272--1280 (2020; Zbl 1475.11132) Full Text: DOI OpenURL
Edmunds, David E.; Meskhi, Alexander Weighted multilinear Hardy and Rellich inequalities. (English) Zbl 1482.35018 Trans. A. Razmadze Math. Inst. 174, No. 3, 395-398 (2020). MSC: 35A23 26A42 35A22 PDF BibTeX XML Cite \textit{D. E. Edmunds} and \textit{A. Meskhi}, Trans. A. Razmadze Math. Inst. 174, No. 3, 395--398 (2020; Zbl 1482.35018) Full Text: Link OpenURL
Benaissa, Bouharket; Sarikaya, Mehmet Zeki Generalization of some Hardy-type integral inequality with negative parameter. (English) Zbl 1488.26086 Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 13(62), No. 1, 69-76 (2020). MSC: 26D15 26D10 PDF BibTeX XML Cite \textit{B. Benaissa} and \textit{M. Z. Sarikaya}, Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 13(62), No. 1, 69--76 (2020; Zbl 1488.26086) Full Text: DOI OpenURL
Benaissa, B.; Senouci, A. Some new integral inequalities via Steklov operator. (English) Zbl 1488.26087 Math. Montisnigri 49, 49-56 (2020). MSC: 26D15 45P05 PDF BibTeX XML Cite \textit{B. Benaissa} and \textit{A. Senouci}, Math. Montisnigri 49, 49--56 (2020; Zbl 1488.26087) Full Text: DOI OpenURL
Nosheen, Ammara; Nawaz, Aneela; Khan, Khuram Ali; Awan, Khalid Mahmood Multivariate Hardy and Littlewood inequalities on time scales. (English) Zbl 1488.26124 Arab J. Math. Sci. 26, No. 1-2, 245-263 (2020). MSC: 26D15 26E70 PDF BibTeX XML Cite \textit{A. Nosheen} et al., Arab J. Math. Sci. 26, No. 1--2, 245--263 (2020; Zbl 1488.26124) Full Text: DOI OpenURL
Jin, Jianjun Some new \(p\)-adic Hardy-Littlewood-Polya-type inequalities. (Chinese. English summary) Zbl 1474.26066 Acta Math. Sin., Chin. Ser. 63, No. 6, 639-646 (2020). MSC: 26D10 11S80 PDF BibTeX XML Cite \textit{J. Jin}, Acta Math. Sin., Chin. Ser. 63, No. 6, 639--646 (2020; Zbl 1474.26066) OpenURL
Huang, Qiliang; Yang, Bicheng An extended multidimensional half-discrete Hardy-Hilbert-type inequality with homogeneous kernel. (Chinese. English summary) Zbl 1474.26109 Acta Math. Sin., Chin. Ser. 63, No. 5, 427-442 (2020). MSC: 26D15 PDF BibTeX XML Cite \textit{Q. Huang} and \textit{B. Yang}, Acta Math. Sin., Chin. Ser. 63, No. 5, 427--442 (2020; Zbl 1474.26109) OpenURL
Temirkhanova, Ainur Maralkyzy; Beszhanova, Aigul Tolegenovna Boundedness and compactness of a certain class of matrix operators with variable limits of summation. (English) Zbl 1481.47046 Eurasian Math. J. 11, No. 4, 66-75 (2020). MSC: 47B37 26D15 PDF BibTeX XML Cite \textit{A. M. Temirkhanova} and \textit{A. T. Beszhanova}, Eurasian Math. J. 11, No. 4, 66--75 (2020; Zbl 1481.47046) Full Text: DOI MNR OpenURL
Nasibullin, R. G.; Makarov, R. V. Hardy’s inequalities with remainders and Lamb-type equations. (English. Russian original) Zbl 1462.26028 Sib. Math. J. 61, No. 6, 1102-1119 (2020); translation from Sib. Mat. Zh. 61, No. 6, 1377-1397 (2020). Reviewer: József Sándor (Cluj-Napoca) MSC: 26D15 33C10 PDF BibTeX XML Cite \textit{R. G. Nasibullin} and \textit{R. V. Makarov}, Sib. Math. J. 61, No. 6, 1102--1119 (2020; Zbl 1462.26028); translation from Sib. Mat. Zh. 61, No. 6, 1377--1397 (2020) Full Text: DOI OpenURL
Zhong, Jianhua; Zeng, Zhihong; Chen, Yanqing; Chen, Qiang The equivalent conditions for a second kind of Hardy-type inequality related to gamma function. (Chinese. English summary) Zbl 1463.26077 J. South China Norm. Univ., Nat. Sci. Ed. 52, No. 3, 101-105 (2020). MSC: 26D15 PDF BibTeX XML Cite \textit{J. Zhong} et al., J. South China Norm. Univ., Nat. Sci. Ed. 52, No. 3, 101--105 (2020; Zbl 1463.26077) Full Text: DOI OpenURL
