Le, Phuong Classification of nonnegative solutions to an equation involving the Laplacian of arbitrary order. (English) Zbl 07314924 Discrete Contin. Dyn. Syst. 41, No. 4, 1605-1626 (2021). MSC: 35R11 35J30 35B06 35B53 35A02 PDF BibTeX XML Cite \textit{P. Le}, Discrete Contin. Dyn. Syst. 41, No. 4, 1605--1626 (2021; Zbl 07314924) Full Text: DOI
Choi, Woocheol; Hong, Younghun; Seok, Jinmyoung Semi-classical limit of quantum free energy minimizers for the gravitational Hartree equation. (English) Zbl 07300724 Arch. Ration. Mech. Anal. 239, No. 2, 783-829 (2021). Reviewer: Alex B. Gaina (Chisinau) MSC: 81Q20 81T20 83C47 82B30 70F15 85A05 85A15 PDF BibTeX XML Cite \textit{W. Choi} et al., Arch. Ration. Mech. Anal. 239, No. 2, 783--829 (2021; Zbl 07300724) Full Text: DOI
Dimonte, Daniele; Falconi, Marco; Olgiati, Alessandro On some rigorous aspects of fragmented condensation. (English) Zbl 1452.81175 Nonlinearity 34, No. 1, 1-32 (2021). MSC: 81V73 35Q40 82B26 81Q20 PDF BibTeX XML Cite \textit{D. Dimonte} et al., Nonlinearity 34, No. 1, 1--32 (2021; Zbl 1452.81175) Full Text: DOI
Banquet, Carlos; Villamizar-Roa, Élder J. On the management fourth-order Schrödinger-Hartree equation. (English) Zbl 1452.35178 Evol. Equ. Control Theory 9, No. 3, 865-889 (2020). MSC: 35Q55 35A01 35B40 35G25 PDF BibTeX XML Cite \textit{C. Banquet} and \textit{É. J. Villamizar-Roa}, Evol. Equ. Control Theory 9, No. 3, 865--889 (2020; Zbl 1452.35178) Full Text: DOI
Saffirio, Chiara From the Hartree equation to the Vlasov-Poisson system: strong convergence for a class of mixed states. (English) Zbl 07279614 SIAM J. Math. Anal. 52, No. 6, 5533-5553 (2020). MSC: 35Q83 35Q40 82C40 PDF BibTeX XML Cite \textit{C. Saffirio}, SIAM J. Math. Anal. 52, No. 6, 5533--5553 (2020; Zbl 07279614) Full Text: DOI
Cinal, M. Highly accurate numerical solution of Hartree-Fock equation with pseudospectral method for closed-shell atoms. (English) Zbl 1448.81472 J. Math. Chem. 58, No. 8, 1571-1600 (2020). MSC: 81V45 34L10 34L15 34L40 65L15 PDF BibTeX XML Cite \textit{M. Cinal}, J. Math. Chem. 58, No. 8, 1571--1600 (2020; Zbl 1448.81472) Full Text: DOI
Wang, Qingxuan; Li, Xin Asymptotic analysis of boosted ground states of boson stars. (English) Zbl 1445.35143 Math. Methods Appl. Sci. 43, No. 2, 704-715 (2020). MSC: 35J20 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{X. Li}, Math. Methods Appl. Sci. 43, No. 2, 704--715 (2020; Zbl 1445.35143) Full Text: DOI
Tesfahun, Achenef Small data scattering for cubic Dirac equation with Hartree type nonlinearity in \(\mathbb{R}^{1+3} \). (English) Zbl 1446.35159 SIAM J. Math. Anal. 52, No. 3, 2969-3003 (2020). MSC: 35Q41 35Q55 35P25 PDF BibTeX XML Cite \textit{A. Tesfahun}, SIAM J. Math. Anal. 52, No. 3, 2969--3003 (2020; Zbl 1446.35159) Full Text: DOI
Xie, Yingying; Su, Jian; Mei, Liquan Blowup results and concentration in focusing Schrödinger-Hartree equation. (English) Zbl 1440.35313 Discrete Contin. Dyn. Syst. 40, No. 8, 5001-5017 (2020). MSC: 35Q55 35Q41 35Q40 81Q05 35A01 35B44 PDF BibTeX XML Cite \textit{Y. Xie} et al., Discrete Contin. Dyn. Syst. 40, No. 8, 5001--5017 (2020; Zbl 1440.35313) Full Text: DOI
Miao, Changxing; Xu, Guixiang; Yang, Jianwei-Urbain Global well-posedness for the defocusing Hartree equation with radial data in \(\mathbb{R}^4\). (English) Zbl 1434.35136 Commun. Contemp. Math. 22, No. 2, Article ID 1950004, 35 p. (2020). MSC: 35Q40 35Q55 PDF BibTeX XML Cite \textit{C. Miao} et al., Commun. Contemp. Math. 22, No. 2, Article ID 1950004, 35 p. (2020; Zbl 1434.35136) Full Text: DOI
Zheng, Yu; Yang, Minbo; Shen, Zifei On critical pseudo-relativistic Hartree equation with potential well. (English) Zbl 1437.35325 Topol. Methods Nonlinear Anal. 55, No. 1, 185-226 (2020). MSC: 35J60 35B40 35A15 PDF BibTeX XML Cite \textit{Y. Zheng} et al., Topol. Methods Nonlinear Anal. 55, No. 1, 185--226 (2020; Zbl 1437.35325) Full Text: DOI Euclid
Gao, Yanfang; Wang, Zhiyong Below and beyond the mass-energy threshold: scattering for the Hartree equation with radial data in \(d \ge 5\). (English) Zbl 1437.35626 Z. Angew. Math. Phys. 71, No. 2, Paper No. 52, 23 p. (2020). MSC: 35Q55 35Q40 35P25 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{Z. Wang}, Z. Angew. Math. Phys. 71, No. 2, Paper No. 52, 23 p. (2020; Zbl 1437.35626) Full Text: DOI
Collot, C.; de Suzzoni, Anne-Sophie Stability of equilibria for a Hartree equation for random fields. (English. French summary) Zbl 1439.35438 J. Math. Pures Appl. (9) 137, 70-100 (2020). MSC: 35Q55 35B35 35B40 35B25 35P25 35R60 35Q40 PDF BibTeX XML Cite \textit{C. Collot} and \textit{A.-S. de Suzzoni}, J. Math. Pures Appl. (9) 137, 70--100 (2020; Zbl 1439.35438) Full Text: DOI
