Boudjemâa, Abdelâali A charged Coulomb Bose gas with dipole-dipole interactions. (English) Zbl 07660865 Phys. Lett., A 465, Article ID 128712, 5 p. (2023). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{A. Boudjemâa}, Phys. Lett., A 465, Article ID 128712, 5 p. (2023; Zbl 07660865) Full Text: DOI arXiv OpenURL
Tao, Lu; Zhao, Yajuan; Li, Yongsheng Well-posedness and blow-up for the fractional Schrödinger-Choquard equation. (English) Zbl 07659931 J. Partial Differ. Equations 36, No. 1, 82-101 (2023). MSC: 35R11 35B44 35A01 35Q55 PDF BibTeX XML Cite \textit{L. Tao} et al., J. Partial Differ. Equations 36, No. 1, 82--101 (2023; Zbl 07659931) Full Text: DOI OpenURL
Xu, Liping; Chen, Haibo Ground states of Kirchhoff equations via Pohožaev-Nehari manifold: existence, concentration and nonexistence. (English) Zbl 07642546 Ann. Funct. Anal. 14, No. 1, Paper No. 23, 31 p. (2023). MSC: 35J62 35A01 35A15 PDF BibTeX XML Cite \textit{L. Xu} and \textit{H. Chen}, Ann. Funct. Anal. 14, No. 1, Paper No. 23, 31 p. (2023; Zbl 07642546) Full Text: DOI OpenURL
Jia, Huifang; Luo, Xiao Prescribed mass standing waves for energy critical Hartree equations. (English) Zbl 07639640 Calc. Var. Partial Differ. Equ. 62, No. 2, Paper No. 71, 44 p. (2023). MSC: 35J91 35J15 35A01 PDF BibTeX XML Cite \textit{H. Jia} and \textit{X. Luo}, Calc. Var. Partial Differ. Equ. 62, No. 2, Paper No. 71, 44 p. (2023; Zbl 07639640) Full Text: DOI OpenURL
Hayashi, Nakao; Mendez-Navarro, Jesus A.; Naumkin, Pavel I. Modified scattering for the higher-order nonlinear Schrödinger equation with the Hartree-type nonlinearity. (English) Zbl 07634019 J. Evol. Equ. 23, No. 1, Paper No. 1, 54 p. (2023). MSC: 35Q55 35Q41 35B40 35P25 PDF BibTeX XML Cite \textit{N. Hayashi} et al., J. Evol. Equ. 23, No. 1, Paper No. 1, 54 p. (2023; Zbl 07634019) Full Text: DOI OpenURL
Yang, Minbo; Ye, Weiwei; Zhao, Shunneng Existence of concentrating solutions of the Hartree type Brezis-Nirenberg problem. (English) Zbl 07623986 J. Differ. Equations 344, 260-324 (2023). MSC: 35J91 35J05 35A01 PDF BibTeX XML Cite \textit{M. Yang} et al., J. Differ. Equations 344, 260--324 (2023; Zbl 07623986) Full Text: DOI OpenURL
Arora, Anudeep K.; Riaño, Oscar; Roudenko, Svetlana Well-posedness in weighted spaces for the generalized Hartree equation with \(p<2\). (English) Zbl 1500.35256 Commun. Contemp. Math. 24, No. 9, Article ID 2150074, 51 p. (2022). MSC: 35Q55 35A01 35A02 35B40 35B44 42B37 PDF BibTeX XML Cite \textit{A. K. Arora} et al., Commun. Contemp. Math. 24, No. 9, Article ID 2150074, 51 p. (2022; Zbl 1500.35256) Full Text: DOI arXiv OpenURL
Saanouni, Tarek; Alharbi, Talal On the inter-critical inhomogeneous generalized Hartree equation. (English) Zbl 1500.35263 Arab. J. Math. 11, No. 3, 557-583 (2022). MSC: 35Q55 PDF BibTeX XML Cite \textit{T. Saanouni} and \textit{T. Alharbi}, Arab. J. Math. 11, No. 3, 557--583 (2022; Zbl 1500.35263) Full Text: DOI OpenURL
Zhu, Shanni; Che, Guofeng Positive solutions for the Kirchhoff-type equation with Hartree nonlinearities. (English) Zbl 1501.35215 Mediterr. J. Math. 19, No. 6, Paper No. 247, 22 p. (2022). MSC: 35J62 35B09 35A01 35B40 PDF BibTeX XML Cite \textit{S. Zhu} and \textit{G. Che}, Mediterr. J. Math. 19, No. 6, Paper No. 247, 22 p. (2022; Zbl 1501.35215) Full Text: DOI OpenURL
Saanouni, T.; Nafti, H. The generalized Hartree equation with a combined source term. (English) Zbl 1500.35264 Acta Appl. Math. 182, Paper No. 1, 41 p. (2022). MSC: 35Q55 35A01 35A02 35B44 35B41 PDF BibTeX XML Cite \textit{T. Saanouni} and \textit{H. Nafti}, Acta Appl. Math. 182, Paper No. 1, 41 p. (2022; Zbl 1500.35264) Full Text: DOI OpenURL