Jain, Pankaj; Kanjilal, Saikat; Shambilova, Guldarya E.; Stepanov, Vladimir D. Bilinear weighted Hardy-type inequalities in discrete and \(q\)-calculus frameworks. (English) Zbl 1467.26008 Math. Inequal. Appl. 23, No. 4, 1279-1310 (2020). Reviewer: Petr Gurka (Praha) MSC: 26D10 46E35 PDF BibTeX XML Cite \textit{P. Jain} et al., Math. Inequal. Appl. 23, No. 4, 1279--1310 (2020; Zbl 1467.26008) Full Text: DOI OpenURL
Duy, Nguyen Tuan; Lam, Nguyen; Triet, Nguyen Anh; Yin, Weijia Improved Hardy inequalities with exact remainder terms. (English) Zbl 1454.26022 Math. Inequal. Appl. 23, No. 4, 1205-1226 (2020). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 26D10 35A23 46E35 PDF BibTeX XML Cite \textit{N. T. Duy} et al., Math. Inequal. Appl. 23, No. 4, 1205--1226 (2020; Zbl 1454.26022) Full Text: DOI OpenURL
Omarbayeva, B. K.; Persson, L.-E.; Temirkhanova, A. M. Weighted iterated discrete Hardy-type inequalities. (English) Zbl 1453.26026 Math. Inequal. Appl. 23, No. 3, 943-959 (2020). MSC: 26D15 26D20 PDF BibTeX XML Cite \textit{B. K. Omarbayeva} et al., Math. Inequal. Appl. 23, No. 3, 943--959 (2020; Zbl 1453.26026) Full Text: DOI OpenURL
Abylayeva, Akbota Muhamediyarovna Boundedness and compactness of the Hardy type operator with variable upper limit in weighted Lebesgue spaces. (English) Zbl 07284487 Math. Inequal. Appl. 23, No. 3, 805-819 (2020). MSC: 47G10 46E30 42A16 PDF BibTeX XML Cite \textit{A. M. Abylayeva}, Math. Inequal. Appl. 23, No. 3, 805--819 (2020; Zbl 07284487) Full Text: DOI OpenURL
Benaissa, Bouharket; Sarikaya, Mehmet Zeki; Senouci, Abdelkader On some new Hardy-type inequalities. (English) Zbl 1453.26017 Math. Methods Appl. Sci. 43, No. 15, 8488-8495 (2020). MSC: 26D15 26D10 PDF BibTeX XML Cite \textit{B. Benaissa} et al., Math. Methods Appl. Sci. 43, No. 15, 8488--8495 (2020; Zbl 1453.26017) Full Text: DOI OpenURL
Iqbal, Sajid; Pecaric, Josip; Samraiz, Muhammad; Tehmeena, Hassan; Tomovski, Zivorad On some weighted Hardy-type inequalities involving extended Riemann-Liouville fractional calculus operators. (English) Zbl 1451.26027 Commun. Korean Math. Soc. 35, No. 1, 161-184 (2020). MSC: 26D15 26A33 26D10 PDF BibTeX XML Cite \textit{S. Iqbal} et al., Commun. Korean Math. Soc. 35, No. 1, 161--184 (2020; Zbl 1451.26027) Full Text: DOI OpenURL
Abdullayev, S. K.; Mammadov, E. A. On one class of subadditive operators with generalized shift. (English. Russian original) Zbl 1448.42026 Ukr. Math. J. 72, No. 1, 1-20 (2020); translation from Ukr. Mat. Zh. 72, No. 1, 3-19 (2020). MSC: 42B25 46E30 44A15 PDF BibTeX XML Cite \textit{S. K. Abdullayev} and \textit{E. A. Mammadov}, Ukr. Math. J. 72, No. 1, 1--20 (2020; Zbl 1448.42026); translation from Ukr. Mat. Zh. 72, No. 1, 3--19 (2020) Full Text: DOI OpenURL
El-Hamid, H. A. Abd; Rezk, H. M.; Ahmed, A. M.; AlNemer, Ghada; Zakarya, M.; El Saify, H. A. Dynamic inequalities in quotients with general kernels and measures. (English) Zbl 1448.26022 J. Funct. Spaces 2020, Article ID 5417084, 12 p. (2020). Reviewer: V. Lokesha (Bangalore) MSC: 26C15 PDF BibTeX XML Cite \textit{H. A. A. El-Hamid} et al., J. Funct. Spaces 2020, Article ID 5417084, 12 p. (2020; Zbl 1448.26022) Full Text: DOI OpenURL
Fan, Dashan; Lou, Zengjian; Wang, Zijian One-dimensional average on spheres and approximation. (English) Zbl 1445.41002 Math. Methods Appl. Sci. 43, No. 3, 1183-1203 (2020). MSC: 41A17 41A63 42B30 PDF BibTeX XML Cite \textit{D. Fan} et al., Math. Methods Appl. Sci. 43, No. 3, 1183--1203 (2020; Zbl 1445.41002) Full Text: DOI OpenURL