Wang, Jun; Zhao, Tingting; Xiao, Lu Existence and asymptotical behavior of the minimizer of Hartree type equation with periodic potentials. (English) Zbl 1439.35448 Complex Var. Elliptic Equ. 65, No. 5, 740-764 (2020). Reviewer: Huansong Zhou (Wuhan) MSC: 35Q55 35J61 35J20 35Q60 49J40 35B32 35A01 35B40 35R09 90C30 PDF BibTeX XML Cite \textit{J. Wang} et al., Complex Var. Elliptic Equ. 65, No. 5, 740--764 (2020; Zbl 1439.35448) Full Text: DOI
Boßmann, Lea; Pavlović, Nataša; Pickl, Peter; Soffer, Avy Higher order corrections to the mean-field description of the dynamics of interacting bosons. (English) Zbl 1439.82029 J. Stat. Phys. 178, No. 6, 1362-1396 (2020). MSC: 82C22 82C10 81V10 35Q55 35Q40 PDF BibTeX XML Cite \textit{L. Boßmann} et al., J. Stat. Phys. 178, No. 6, 1362--1396 (2020; Zbl 1439.82029) Full Text: DOI
Le, Phuong On classical solutions to the Hartree equation. (English) Zbl 1437.35339 J. Math. Anal. Appl. 485, No. 2, Article ID 123859, 10 p. (2020). MSC: 35J61 35B09 35A01 PDF BibTeX XML Cite \textit{P. Le}, J. Math. Anal. Appl. 485, No. 2, Article ID 123859, 10 p. (2020; Zbl 1437.35339) Full Text: DOI
Nakamura, Shohei The orthonormal Strichartz inequality on torus. (English) Zbl 1435.35017 Trans. Am. Math. Soc. 373, No. 2, 1455-1476 (2020). MSC: 35A23 35B45 35P10 35B65 PDF BibTeX XML Cite \textit{S. Nakamura}, Trans. Am. Math. Soc. 373, No. 2, 1455--1476 (2020; Zbl 1435.35017) Full Text: DOI
Bernini, Federico; Mugnai, Dimitri On a logarithmic Hartree equation. (English) Zbl 1435.35132 Adv. Nonlinear Anal. 9, 850-865 (2020). Reviewer: Giovanni Anello (Messina) MSC: 35J05 35J10 35J47 35J50 35Q40 PDF BibTeX XML Cite \textit{F. Bernini} and \textit{D. Mugnai}, Adv. Nonlinear Anal. 9, 850--865 (2020; Zbl 1435.35132) Full Text: DOI
Cao, Daomin; Dai, Wei Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity. (English) Zbl 1437.35383 Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 4, 979-994 (2019). MSC: 35J91 31B30 35B06 PDF BibTeX XML Cite \textit{D. Cao} and \textit{W. Dai}, Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 4, 979--994 (2019; Zbl 1437.35383) Full Text: DOI
Masaki, Satoshi On the scattering problem of mass-subcritical Hartree equation. (English) Zbl 1435.35354 Kato, Keiichi (ed.) et al., Asymptotic analysis for nonlinear dispersive and wave equations. Proceedings of the international conference on asymptotic analysis for nonlinear dispersive and wave equations, Osaka University, Osaka, Japan, September 6–9, 2014. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 81, 259-309 (2019). MSC: 35Q55 35Q41 35P25 35B40 35B44 35A01 35A02 PDF BibTeX XML Cite \textit{S. Masaki}, Adv. Stud. Pure Math. 81, 259--309 (2019; Zbl 1435.35354) Full Text: DOI Euclid
Gu, Guangze; Tang, Xianhua The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity. (English) Zbl 1427.35050 Adv. Nonlinear Stud. 19, No. 4, 779-795 (2019). MSC: 35J60 35B25 35B40 35J20 PDF BibTeX XML Cite \textit{G. Gu} and \textit{X. Tang}, Adv. Nonlinear Stud. 19, No. 4, 779--795 (2019; Zbl 1427.35050) Full Text: DOI
Hyakuna, Ryosuke Global solutions to the Hartree equation for large \(L^p\)-initial data. (English) Zbl 1427.35256 Indiana Univ. Math. J. 68, No. 4, 1149-1172 (2019). MSC: 35Q55 35A01 35Q41 35A02 81Q05 PDF BibTeX XML Cite \textit{R. Hyakuna}, Indiana Univ. Math. J. 68, No. 4, 1149--1172 (2019; Zbl 1427.35256) Full Text: DOI
Chenn, Ilias; Sigal, I. M. On effective PDEs of quantum physics. (English) Zbl 1428.35419 D’Abbicco, Marcello (ed.) et al., New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 1-47 (2019). MSC: 35Q40 78A35 35B10 35Q55 PDF BibTeX XML Cite \textit{I. Chenn} and \textit{I. M. Sigal}, in: New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 1--47 (2019; Zbl 1428.35419) Full Text: DOI
Zhang, Jian; Zheng, Shijun; Zhu, Shihui Orbital stability of standing waves for fractional Hartree equation with unbounded potentials. (English) Zbl 1423.35357 Zheng, Shijun (ed.) et al., Nonlinear dispersive waves and fluids. AMS special sessions on spectral calculus and quasilinear partial differential equations, and PDE analysis on fluid flows, Atlanta, GA, USA, January 5–7, 2017. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 725, 265-275 (2019). MSC: 35Q55 35B35 35C08 PDF BibTeX XML Cite \textit{J. Zhang} et al., Contemp. Math. 725, 265--275 (2019; Zbl 1423.35357) Full Text: DOI arXiv