Chenn, Ilias; Zhang, Shiwen On the reduced Hartree-Fock equations with a small Anderson type background charge distribution. (English) Zbl 07605360 J. Funct. Anal. 283, No. 12, Article ID 109702, 30 p. (2022). MSC: 81Vxx 35Qxx 82Bxx PDF BibTeX XML Cite \textit{I. Chenn} and \textit{S. Zhang}, J. Funct. Anal. 283, No. 12, Article ID 109702, 30 p. (2022; Zbl 07605360) Full Text: DOI arXiv OpenURL
Li, Xuemei; Tang, Xingdong; Xu, Guixiang Nondegeneracy of the positive solutions for critical nonlinear Hartree equation in \(\mathbb{R}^6\). (English) Zbl 1500.35176 Proc. Am. Math. Soc. 150, No. 12, 5203-5216 (2022). Reviewer: Marius Ghergu (Dublin) MSC: 35J91 35B38 PDF BibTeX XML Cite \textit{X. Li} et al., Proc. Am. Math. Soc. 150, No. 12, 5203--5216 (2022; Zbl 1500.35176) Full Text: DOI arXiv OpenURL
Tarulli, Mirko; Venkov, George Decay in energy space for the solution of fourth-order Hartree-Fock equations with general non-local interactions. (English) Zbl 07584836 J. Math. Anal. Appl. 516, No. 2, Article ID 126533, 33 p. (2022). MSC: 35Q55 35Q40 35P25 31A30 PDF BibTeX XML Cite \textit{M. Tarulli} and \textit{G. Venkov}, J. Math. Anal. Appl. 516, No. 2, Article ID 126533, 33 p. (2022; Zbl 07584836) Full Text: DOI arXiv OpenURL
Georgiev, Vladimir; Shakarov, Boris Global large data solutions for 2D Dirac equation with Hartree type interaction. (English) Zbl 1497.35407 Int. Math. Res. Not. 2022, No. 17, 12803-12820 (2022). MSC: 35Q41 35Q55 35A01 35A02 PDF BibTeX XML Cite \textit{V. Georgiev} and \textit{B. Shakarov}, Int. Math. Res. Not. 2022, No. 17, 12803--12820 (2022; Zbl 1497.35407) Full Text: DOI arXiv OpenURL
Meng, Fanfei A new proof of scattering for the 5D radial focusing Hartree equation. (English) Zbl 1497.35437 Appl. Anal. 101, No. 13, 4412-4431 (2022). MSC: 35Q55 35Q40 35P25 35B45 47J35 PDF BibTeX XML Cite \textit{F. Meng}, Appl. Anal. 101, No. 13, 4412--4431 (2022; Zbl 1497.35437) Full Text: DOI OpenURL
Arora, Anudeep Kumar; Roudenko, Svetlana Global behavior of solutions to the focusing generalized Hartree equation. (English) Zbl 1497.35399 Mich. Math. J. 71, No. 3, 619-672 (2022). MSC: 35Q40 35Q55 37K06 37K40 35A23 35B44 35P25 35A01 35A02 PDF BibTeX XML Cite \textit{A. K. Arora} and \textit{S. Roudenko}, Mich. Math. J. 71, No. 3, 619--672 (2022; Zbl 1497.35399) Full Text: DOI arXiv Link OpenURL
Cingolani, Silvia; Gallo, Marco; Tanaka, Kazunaga On fractional Schrödinger equations with Hartree type nonlinearities. (English) Zbl 1496.35422 Math. Eng. (Springfield) 4, No. 6, Paper No. 56, 33 p. (2022). MSC: 35R11 35B38 35B40 35J20 35J61 35Q55 35R09 45M05 PDF BibTeX XML Cite \textit{S. Cingolani} et al., Math. Eng. (Springfield) 4, No. 6, Paper No. 56, 33 p. (2022; Zbl 1496.35422) Full Text: DOI arXiv OpenURL
Mondal, Shyam Swarup; Swain, Jitendriya Restriction theorem for the Fourier-Hermite transform and solution of the Hermite-Schrödinger equation. (English) Zbl 1492.35245 Adv. Oper. Theory 7, No. 4, Paper No. 44, 18 p. (2022). MSC: 35Q41 47B10 35P10 35B65 PDF BibTeX XML Cite \textit{S. S. Mondal} and \textit{J. Swain}, Adv. Oper. Theory 7, No. 4, Paper No. 44, 18 p. (2022; Zbl 1492.35245) Full Text: DOI arXiv OpenURL