Nursultanov, Erlan; Tikhonov, Sergey Weighted Fourier inequalities in Lebesgue and Lorentz spaces. (English) Zbl 1439.42011 J. Fourier Anal. Appl. 26, No. 4, Paper No. 57, 29 p. (2020). MSC: 42B10 46E30 42B35 PDF BibTeX XML Cite \textit{E. Nursultanov} and \textit{S. Tikhonov}, J. Fourier Anal. Appl. 26, No. 4, Paper No. 57, 29 p. (2020; Zbl 1439.42011) Full Text: DOI Link OpenURL
Makarov, R. V.; Nasibullin, R. G. Hardy type inequalities and parametric Lamb equation. (English) Zbl 1452.26017 Indag. Math., New Ser. 31, No. 4, 632-649 (2020). Reviewer: Bohumír Opic (Praha) MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{R. V. Makarov} and \textit{R. G. Nasibullin}, Indag. Math., New Ser. 31, No. 4, 632--649 (2020; Zbl 1452.26017) Full Text: DOI arXiv OpenURL
Rassias, Michael Th.; Yang, Bicheng; Raigorodskii, Andrei On the reverse Hardy-type integral inequalities in the whole plane with the extended Riemann-zeta function. (English) Zbl 1444.26037 J. Math. Inequal. 14, No. 2, 525-546 (2020). MSC: 26D15 11M06 PDF BibTeX XML Cite \textit{M. Th. Rassias} et al., J. Math. Inequal. 14, No. 2, 525--546 (2020; Zbl 1444.26037) Full Text: DOI OpenURL
Carando, Daniel; Marceca, Felipe; Sevilla-Peris, Pablo Hausdorff-Young-type inequalities for vector-valued Dirichlet series. (English) Zbl 1448.46038 Trans. Am. Math. Soc. 373, No. 8, 5627-5652 (2020). Reviewer: Zhibo Huang (Guangzhou) MSC: 46G20 46B07 30B50 30H10 46E40 PDF BibTeX XML Cite \textit{D. Carando} et al., Trans. Am. Math. Soc. 373, No. 8, 5627--5652 (2020; Zbl 1448.46038) Full Text: DOI arXiv OpenURL
Sun, Qinxiu; Li, Hongliang Weighted Hardy-type operators on nonincreasing cones. (English) Zbl 1442.42041 Math. Notes 107, No. 6, 1002-1013 (2020). MSC: 42B20 46E30 47G10 26D10 PDF BibTeX XML Cite \textit{Q. Sun} and \textit{H. Li}, Math. Notes 107, No. 6, 1002--1013 (2020; Zbl 1442.42041) Full Text: DOI OpenURL
Avkhadiev, F. G. Properties and applications of the distance functions on open sets of the Euclidean space. (English. Russian original) Zbl 1444.26016 Russ. Math. 64, No. 4, 75-79 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 4, 87-92 (2020). Reviewer: Choonkil Park (Seoul) MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{F. G. Avkhadiev}, Russ. Math. 64, No. 4, 75--79 (2020; Zbl 1444.26016); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 4, 87--92 (2020) Full Text: DOI OpenURL
Plewa, Paweł Sharp Hardy’s inequality for Jacobi and symmetrized Jacobi trigonometric expansions. (English) Zbl 1440.42135 J. Approx. Theory 256, Article ID 105422, 22 p. (2020). MSC: 42C10 42B30 42A05 33C45 PDF BibTeX XML Cite \textit{P. Plewa}, J. Approx. Theory 256, Article ID 105422, 22 p. (2020; Zbl 1440.42135) Full Text: DOI arXiv OpenURL
Nikolova, Ludmila; Persson, Lars-erik; Samko, Natasha Some new inequalities involving the Hardy operator. (English) Zbl 07198944 Math. Nachr. 293, No. 2, 376-385 (2020). MSC: 26D10 26D20 PDF BibTeX XML Cite \textit{L. Nikolova} et al., Math. Nachr. 293, No. 2, 376--385 (2020; Zbl 07198944) Full Text: DOI OpenURL
Nikolidakis, Eleftherios N. A sharp integral inequality for the dyadic maximal operator and a related stability result. (English) Zbl 1437.42025 Ann. Acad. Sci. Fenn., Math. 45, No. 1, 533-546 (2020). MSC: 42B25 PDF BibTeX XML Cite \textit{E. N. Nikolidakis}, Ann. Acad. Sci. Fenn., Math. 45, No. 1, 533--546 (2020; Zbl 1437.42025) Full Text: DOI arXiv OpenURL