Bhimani, Divyang G. Global well-posedness for fractional Hartree equation on modulation spaces and Fourier algebra. (English) Zbl 1428.35484 J. Differ. Equations 268, No. 1, 141-159 (2019). MSC: 35Q55 42B35 35A01 35R11 35Q41 PDF BibTeX XML Cite \textit{D. G. Bhimani}, J. Differ. Equations 268, No. 1, 141--159 (2019; Zbl 1428.35484) Full Text: DOI arXiv
Watanabe, Michiyuki Time-dependent methods in inverse scattering problems for the Hartree-Fock equation. (English) Zbl 1428.82043 J. Math. Phys. 60, No. 9, 091504, 19 p. (2019). MSC: 82C22 81U20 81U40 37K15 35Q40 PDF BibTeX XML Cite \textit{M. Watanabe}, J. Math. Phys. 60, No. 9, 091504, 19 p. (2019; Zbl 1428.82043) Full Text: DOI
Lafleche, Laurent Propagation of moments and semiclassical limit from Hartree to Vlasov equation. (English) Zbl 1426.82034 J. Stat. Phys. 177, No. 1, 20-60 (2019). MSC: 82C10 35Q41 35Q55 82C05 35Q83 82C22 PDF BibTeX XML Cite \textit{L. Lafleche}, J. Stat. Phys. 177, No. 1, 20--60 (2019; Zbl 1426.82034) Full Text: DOI
Li, Yuan; Zhao, Dun; Wang, Qingxuan Concentration behavior of nonlinear Hartree-type equation with almost mass critical exponent. (English) Zbl 1427.35085 Z. Angew. Math. Phys. 70, No. 4, Paper No. 128, 17 p. (2019). MSC: 35J91 35J20 PDF BibTeX XML Cite \textit{Y. Li} et al., Z. Angew. Math. Phys. 70, No. 4, Paper No. 128, 17 p. (2019; Zbl 1427.35085) Full Text: DOI
Lin, Lin Numerical methods for Hartree-Fock-like equations. (Chinese. English summary) Zbl 1438.65332 Math. Numer. Sin. 41, No. 2, 113-125 (2019). MSC: 65R20 65R15 65Z05 PDF BibTeX XML Cite \textit{L. Lin}, Math. Numer. Sin. 41, No. 2, 113--125 (2019; Zbl 1438.65332)
Arora, Anudeep Kumar Scattering of radial data in the focusing NLS and generalized Hartree equations. (English) Zbl 1428.35480 Discrete Contin. Dyn. Syst. 39, No. 11, 6643-6668 (2019). MSC: 35Q55 35Q40 37K40 37K58 PDF BibTeX XML Cite \textit{A. K. Arora}, Discrete Contin. Dyn. Syst. 39, No. 11, 6643--6668 (2019; Zbl 1428.35480) Full Text: DOI arXiv
Bhimani, Divyang G. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. (English) Zbl 1428.35483 Discrete Contin. Dyn. Syst. 39, No. 10, 5923-5944 (2019). MSC: 35Q55 35L05 42B35 35A01 PDF BibTeX XML Cite \textit{D. G. Bhimani}, Discrete Contin. Dyn. Syst. 39, No. 10, 5923--5944 (2019; Zbl 1428.35483) Full Text: DOI
Lee, Jinyeop On the time dependence of the rate of convergence towards Hartree dynamics for interacting bosons. (English) Zbl 1419.81044 J. Stat. Phys. 176, No. 2, 358-381 (2019). MSC: 81V70 81Q05 82C22 81T15 PDF BibTeX XML Cite \textit{J. Lee}, J. Stat. Phys. 176, No. 2, 358--381 (2019; Zbl 1419.81044) Full Text: DOI
Manna, Ramesh The Cauchy problem for non-linear higher order Hartree type equation in modulation spaces. (English) Zbl 1420.35368 J. Fourier Anal. Appl. 25, No. 4, 1319-1349 (2019). MSC: 35Q55 35G25 42B35 35A01 35A02 35Q40 PDF BibTeX XML Cite \textit{R. Manna}, J. Fourier Anal. Appl. 25, No. 4, 1319--1349 (2019; Zbl 1420.35368) Full Text: DOI
Hyakuna, Ryosuke On the global Cauchy problem for the Hartree equation with rapidly decaying initial data. (English) Zbl 1421.35337 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 4, 1081-1104 (2019). Reviewer: Konstantin Merz (München) MSC: 35Q55 35Q40 35A01 35A02 81Q05 PDF BibTeX XML Cite \textit{R. Hyakuna}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 4, 1081--1104 (2019; Zbl 1421.35337) Full Text: DOI
Luo, Xiao Normalized standing waves for the Hartree equations. (English) Zbl 1420.35097 J. Differ. Equations 267, No. 7, 4493-4524 (2019). MSC: 35J60 35J92 35J20 PDF BibTeX XML Cite \textit{X. Luo}, J. Differ. Equations 267, No. 7, 4493--4524 (2019; Zbl 1420.35097) Full Text: DOI
Yang, Changhun Scattering results for Dirac Hartree-type equations with small initial data. (English) Zbl 1416.35249 Commun. Pure Appl. Anal. 18, No. 4, 1711-1734 (2019). MSC: 35Q55 35Q40 35R25 PDF BibTeX XML Cite \textit{C. Yang}, Commun. Pure Appl. Anal. 18, No. 4, 1711--1734 (2019; Zbl 1416.35249) Full Text: DOI arXiv
Chen, Peng; Liu, Xiaochun Ground states for Kirchhoff equation with Hartree-type nonlinearities. (English) Zbl 1414.35076 J. Math. Anal. Appl. 473, No. 1, 587-608 (2019). MSC: 35J60 PDF BibTeX XML Cite \textit{P. Chen} and \textit{X. Liu}, J. Math. Anal. Appl. 473, No. 1, 587--608 (2019; Zbl 1414.35076) Full Text: DOI
Androulakis, George; Musulin, Rade Quantum Kac’s chaos. (English) Zbl 1409.81051 Commun. Math. Sci. 16, No. 7, 1801-1825 (2018). MSC: 81Q50 35Q83 37D45 PDF BibTeX XML Cite \textit{G. Androulakis} and \textit{R. Musulin}, Commun. Math. Sci. 16, No. 7, 1801--1825 (2019; Zbl 1409.81051) Full Text: DOI