d’Avenia, Pietro; Maia, Liliane; Siciliano, Gaetano Hartree-Fock type systems: existence of ground states and asymptotic behavior. (English) Zbl 1497.35172 J. Differ. Equations 335, 580-614 (2022). MSC: 35J47 35J10 35J61 35A01 PDF BibTeX XML Cite \textit{P. d'Avenia} et al., J. Differ. Equations 335, 580--614 (2022; Zbl 1497.35172) Full Text: DOI arXiv OpenURL
Ye, Weiwei; Shen, Zifei; Yang, Minbo Normalized solutions for a critical Hartree equation with perturbation. (English) Zbl 1497.35138 J. Geom. Anal. 32, No. 9, Paper No. 242, 44 p. (2022). MSC: 35J15 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{W. Ye} et al., J. Geom. Anal. 32, No. 9, Paper No. 242, 44 p. (2022; Zbl 1497.35138) Full Text: DOI OpenURL
Melgaard, M.; Zongo, F. D. Y. Solitary waves and excited states for Boson stars. (English) Zbl 1489.35220 Anal. Appl., Singap. 20, No. 2, 285-302 (2022). MSC: 35Q40 35Q75 35Q51 81Q80 83C20 85A15 35A01 35B38 PDF BibTeX XML Cite \textit{M. Melgaard} and \textit{F. D. Y. Zongo}, Anal. Appl., Singap. 20, No. 2, 285--302 (2022; Zbl 1489.35220) Full Text: DOI OpenURL
Collot, Charles; de Suzzoni, Anne-Sophie Stability of steady states for Hartree and Schrödinger equations for infinitely many particles. (Stabilité d’états d’équilibre pour les équations d’Hartree et de Schrödinger pour une infinité de particules.) (English. French summary) Zbl 1500.35248 Ann. Henri Lebesgue 5, 429-490 (2022). Reviewer: Markus Holzmann (Graz) MSC: 35Q40 35B35 35B40 PDF BibTeX XML Cite \textit{C. Collot} and \textit{A.-S. de Suzzoni}, Ann. Henri Lebesgue 5, 429--490 (2022; Zbl 1500.35248) Full Text: DOI arXiv OpenURL
Chen, Xiaomei; Yu, Xiaohui Liouville type theorem for Hartree-Fock equation on half space. (English) Zbl 1490.35154 Commun. Pure Appl. Anal. 21, No. 6, 2079-2100 (2022). MSC: 35J61 35J66 35B53 PDF BibTeX XML Cite \textit{X. Chen} and \textit{X. Yu}, Commun. Pure Appl. Anal. 21, No. 6, 2079--2100 (2022; Zbl 1490.35154) Full Text: DOI OpenURL
Yin, Lifeng; Gan, Wenbin; Jiang, Shuai Existence and concentration of ground state solutions for critical Kirchhoff-type equation involving Hartree-type nonlinearities. (English) Zbl 1490.35172 Z. Angew. Math. Phys. 73, No. 3, Paper No. 103, 19 p. (2022). MSC: 35J62 35J15 35A01 35A15 PDF BibTeX XML Cite \textit{L. Yin} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 103, 19 p. (2022; Zbl 1490.35172) Full Text: DOI OpenURL
Wang, Qingxuan; Feng, Binhua; Li, Yuan; Shi, Qihong On asymptotic properties of semi-relativistic Hartree equation with combined Hartree-type nonlinearities. (English) Zbl 1487.35094 Commun. Pure Appl. Anal. 21, No. 4, 1225-1247 (2022). MSC: 35B40 35J20 35Q55 35S10 PDF BibTeX XML Cite \textit{Q. Wang} et al., Commun. Pure Appl. Anal. 21, No. 4, 1225--1247 (2022; Zbl 1487.35094) Full Text: DOI OpenURL
Zhang, Guoqing; Gao, Qian Vortex-type solutions for magnetic pseudo-relativistic Hartree equation. (English) Zbl 1491.35364 Appl. Anal. 101, No. 3, 1101-1114 (2022). MSC: 35Q40 35Q55 35B40 35A01 35A15 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{Q. Gao}, Appl. Anal. 101, No. 3, 1101--1114 (2022; Zbl 1491.35364) Full Text: DOI OpenURL
Manna, Ramesh On the existence of global solutions of the Hartree equation for initial data in the modulation space \(M^{p , q}(\mathbb{R})\). (English) Zbl 1487.35352 J. Differ. Equations 317, 70-88 (2022). Reviewer: Luigi Rodino (Torino) MSC: 35Q55 42B35 35A01 35A02 PDF BibTeX XML Cite \textit{R. Manna}, J. Differ. Equations 317, 70--88 (2022; Zbl 1487.35352) Full Text: DOI OpenURL