Li, Yan; Li, Xinfu; Ma, Shiwang Groundstates for Kirchhoff-type equations with Hartree-type nonlinearities. (English) Zbl 1412.35124 Result. Math. 74, No. 1, Paper No. 42, 26 p. (2019). MSC: 35J60 35B09 PDF BibTeX XML Cite \textit{Y. Li} et al., Result. Math. 74, No. 1, Paper No. 42, 26 p. (2019; Zbl 1412.35124) Full Text: DOI
Chen, Thomas; Soffer, Avy Mean field dynamics of a quantum tracer particle interacting with a boson gas. (English) Zbl 1414.82026 J. Funct. Anal. 276, No. 3, 971-1006 (2019). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 82C40 81V70 35Q40 82D05 PDF BibTeX XML Cite \textit{T. Chen} and \textit{A. Soffer}, J. Funct. Anal. 276, No. 3, 971--1006 (2019; Zbl 1414.82026) Full Text: DOI arXiv
Yang, Changhun Small data scattering of semirelativistic Hartree equation. (English) Zbl 1406.35375 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 178, 41-55 (2019). MSC: 35Q55 35Q53 35P25 PDF BibTeX XML Cite \textit{C. Yang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 178, 41--55 (2019; Zbl 1406.35375) Full Text: DOI arXiv
Hoshino, Gaku; Hyakuna, Ryosuke Trilinear \(L^p\) estimates with applications to the Cauchy problem for the Hartree-type equation. (English) Zbl 1404.35415 J. Math. Anal. Appl. 469, No. 1, 321-341 (2019). MSC: 35Q55 35Q41 81Q05 PDF BibTeX XML Cite \textit{G. Hoshino} and \textit{R. Hyakuna}, J. Math. Anal. Appl. 469, No. 1, 321--341 (2019; Zbl 1404.35415) Full Text: DOI
Feng, Binhua; Yuan, Xiangxia Global existence for solution of fractional Hartree equation with time-dependent damping/gain. (Chinese. English summary) Zbl 1424.35002 J. Jilin Univ., Sci. 56, No. 3, 475-480 (2018). MSC: 35A01 35R11 PDF BibTeX XML Cite \textit{B. Feng} and \textit{X. Yuan}, J. Jilin Univ., Sci. 56, No. 3, 475--480 (2018; Zbl 1424.35002) Full Text: DOI
Grushevskaya, Halina V.; Krylov, George; Gaisyonok, Victor A. Non-abelian currents in quasi-relativistic graphene model: general theory. (English) Zbl 1405.82016 Nonlinear Phenom. Complex Syst., Minsk 21, No. 3, 278-308 (2018). MSC: 82C10 82C70 81V70 PDF BibTeX XML Cite \textit{H. V. Grushevskaya} et al., Nonlinear Phenom. Complex Syst., Minsk 21, No. 3, 278--308 (2018; Zbl 1405.82016) Full Text: Link
Hyakuna, Ryosuke Multilinear estimates with applications to nonlinear Schrödinger and Hartree equations in \(\widehat{L^p}\)-spaces. (English) Zbl 1398.35215 J. Evol. Equ. 18, No. 3, 1069-1084 (2018). MSC: 35Q55 PDF BibTeX XML Cite \textit{R. Hyakuna}, J. Evol. Equ. 18, No. 3, 1069--1084 (2018; Zbl 1398.35215) Full Text: DOI
Lei, Yutian Liouville theorems and classification results for a nonlocal Schrödinger equation. (English) Zbl 1401.35036 Discrete Contin. Dyn. Syst. 38, No. 11, 5351-5377 (2018). MSC: 35J05 35J47 35Q55 PDF BibTeX XML Cite \textit{Y. Lei}, Discrete Contin. Dyn. Syst. 38, No. 11, 5351--5377 (2018; Zbl 1401.35036) Full Text: DOI
Dietler, Elia; Rademacher, Simone; Schlein, Benjamin From Hartree dynamics to the relativistic Vlasov equation. (English) Zbl 1397.35310 J. Stat. Phys. 172, No. 2, 398-433 (2018). MSC: 35Q83 81V70 35Q40 35Q55 35Q75 PDF BibTeX XML Cite \textit{E. Dietler} et al., J. Stat. Phys. 172, No. 2, 398--433 (2018; Zbl 1397.35310) Full Text: DOI
Zhao, Yanjun; Feng, Binhua Existence and regularity of global solutions nonlinear Hartree equations with Coulomb potentials and sublinear damping. (English) Zbl 1400.35117 Electron. J. Differ. Equ. 2018, Paper No. 163, 15 p. (2018). MSC: 35J60 35Q55 PDF BibTeX XML Cite \textit{Y. Zhao} and \textit{B. Feng}, Electron. J. Differ. Equ. 2018, Paper No. 163, 15 p. (2018; Zbl 1400.35117) Full Text: Link
Golse, François The mean-field limit for the quantum \(N\)-body problem: uniform in \(\hbar\) convergence rate. (English) Zbl 1397.35240 Dogbe, Christian (ed.), Actes du colloque “EDP-Normandie”, Caen, France, Octobre 25–26, 2017. [s.l.]: Fédération Normandie-Mathématiques (ISBN 978-2-9541221-4-4/pbk). Normandie-Mathématiques, 27-33 (2018). MSC: 35Q40 PDF BibTeX XML Cite \textit{F. Golse}, in: Actes du colloque ``EDP-Normandie'', Caen, France, Octobre 25--26, 2017. [s.l.]: Fédération Normandie-Mathématiques. 27--33 (2018; Zbl 1397.35240)
Michelangeli, Alessandro; Olgiati, Alessandro; Scandone, Raffaele Singular Hartree equation in fractional perturbed Sobolev spaces. (English) Zbl 1417.35182 J. Nonlinear Math. Phys. 25, No. 4, 558-588 (2018). MSC: 35Q55 81Q05 35Q40 35P25 35B35 PDF BibTeX XML Cite \textit{A. Michelangeli} et al., J. Nonlinear Math. Phys. 25, No. 4, 558--588 (2018; Zbl 1417.35182) Full Text: DOI
Golse, François; Paul, Thierry; Pulvirenti, Mario On the derivation of the Hartree equation from the \(N\)-body Schrödinger equation: uniformity in the Planck constant. (English) Zbl 1400.82146 J. Funct. Anal. 275, No. 7, 1603-1649 (2018). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 82C10 35Q41 35Q55 82C05 35Q83 47L80 PDF BibTeX XML Cite \textit{F. Golse} et al., J. Funct. Anal. 275, No. 7, 1603--1649 (2018; Zbl 1400.82146) Full Text: DOI
Cho, Yonggeun; Ozawa, Tohru Small data scattering of Hartree type fractional Schrödinger equations in dimension 2 and 3. (English) Zbl 1393.35217 J. Korean Math. Soc. 55, No. 2, 373-390 (2018). MSC: 35Q55 35Q53 35R11 35P25 PDF BibTeX XML Cite \textit{Y. Cho} and \textit{T. Ozawa}, J. Korean Math. Soc. 55, No. 2, 373--390 (2018; Zbl 1393.35217) Full Text: Link
Cingolani, Silvia; Secchi, Simone Intertwining solutions for magnetic relativistic Hartree type equations. (English) Zbl 1397.35078 Nonlinearity 31, No. 5, 2294-2318 (2018). Reviewer: Dumitru Motreanu (Juiz de Fora) MSC: 35J10 35Q40 35Q75 PDF BibTeX XML Cite \textit{S. Cingolani} and \textit{S. Secchi}, Nonlinearity 31, No. 5, 2294--2318 (2018; Zbl 1397.35078) Full Text: DOI
Gao, Yanfang; Wang, Zhiyong Concentration for blow-up solutions of semi-relativistic Hartree equations of critical type. (English) Zbl 06892559 Appl. Math. Lett. 83, 59-64 (2018). MSC: 35 34 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{Z. Wang}, Appl. Math. Lett. 83, 59--64 (2018; Zbl 06892559) Full Text: DOI
Georgiev, Vladimir; Stefanov, Atanas On the classification of the spectrally stable standing waves of the Hartree problem. (English) Zbl 1390.81147 Physica D 370, 29-39 (2018). MSC: 81Q05 35C08 35R11 PDF BibTeX XML Cite \textit{V. Georgiev} and \textit{A. Stefanov}, Physica D 370, 29--39 (2018; Zbl 1390.81147) Full Text: DOI
Che, Guofeng; Chen, Haibo Multiple solutions for the Schrödinger equations with sign-changing potential and Hartree nonlinearity. (English) Zbl 1390.35055 Appl. Math. Lett. 81, 21-26 (2018). MSC: 35J05 35J10 PDF BibTeX XML Cite \textit{G. Che} and \textit{H. Chen}, Appl. Math. Lett. 81, 21--26 (2018; Zbl 1390.35055) Full Text: DOI
Lü, Dengfeng; Xu, Guojin On nonlinear fractional Schrödinger equations with Hartree-type nonlinearity. (English) Zbl 1393.35224 Appl. Anal. 97, No. 2, 255-273 (2018). MSC: 35Q55 35A01 35B25 35J60 35A15 55M30 35R11 PDF BibTeX XML Cite \textit{D. Lü} and \textit{G. Xu}, Appl. Anal. 97, No. 2, 255--273 (2018; Zbl 1393.35224) Full Text: DOI
Hwang, Gyeongha Almost sure well-posedness of fractional Schrödinger equations with Hartree nonlinearity. (English) Zbl 1392.35288 Publ. Res. Inst. Math. Sci. 54, No. 1, 1-44 (2018). MSC: 35Q55 42B35 35Q40 26A33 PDF BibTeX XML Cite \textit{G. Hwang}, Publ. Res. Inst. Math. Sci. 54, No. 1, 1--44 (2018; Zbl 1392.35288) Full Text: DOI
Chen, Thomas; Hong, Younghun; Pavlović, Nataša On the scattering problem for infinitely many fermions in dimensions \(d\geq 3\) at positive temperature. (English) Zbl 1383.81366 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, No. 2, 393-416 (2018). MSC: 81V70 35Q40 81Q05 82B30 81P16 82C22 46E35 PDF BibTeX XML Cite \textit{T. Chen} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, No. 2, 393--416 (2018; Zbl 1383.81366) Full Text: DOI arXiv
Secchi, Simone Existence of solutions for a semirelativistic Hartree equation with unbounded potentials. (English) Zbl 1391.35139 Forum Math. 30, No. 1, 129-140 (2018). Reviewer: Elvira Mascolo (Firenze) MSC: 35J60 35Q55 PDF BibTeX XML Cite \textit{S. Secchi}, Forum Math. 30, No. 1, 129--140 (2018; Zbl 1391.35139) Full Text: DOI arXiv
Feng, Binhua; Zhang, Honghong Stability of standing waves for the fractional Schrödinger-Hartree equation. (English) Zbl 06824868 J. Math. Anal. Appl. 460, No. 1, 352-364 (2018). MSC: 35 76 PDF BibTeX XML Cite \textit{B. Feng} and \textit{H. Zhang}, J. Math. Anal. Appl. 460, No. 1, 352--364 (2018; Zbl 06824868) Full Text: DOI
Ruiz, David; Van Schaftingen, Jean Odd symmetry of least energy nodal solutions for the Choquard equation. (English) Zbl 1377.35011 J. Differ. Equations 264, No. 2, 1231-1262 (2018). MSC: 35B06 35J61 35R09 PDF BibTeX XML Cite \textit{D. Ruiz} and \textit{J. Van Schaftingen}, J. Differ. Equations 264, No. 2, 1231--1262 (2018; Zbl 1377.35011) Full Text: DOI
Schlein, Benjamin Derivation of effective evolution equations from many-body quantum mechanics. (English) Zbl 1393.82010 Riv. Mat. Univ. Parma (N.S.) 8, No. 1, 83-108 (2017). MSC: 82C10 35Q40 35Q55 81V70 PDF BibTeX XML Cite \textit{B. Schlein}, Riv. Mat. Univ. Parma (N.S.) 8, No. 1, 83--108 (2017; Zbl 1393.82010)