Bueno, Hamilton; Pereira, Gilberto A.; Silva, Edcarlos D.; Ruviaro, Ricardo Existence and nonexistence of solutions to nonlocal elliptic problems. (English) Zbl 1485.35190 SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 8, 32 p. (2022). MSC: 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{H. Bueno} et al., SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 8, 32 p. (2022; Zbl 1485.35190) Full Text: DOI OpenURL
Bernini, Federico; Bieganowski, Bartosz; Secchi, Simone Semirelativistic Choquard equations with singular potentials and general nonlinearities arising from Hartree-Fock theory. (English) Zbl 1484.35344 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112738, 26 p. (2022). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q40 35A15 35B40 35J20 58E05 26A33 35R11 PDF BibTeX XML Cite \textit{F. Bernini} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112738, 26 p. (2022; Zbl 1484.35344) Full Text: DOI arXiv OpenURL
Bhimani, Divyang G. Global well-posedness for Klein-Gordon-Hartree and fractional Hartree equations on modulation spaces. (English) Zbl 1496.35169 Electron. J. Differ. Equ. 2021, Paper No. 101, 23 p. (2021). MSC: 35G25 35A01 35L15 35L71 35Q55 35R11 42B35 PDF BibTeX XML Cite \textit{D. G. Bhimani}, Electron. J. Differ. Equ. 2021, Paper No. 101, 23 p. (2021; Zbl 1496.35169) Full Text: arXiv Link OpenURL
Saanouni, Tarek Energy scattering for the focusing fractional generalized Hartree equation. (English) Zbl 1479.35823 Commun. Pure Appl. Anal. 20, No. 10, 3637-3654 (2021). MSC: 35Q55 35B35 35B40 35P25 35A01 26A33 35R11 PDF BibTeX XML Cite \textit{T. Saanouni}, Commun. Pure Appl. Anal. 20, No. 10, 3637--3654 (2021; Zbl 1479.35823) Full Text: DOI OpenURL
Zanelli, L.; Mandreoli, F.; Cardin, F. A weak KAM approach to the periodic stationary Hartree equation. (English) Zbl 1476.35094 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 6, Paper No. 56, 18 p. (2021). MSC: 35F21 37K55 81V70 PDF BibTeX XML Cite \textit{L. Zanelli} et al., NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 6, Paper No. 56, 18 p. (2021; Zbl 1476.35094) Full Text: DOI OpenURL
Lafleche, Laurent Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data. (English) Zbl 1484.82024 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 6, 1739-1762 (2021). MSC: 82C10 35Q41 35Q55 82C05 35Q83 PDF BibTeX XML Cite \textit{L. Lafleche}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 6, 1739--1762 (2021; Zbl 1484.82024) Full Text: DOI arXiv OpenURL
Li, Hongqiao Liouville type theorem for Hartree equations in half spaces. (Chinese. English summary) Zbl 1488.35136 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 2, 388-401 (2021). MSC: 35B53 35B09 35Q40 PDF BibTeX XML Cite \textit{H. Li}, Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 2, 388--401 (2021; Zbl 1488.35136) OpenURL
Wang, Qingxuan A blow-up result for the travelling waves of the pseudo-relativistic Hartree equation with small velocity. (English) Zbl 1473.35154 Math. Methods Appl. Sci. 44, No. 13, 10403-10415 (2021). MSC: 35J20 35Q55 35B44 PDF BibTeX XML Cite \textit{Q. Wang}, Math. Methods Appl. Sci. 44, No. 13, 10403--10415 (2021; Zbl 1473.35154) Full Text: DOI OpenURL
Dong, Xin The Hartree equation with a constant magnetic field: well-posedness theory. (English) Zbl 1477.35192 Lett. Math. Phys. 111, No. 4, Paper No. 101, 43 p. (2021). MSC: 35Q40 35Q55 81Q80 81V74 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{X. Dong}, Lett. Math. Phys. 111, No. 4, Paper No. 101, 43 p. (2021; Zbl 1477.35192) Full Text: DOI arXiv OpenURL