Yang, Lingyan; Li, Xiaoguang; Wu, Yonghong; Caccetta, Louis Global well-posedness and blow-up for the Hartree equation. (English) Zbl 1399.35337 Acta Math. Sci., Ser. B, Engl. Ed. 37, No. 4, 941-948 (2017). MSC: 35Q55 35B44 PDF BibTeX XML Cite \textit{L. Yang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 37, No. 4, 941--948 (2017; Zbl 1399.35337) Full Text: DOI
Li, Bin; Shen, Jieqiong Existence-uniqueness and blow-up criterion of the local mild solution for the generalized Wigner equation. (Chinese. English summary) Zbl 1389.35266 Adv. Math., Beijing 46, No. 3, 396-406 (2017). MSC: 35Q40 35B44 PDF BibTeX XML Cite \textit{B. Li} and \textit{J. Shen}, Adv. Math., Beijing 46, No. 3, 396--406 (2017; Zbl 1389.35266) Full Text: DOI
Wang, Jun; Shi, Junping Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction. (English) Zbl 1397.35106 Calc. Var. Partial Differ. Equ. 56, No. 6, Paper No. 168, 36 p. (2017). Reviewer: Thomas J. Bartsch (Gießen) MSC: 35J61 35J47 35J50 35Q55 49J40 PDF BibTeX XML Cite \textit{J. Wang} and \textit{J. Shi}, Calc. Var. Partial Differ. Equ. 56, No. 6, Paper No. 168, 36 p. (2017; Zbl 1397.35106) Full Text: DOI
Khoromskaia, Venera; Khoromskij, Boris N. Block circulant and Toeplitz structures in the linearized Hartree-Fock equation on finite lattices: tensor approach. (English) Zbl 1380.65355 Comput. Methods Appl. Math. 17, No. 3, 431-455 (2017). MSC: 65N25 35Q84 35P15 PDF BibTeX XML Cite \textit{V. Khoromskaia} and \textit{B. N. Khoromskij}, Comput. Methods Appl. Math. 17, No. 3, 431--455 (2017; Zbl 1380.65355) Full Text: DOI
Pereskokov, A. V. Semiclassical asymptotics of solutions to Hartree type equations concentrated on segments. (English. Russian original) Zbl 1390.81178 J. Math. Sci., New York 226, No. 4, 462-516 (2017); translation from Probl. Mat. Anal. 89, 113-162 (2017). Reviewer: Jesús Hernández (Madrid) MSC: 81Q20 35P30 35P20 PDF BibTeX XML Cite \textit{A. V. Pereskokov}, J. Math. Sci., New York 226, No. 4, 462--516 (2017; Zbl 1390.81178); translation from Probl. Mat. Anal. 89, 113--162 (2017) Full Text: DOI
Leng, Lihui; Li, Xiaoguang; Zheng, Pengshe Sharp criteria for the nonlinear Schrödinger equation with combined nonlinearities of power-type and Hartree-type. (English) Zbl 1386.35380 Appl. Anal. 96, No. 16, 2846-2851 (2017). MSC: 35Q55 35B44 PDF BibTeX XML Cite \textit{L. Leng} et al., Appl. Anal. 96, No. 16, 2846--2851 (2017; Zbl 1386.35380) Full Text: DOI
Benner, Peter; Dolgov, Sergey; Khoromskaia, Venera; Khoromskij, Boris N. Fast iterative solution of the Bethe-Salpeter eigenvalue problem using low-rank and QTT tensor approximation. (English) Zbl 1376.65045 J. Comput. Phys. 334, 221-239 (2017). MSC: 65F15 65F30 15A69 35Q35 PDF BibTeX XML Cite \textit{P. Benner} et al., J. Comput. Phys. 334, 221--239 (2017; Zbl 1376.65045) Full Text: DOI
Li, Yayun; Xu, Deyun Regularity lifting result for an integral system involving Riesz potentials. (English) Zbl 1379.35080 Electron. J. Differ. Equ. 2017, Paper No. 284, 8 p. (2017). MSC: 35J10 35Q55 45E10 45G05 PDF BibTeX XML Cite \textit{Y. Li} and \textit{D. Xu}, Electron. J. Differ. Equ. 2017, Paper No. 284, 8 p. (2017; Zbl 1379.35080) Full Text: Link
Michelangeli, Alessandro; Olgiati, Alessandro Mean-field quantum dynamics for a mixture of Bose-Einstein condensates. (English) Zbl 1386.35382 Anal. Math. Phys. 7, No. 4, 377-416 (2017). MSC: 35Q55 35Q40 81V70 PDF BibTeX XML Cite \textit{A. Michelangeli} and \textit{A. Olgiati}, Anal. Math. Phys. 7, No. 4, 377--416 (2017; Zbl 1386.35382) Full Text: DOI
Feng, Binhua; Zhang, Honghong; Zhao, Yanjun Stability of the Hartree equation with time-dependent coefficients. (English) Zbl 1378.35276 Bound. Value Probl. 2017, Paper No. 129, 9 p. (2017). MSC: 35Q55 49J20 35B25 PDF BibTeX XML Cite \textit{B. Feng} et al., Bound. Value Probl. 2017, Paper No. 129, 9 p. (2017; Zbl 1378.35276) Full Text: DOI
Manna, Ramesh Modulation spaces and non-linear Hartree type equations. (English) Zbl 1375.35503 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 162, 76-90 (2017). MSC: 35Q55 42B35 35A01 PDF BibTeX XML Cite \textit{R. Manna}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 162, 76--90 (2017; Zbl 1375.35503) Full Text: DOI
Suzuki, Toshiyuki Scattering theory for Hartree equations with inverse-square potentials. (English) Zbl 1373.35292 Appl. Anal. 96, No. 12, 2032-2043 (2017). MSC: 35Q55 35Q40 81Q15 35B40 35P25 PDF BibTeX XML Cite \textit{T. Suzuki}, Appl. Anal. 96, No. 12, 2032--2043 (2017; Zbl 1373.35292) Full Text: DOI
Sasaki, Hironobu On the analytic smoothing effect for the Hartree equation with a short range interaction potential. (English) Zbl 1379.35297 J. Math. Anal. Appl. 455, No. 2, 1088-1109 (2017). Reviewer: Joseph Shomberg (Providence) MSC: 35Q55 PDF BibTeX XML Cite \textit{H. Sasaki}, J. Math. Anal. Appl. 455, No. 2, 1088--1109 (2017; Zbl 1379.35297) Full Text: DOI
Wu, Dan On global existence for mass-supercritical nonlinear fractional Hartree equations. (English) Zbl 1368.35254 Acta Math. Appl. Sin., Engl. Ser. 33, No. 2, 389-400 (2017). MSC: 35Q55 PDF BibTeX XML Cite \textit{D. Wu}, Acta Math. Appl. Sin., Engl. Ser. 33, No. 2, 389--400 (2017; Zbl 1368.35254) Full Text: DOI
Petrat, Sören Hartree corrections in a mean-field limit for fermions with Coulomb \(\mathrm{interaction}^{*}\). (English) Zbl 1369.81129 J. Phys. A, Math. Theor. 50, No. 24, Article ID 244004, 19 p. (2017). MSC: 81V70 81Q05 81S05 PDF BibTeX XML Cite \textit{S. Petrat}, J. Phys. A, Math. Theor. 50, No. 24, Article ID 244004, 19 p. (2017; Zbl 1369.81129) Full Text: DOI
Xu, Junjun; Feng, Tongtong; Gu, Qiang Spin dynamics of large-spin fermions in a harmonic trap. (English) Zbl 1365.81165 Ann. Phys. 379, 175-186 (2017). MSC: 81V70 81R25 PDF BibTeX XML Cite \textit{J. Xu} et al., Ann. Phys. 379, 175--186 (2017; Zbl 1365.81165) Full Text: DOI
Bhattarai, Santosh On fractional Schrödinger systems of Choquard type. (English) Zbl 06730924 J. Differ. Equations 263, No. 6, 3197-3229 (2017). MSC: 35R11 35Q55 35Q40 35B35 PDF BibTeX XML Cite \textit{S. Bhattarai}, J. Differ. Equations 263, No. 6, 3197--3229 (2017; Zbl 06730924) Full Text: DOI arXiv
Wang, Ying Isolated singularities of solutions of defocusing Hartree equation. (English) Zbl 1368.35119 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 156, 70-81 (2017). MSC: 35J60 PDF BibTeX XML Cite \textit{Y. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 156, 70--81 (2017; Zbl 1368.35119) Full Text: DOI
Wang, Zhiyong; Gao, Yanfang Minimal mass non-scattering solutions of the focusing \(L^2\)-critical Hartree equations with radial data. (English) Zbl 1368.35253 Discrete Contin. Dyn. Syst. 37, No. 4, 1979-2007 (2017). Reviewer: Joseph Shomberg (Providence) MSC: 35Q55 35Q40 35C08 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{Y. Gao}, Discrete Contin. Dyn. Syst. 37, No. 4, 1979--2007 (2017; Zbl 1368.35253) Full Text: DOI
Moroz, Vitaly; Van Schaftingen, Jean A guide to the Choquard equation. (English) Zbl 1360.35252 J. Fixed Point Theory Appl. 19, No. 1, 773-813 (2017). MSC: 35Q55 35R09 35J91 PDF BibTeX XML Cite \textit{V. Moroz} and \textit{J. Van Schaftingen}, J. Fixed Point Theory Appl. 19, No. 1, 773--813 (2017; Zbl 1360.35252) Full Text: DOI arXiv
Golse, François; Paul, Thierry The Schrödinger equation in the mean-field and semiclassical regime. (English) Zbl 1359.35164 Arch. Ration. Mech. Anal. 223, No. 1, 57-94 (2017). MSC: 35Q41 35Q83 81V17 PDF BibTeX XML Cite \textit{F. Golse} and \textit{T. Paul}, Arch. Ration. Mech. Anal. 223, No. 1, 57--94 (2017; Zbl 1359.35164) Full Text: DOI arXiv
Lü, Dengfeng Existence and concentration of ground state solutions for singularly perturbed nonlocal elliptic problems. (English) Zbl 1369.35023 Monatsh. Math. 182, No. 2, 335-358 (2017). Reviewer: Jiří Rákosník (Praha) MSC: 35J60 PDF BibTeX XML Cite \textit{D. Lü}, Monatsh. Math. 182, No. 2, 335--358 (2017; Zbl 1369.35023) Full Text: DOI
Yang, Kai The symplectic non-squeezing properties of mass subcritical Hartree equations. (English) Zbl 1360.35211 J. Math. Anal. Appl. 449, No. 1, 427-455 (2017). MSC: 35Q40 42B25 PDF BibTeX XML Cite \textit{K. Yang}, J. Math. Anal. Appl. 449, No. 1, 427--455 (2017; Zbl 1360.35211) Full Text: DOI
Li, Fuyi; Gao, Chunjuan; Zhu, Xiaoli Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity. (English) Zbl 1357.35101 J. Math. Anal. Appl. 448, No. 1, 60-80 (2017). MSC: 35J10 35J15 PDF BibTeX XML Cite \textit{F. Li} et al., J. Math. Anal. Appl. 448, No. 1, 60--80 (2017; Zbl 1357.35101) Full Text: DOI
Ghimenti, Marco; Moroz, Vitaly; van Schaftingen, Jean Least action nodal solutions for the quadratic Choquard equation. (English) Zbl 1355.35079 Proc. Am. Math. Soc. 145, No. 2, 737-747 (2017). MSC: 35J91 35J20 35Q55 PDF BibTeX XML Cite \textit{M. Ghimenti} et al., Proc. Am. Math. Soc. 145, No. 2, 737--747 (2017; Zbl 1355.35079) Full Text: DOI arXiv