Tarulli, M.; Venkov, G. Decay and scattering in energy space for the solution of weakly coupled Schrödinger-Choquard and Hartree-Fock equations. (English) Zbl 1472.35116 J. Evol. Equ. 21, No. 2, 1149-1178 (2021). MSC: 35J10 35Q55 35P25 PDF BibTeX XML Cite \textit{M. Tarulli} and \textit{G. Venkov}, J. Evol. Equ. 21, No. 2, 1149--1178 (2021; Zbl 1472.35116) Full Text: DOI arXiv OpenURL
Gao, Fashun; Rădulescu, Vicentiu D.; Yang, Minbo; Zheng, Yu Standing waves for the pseudo-relativistic Hartree equation with Berestycki-Lions nonlinearity. (English) Zbl 1479.35386 J. Differ. Equations 295, 70-112 (2021). Reviewer: Leszek Gasiński (Kraków) MSC: 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., J. Differ. Equations 295, 70--112 (2021; Zbl 1479.35386) Full Text: DOI OpenURL
Chen, Guoyuan Nondegeneracy of ground states and multiple semiclassical solutions of the Hartree equation for general dimensions. (English) Zbl 1468.35071 Result. Math. 76, No. 1, Paper No. 34, 31 p. (2021). MSC: 35J91 35Q40 PDF BibTeX XML Cite \textit{G. Chen}, Result. Math. 76, No. 1, Paper No. 34, 31 p. (2021; Zbl 1468.35071) Full Text: DOI arXiv OpenURL
Cho, Yonggeun; Ozawa, Tohru; Yang, Changhun Small data scattering of Hartree type fractional Schrödinger equations in a scaling critical space. (English) Zbl 1480.35350 Funkc. Ekvacioj, Ser. Int. 64, No. 1, 1-15 (2021). Reviewer: Ivan Naumkin (Nice) MSC: 35Q55 35Q53 35R11 35B65 PDF BibTeX XML Cite \textit{Y. Cho} et al., Funkc. Ekvacioj, Ser. Int. 64, No. 1, 1--15 (2021; Zbl 1480.35350) Full Text: DOI OpenURL
Juarez-Campos, Beatriz; Naumkin, Pavel I.; Ruiz-Paredes, Hector F. Modified scattering for higher-order nonlinear Hartree-type equations. (English) Zbl 1480.35355 Z. Angew. Math. Phys. 72, No. 3, Paper No. 92, 19 p. (2021). Reviewer: Ivan Naumkin (Nice) MSC: 35Q55 35B40 35Q35 PDF BibTeX XML Cite \textit{B. Juarez-Campos} et al., Z. Angew. Math. Phys. 72, No. 3, Paper No. 92, 19 p. (2021; Zbl 1480.35355) Full Text: DOI OpenURL
Luo, Xiao; Yang, Tao Stable solitary waves for pseudo-relativistic Hartree equations with short range potential. (English) Zbl 1467.35319 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 207, Article ID 112275, 13 p. (2021). MSC: 35Q85 85A15 35Q40 35A15 35B35 35B40 35C08 PDF BibTeX XML Cite \textit{X. Luo} and \textit{T. Yang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 207, Article ID 112275, 13 p. (2021; Zbl 1467.35319) Full Text: DOI OpenURL
Le, Phuong Classification of nonnegative solutions to an equation involving the Laplacian of arbitrary order. (English) Zbl 1459.35380 Discrete Contin. Dyn. Syst. 41, No. 4, 1605-1626 (2021). MSC: 35R11 35J30 35J61 35J75 35B06 35B53 35A02 PDF BibTeX XML Cite \textit{P. Le}, Discrete Contin. Dyn. Syst. 41, No. 4, 1605--1626 (2021; Zbl 1459.35380) Full Text: DOI OpenURL
Choi, Woocheol; Hong, Younghun; Seok, Jinmyoung Semi-classical limit of quantum free energy minimizers for the gravitational Hartree equation. (English) Zbl 1456.81188 Arch. Ration. Mech. Anal. 239, No. 2, 783-829 (2021). Reviewer: Alex B. Gaina (Chisinau) MSC: 81Q20 81T20 83C47 82B30 70F15 85A05 85A15 PDF BibTeX XML Cite \textit{W. Choi} et al., Arch. Ration. Mech. Anal. 239, No. 2, 783--829 (2021; Zbl 1456.81188) Full Text: DOI arXiv OpenURL
Dimonte, Daniele; Falconi, Marco; Olgiati, Alessandro On some rigorous aspects of fragmented condensation. (English) Zbl 1452.81175 Nonlinearity 34, No. 1, 1-32 (2021). MSC: 81V73 35Q40 82B26 81Q20 PDF BibTeX XML Cite \textit{D. Dimonte} et al., Nonlinearity 34, No. 1, 1--32 (2021; Zbl 1452.81175) Full Text: DOI arXiv OpenURL
Arora, Anudeep Kumar; Roudenko, Svetlana; Yang, Kai On the focusing generalized Hartree equation. (English) Zbl 1496.35349 Math. Appl. Sci. Eng. 1, No. 4, 383-402 (2020). MSC: 35Q55 35Q40 37K10 PDF BibTeX XML Cite \textit{A. K. Arora} et al., Math. Appl. Sci. Eng. 1, No. 4, 383--402 (2020; Zbl 1496.35349) Full Text: DOI OpenURL
Xia, Suxia On blow-up phenomenon of the solution to some wave-Hartree equation in \(d \geq 5\). (English) Zbl 1499.35423 Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 3, 782-794 (2020). MSC: 35L71 35B44 35L15 PDF BibTeX XML Cite \textit{S. Xia}, Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 3, 782--794 (2020; Zbl 1499.35423) Full Text: DOI OpenURL
Arora, Anudeep Kumar; Roudenko, Svetlana Well-posedness and blow-up properties for the generalized Hartree equation. (English) Zbl 1473.35496 J. Hyperbolic Differ. Equ. 17, No. 4, 727-763 (2020). MSC: 35Q55 35Q40 PDF BibTeX XML Cite \textit{A. K. Arora} and \textit{S. Roudenko}, J. Hyperbolic Differ. Equ. 17, No. 4, 727--763 (2020; Zbl 1473.35496) Full Text: DOI arXiv OpenURL
Lewin, Mathieu; Sabin, Julien The Hartree and Vlasov equations at positive density. (English) Zbl 1462.35398 Commun. Partial Differ. Equations 45, No. 12, 1702-1754 (2020). MSC: 35Q83 35Q40 35A01 35A02 81Q05 PDF BibTeX XML Cite \textit{M. Lewin} and \textit{J. Sabin}, Commun. Partial Differ. Equations 45, No. 12, 1702--1754 (2020; Zbl 1462.35398) Full Text: DOI arXiv OpenURL
Banquet, Carlos; Villamizar-Roa, Élder J. On the management fourth-order Schrödinger-Hartree equation. (English) Zbl 1452.35178 Evol. Equ. Control Theory 9, No. 3, 865-889 (2020). MSC: 35Q55 35A01 35B40 35G25 PDF BibTeX XML Cite \textit{C. Banquet} and \textit{É. J. Villamizar-Roa}, Evol. Equ. Control Theory 9, No. 3, 865--889 (2020; Zbl 1452.35178) Full Text: DOI arXiv OpenURL
Saffirio, Chiara From the Hartree equation to the Vlasov-Poisson system: strong convergence for a class of mixed states. (English) Zbl 1477.35270 SIAM J. Math. Anal. 52, No. 6, 5533-5553 (2020). MSC: 35Q83 35Q40 35Q60 82C40 PDF BibTeX XML Cite \textit{C. Saffirio}, SIAM J. Math. Anal. 52, No. 6, 5533--5553 (2020; Zbl 1477.35270) Full Text: DOI arXiv OpenURL
Cinal, M. Highly accurate numerical solution of Hartree-Fock equation with pseudospectral method for closed-shell atoms. (English) Zbl 1448.81472 J. Math. Chem. 58, No. 8, 1571-1600 (2020). MSC: 81V45 34L10 34L15 34L40 65L15 PDF BibTeX XML Cite \textit{M. Cinal}, J. Math. Chem. 58, No. 8, 1571--1600 (2020; Zbl 1448.81472) Full Text: DOI OpenURL
Wang, Qingxuan; Li, Xin Asymptotic analysis of boosted ground states of boson stars. (English) Zbl 1445.35143 Math. Methods Appl. Sci. 43, No. 2, 704-715 (2020). MSC: 35J20 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{X. Li}, Math. Methods Appl. Sci. 43, No. 2, 704--715 (2020; Zbl 1445.35143) Full Text: DOI OpenURL
Tesfahun, Achenef Small data scattering for cubic Dirac equation with Hartree type nonlinearity in \(\mathbb{R}^{1+3} \). (English) Zbl 1446.35159 SIAM J. Math. Anal. 52, No. 3, 2969-3003 (2020). MSC: 35Q41 35Q55 35P25 PDF BibTeX XML Cite \textit{A. Tesfahun}, SIAM J. Math. Anal. 52, No. 3, 2969--3003 (2020; Zbl 1446.35159) Full Text: DOI arXiv OpenURL
Xie, Yingying; Su, Jian; Mei, Liquan Blowup results and concentration in focusing Schrödinger-Hartree equation. (English) Zbl 1440.35313 Discrete Contin. Dyn. Syst. 40, No. 8, 5001-5017 (2020). MSC: 35Q55 35Q41 35Q40 81Q05 35A01 35B44 PDF BibTeX XML Cite \textit{Y. Xie} et al., Discrete Contin. Dyn. Syst. 40, No. 8, 5001--5017 (2020; Zbl 1440.35313) Full Text: DOI OpenURL