Huang, Juan; Zhang, Jian Nonlinear Hartree equation in high energy-mass. (English) Zbl 1351.49013 Nonlinear Anal., Real World Appl. 34, 97-109 (2017); corrigendum ibid. 37, 512-513 (2017). MSC: 49J45 35A15 35A01 35B44 PDF BibTeX XML Cite \textit{J. Huang} and \textit{J. Zhang}, Nonlinear Anal., Real World Appl. 34, 97--109 (2017; Zbl 1351.49013) Full Text: DOI
Francesconi, Mauro; Mugnai, Dimitri The fractional Hartree equation without the Ambrosetti-Rabinowitz condition. (English) Zbl 1352.35136 Nonlinear Anal., Real World Appl. 33, 363-375 (2017). MSC: 35Q40 35A15 85A15 35R11 35B38 81Q20 PDF BibTeX XML Cite \textit{M. Francesconi} and \textit{D. Mugnai}, Nonlinear Anal., Real World Appl. 33, 363--375 (2017; Zbl 1352.35136) Full Text: DOI arXiv
Secchi, Simone A survey on pseudorelativistic Hartree equation. (English) Zbl 1369.35094 Azzollini, Antonio (ed.), Recent advances in nonlinear PDEs theory. Potenza: Seminario Interdisciplinare di Matematica (S.I.M.) (ISBN 978-88-97478-18-8/pbk). Lecture Notes of Seminario Interdisciplinare di Matematica 13, 95-128 (2016). MSC: 35Q75 35B25 35R11 PDF BibTeX XML Cite \textit{S. Secchi}, Lect. Notes Semin. Interdiscip. Mat. 13, 95--128 (2016; Zbl 1369.35094)
Yang, Lingyan; Li, Xiaoguang; Chen, Ying A sharp threshold of blow-up of a class of Schrödinger-Hartree equations. (Chinese. English summary) Zbl 1374.35092 Acta Math. Sci., Ser. A, Chin. Ed. 36, No. 6, 1117-1123 (2016). MSC: 35B44 35J10 35Q55 PDF BibTeX XML Cite \textit{L. Yang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 36, No. 6, 1117--1123 (2016; Zbl 1374.35092)
de Suzzoni, Anne-Sophie About systems of fermions with large number of particles: a probabilistic point of view. (Sur les systèmes de fermions à grand nombre de particules: un point de vue probabiliste.) (French. English summary) Zbl 1360.35212 Sémin. Laurent Schwartz, EDP Appl. 2015-2016, Exp. No. 12, 12 p. (2016). MSC: 35Q40 35R70 PDF BibTeX XML Cite \textit{A.-S. de Suzzoni}, Sémin. Laurent Schwartz, EDP Appl. 2015--2016, Exp. No. 12, 12 p. (2016; Zbl 1360.35212) Full Text: DOI
Rakhuba, M. V.; Oseledets, I. V. Grid-based electronic structure calculations: the tensor decomposition approach. (English) Zbl 1351.82040 J. Comput. Phys. 312, 19-30 (2016). MSC: 82B80 65N25 82B10 PDF BibTeX XML Cite \textit{M. V. Rakhuba} and \textit{I. V. Oseledets}, J. Comput. Phys. 312, 19--30 (2016; Zbl 1351.82040) Full Text: DOI arXiv
Porta, Marcello Mean-field evolution of fermionic systems. (English) Zbl 1353.35286 Sémin. Laurent Schwartz, EDP Appl. 2014-2015, Exp. No. 8, 13 p (2016). MSC: 35Q82 35Q40 81V70 PDF BibTeX XML Cite \textit{M. Porta}, Sémin. Laurent Schwartz, EDP Appl. 2014--2015, Exp. No. 8, 13 p (2016; Zbl 1353.35286) Full Text: DOI
Feng, Binhua; Wang, Kai Optimal bilinear control of nonlinear Hartree equations with singular potentials. (English) Zbl 1351.35181 J. Optim. Theory Appl. 170, No. 3, 756-771 (2016). MSC: 35Q55 49J20 92C20 35Q53 PDF BibTeX XML Cite \textit{B. Feng} and \textit{K. Wang}, J. Optim. Theory Appl. 170, No. 3, 756--771 (2016; Zbl 1351.35181) Full Text: DOI
Chen, Yan-Hong; Liu, Chungen Ground state solutions for non-autonomous fractional Choquard equations. (English) Zbl 1381.35213 Nonlinearity 29, No. 6, 1827-1842 (2016). MSC: 35R11 35J20 35J61 PDF BibTeX XML Cite \textit{Y.-H. Chen} and \textit{C. Liu}, Nonlinearity 29, No. 6, 1827--1842 (2016; Zbl 1381.35213) Full Text: DOI arXiv
Benedikter, Niels; Porta, Marcello; Saffirio, Chiara; Schlein, Benjamin From the Hartree dynamics to the Vlasov equation. (English) Zbl 1342.35276 Arch. Ration. Mech. Anal. 221, No. 1, 273-334 (2016). MSC: 35Q40 35Q83 35B65 PDF BibTeX XML Cite \textit{N. Benedikter} et al., Arch. Ration. Mech. Anal. 221, No. 1, 273--334 (2016; Zbl 1342.35276) Full Text: DOI arXiv
Zhang, Jian; Li, Xiaoguang; Wu, Yonghong; Caccetta, Louis Stability of standing waves for the Klein-Gordon-Hartree equation. (English) Zbl 1338.35038 Appl. Anal. 95, No. 5, 1000-1012 (2016). MSC: 35B35 35A15 35L15 35L71 35R09 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Anal. 95, No. 5, 1000--1012 (2016; Zbl 1338.35038) Full Text: DOI
Nishiyama, Seiya; da Providência, João Modified non-Euclidean transformation on the \(\frac{\mathrm{SO}(2N+2)}{U(N+1)}\) Grassmannian and \(\mathrm{SO}(2N+1)\) random phase approximation for unified description of Bose and Fermi type collective excitations. (English) Zbl 1381.81174 Int. J. Geom. Methods Mod. Phys. 13, No. 4, Article ID 1650043, 24 p. (2016). MSC: 81V35 81V70 PDF BibTeX XML Cite \textit{S. Nishiyama} and \textit{J. da Providência}, Int. J. Geom. Methods Mod. Phys. 13, No. 4, Article ID 1650043, 24 p. (2016; Zbl 1381.81174) Full Text: DOI arXiv