Miao, Changxing; Xu, Guixiang; Yang, Jianwei-Urbain Global well-posedness for the defocusing Hartree equation with radial data in \(\mathbb{R}^4\). (English) Zbl 1434.35136 Commun. Contemp. Math. 22, No. 2, Article ID 1950004, 35 p. (2020). MSC: 35Q40 35Q55 PDF BibTeX XML Cite \textit{C. Miao} et al., Commun. Contemp. Math. 22, No. 2, Article ID 1950004, 35 p. (2020; Zbl 1434.35136) Full Text: DOI arXiv OpenURL
Zheng, Yu; Yang, Minbo; Shen, Zifei On critical pseudo-relativistic Hartree equation with potential well. (English) Zbl 1437.35325 Topol. Methods Nonlinear Anal. 55, No. 1, 185-226 (2020). MSC: 35J60 35B40 35A15 PDF BibTeX XML Cite \textit{Y. Zheng} et al., Topol. Methods Nonlinear Anal. 55, No. 1, 185--226 (2020; Zbl 1437.35325) Full Text: DOI Euclid OpenURL
Gao, Yanfang; Wang, Zhiyong Below and beyond the mass-energy threshold: scattering for the Hartree equation with radial data in \(d \ge 5\). (English) Zbl 1437.35626 Z. Angew. Math. Phys. 71, No. 2, Paper No. 52, 23 p. (2020). MSC: 35Q55 35Q40 35P25 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{Z. Wang}, Z. Angew. Math. Phys. 71, No. 2, Paper No. 52, 23 p. (2020; Zbl 1437.35626) Full Text: DOI OpenURL
Collot, C.; de Suzzoni, Anne-Sophie Stability of equilibria for a Hartree equation for random fields. (English. French summary) Zbl 1439.35438 J. Math. Pures Appl. (9) 137, 70-100 (2020). MSC: 35Q55 35B35 35B40 35B25 35P25 35R60 35Q40 PDF BibTeX XML Cite \textit{C. Collot} and \textit{A.-S. de Suzzoni}, J. Math. Pures Appl. (9) 137, 70--100 (2020; Zbl 1439.35438) Full Text: DOI arXiv OpenURL
Wang, Jun; Zhao, Tingting; Xiao, Lu Existence and asymptotical behavior of the minimizer of Hartree type equation with periodic potentials. (English) Zbl 1439.35448 Complex Var. Elliptic Equ. 65, No. 5, 740-764 (2020). Reviewer: Huansong Zhou (Wuhan) MSC: 35Q55 35J61 35J20 35Q60 49J40 35B32 35A01 35B40 35R09 90C30 PDF BibTeX XML Cite \textit{J. Wang} et al., Complex Var. Elliptic Equ. 65, No. 5, 740--764 (2020; Zbl 1439.35448) Full Text: DOI OpenURL
Boßmann, Lea; Pavlović, Nataša; Pickl, Peter; Soffer, Avy Higher order corrections to the mean-field description of the dynamics of interacting bosons. (English) Zbl 1439.82029 J. Stat. Phys. 178, No. 6, 1362-1396 (2020). MSC: 82C22 82C10 81V10 35Q55 35Q40 PDF BibTeX XML Cite \textit{L. Boßmann} et al., J. Stat. Phys. 178, No. 6, 1362--1396 (2020; Zbl 1439.82029) Full Text: DOI arXiv OpenURL
Le, Phuong On classical solutions to the Hartree equation. (English) Zbl 1437.35339 J. Math. Anal. Appl. 485, No. 2, Article ID 123859, 10 p. (2020). MSC: 35J61 35B09 35A01 PDF BibTeX XML Cite \textit{P. Le}, J. Math. Anal. Appl. 485, No. 2, Article ID 123859, 10 p. (2020; Zbl 1437.35339) Full Text: DOI OpenURL
Nakamura, Shohei The orthonormal Strichartz inequality on torus. (English) Zbl 1435.35017 Trans. Am. Math. Soc. 373, No. 2, 1455-1476 (2020). MSC: 35A23 35B45 35P10 35B65 PDF BibTeX XML Cite \textit{S. Nakamura}, Trans. Am. Math. Soc. 373, No. 2, 1455--1476 (2020; Zbl 1435.35017) Full Text: DOI arXiv OpenURL
Bernini, Federico; Mugnai, Dimitri On a logarithmic Hartree equation. (English) Zbl 1435.35132 Adv. Nonlinear Anal. 9, 850-865 (2020). Reviewer: Giovanni Anello (Messina) MSC: 35J05 35J10 35J47 35J50 35Q40 PDF BibTeX XML Cite \textit{F. Bernini} and \textit{D. Mugnai}, Adv. Nonlinear Anal. 9, 850--865 (2020; Zbl 1435.35132) Full Text: DOI OpenURL
Liu, Xiangqing Symmetry of positive solutions for the fractional Hartree equation. (English) Zbl 1499.35666 Acta Math. Sci., Ser. B, Engl. Ed. 39, No. 6, 1508-1516 (2019). MSC: 35R11 35B09 PDF BibTeX XML Cite \textit{X. Liu}, Acta Math. Sci., Ser. B, Engl. Ed. 39, No. 6, 1508--1516 (2019; Zbl 1499.35666) Full Text: DOI OpenURL
Kouidri, S. Finite temperature aspect ratio in ultra-cold Bose gas for large N. (English) Zbl 1472.81329 Phys. Lett., A 383, No. 12, 1283-1287 (2019). MSC: 81V73 82B26 78A37 PDF BibTeX XML Cite \textit{S. Kouidri}, Phys. Lett., A 383, No. 12, 1283--1287 (2019; Zbl 1472.81329) Full Text: DOI OpenURL
Cao, Daomin; Dai, Wei Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity. (English) Zbl 1437.35383 Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 4, 979-994 (2019). MSC: 35J91 31B30 35B06 PDF BibTeX XML Cite \textit{D. Cao} and \textit{W. Dai}, Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 4, 979--994 (2019; Zbl 1437.35383) Full Text: DOI Link OpenURL
Masaki, Satoshi On the scattering problem of mass-subcritical Hartree equation. (English) Zbl 1435.35354 Kato, Keiichi (ed.) et al., Asymptotic analysis for nonlinear dispersive and wave equations. Proceedings of the international conference on asymptotic analysis for nonlinear dispersive and wave equations, Osaka University, Osaka, Japan, September 6–9, 2014. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 81, 259-309 (2019). MSC: 35Q55 35Q41 35P25 35B40 35B44 35A01 35A02 PDF BibTeX XML Cite \textit{S. Masaki}, Adv. Stud. Pure Math. 81, 259--309 (2019; Zbl 1435.35354) Full Text: DOI Euclid OpenURL
Gu, Guangze; Tang, Xianhua The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity. (English) Zbl 1427.35050 Adv. Nonlinear Stud. 19, No. 4, 779-795 (2019). MSC: 35J60 35B25 35B40 35J20 PDF BibTeX XML Cite \textit{G. Gu} and \textit{X. Tang}, Adv. Nonlinear Stud. 19, No. 4, 779--795 (2019; Zbl 1427.35050) Full Text: DOI OpenURL
Hyakuna, Ryosuke Global solutions to the Hartree equation for large \(L^p\)-initial data. (English) Zbl 1427.35256 Indiana Univ. Math. J. 68, No. 4, 1149-1172 (2019). MSC: 35Q55 35A01 35Q41 35A02 81Q05 PDF BibTeX XML Cite \textit{R. Hyakuna}, Indiana Univ. Math. J. 68, No. 4, 1149--1172 (2019; Zbl 1427.35256) Full Text: DOI OpenURL
Chenn, Ilias; Sigal, I. M. On effective PDEs of quantum physics. (English) Zbl 1428.35419 D’Abbicco, Marcello (ed.) et al., New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 1-47 (2019). MSC: 35Q40 78A35 35B10 35Q55 PDF BibTeX XML Cite \textit{I. Chenn} and \textit{I. M. Sigal}, in: New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 1--47 (2019; Zbl 1428.35419) Full Text: DOI OpenURL
Zhang, Jian; Zheng, Shijun; Zhu, Shihui Orbital stability of standing waves for fractional Hartree equation with unbounded potentials. (English) Zbl 1423.35357 Zheng, Shijun (ed.) et al., Nonlinear dispersive waves and fluids. AMS special sessions on spectral calculus and quasilinear partial differential equations, and PDE analysis on fluid flows, Atlanta, GA, USA, January 5–7, 2017. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 725, 265-275 (2019). MSC: 35Q55 35B35 35C08 PDF BibTeX XML Cite \textit{J. Zhang} et al., Contemp. Math. 725, 265--275 (2019; Zbl 1423.35357) Full Text: DOI arXiv OpenURL
Bhimani, Divyang G. Global well-posedness for fractional Hartree equation on modulation spaces and Fourier algebra. (English) Zbl 1428.35484 J. Differ. Equations 268, No. 1, 141-159 (2019). MSC: 35Q55 42B35 35A01 35R11 35Q41 PDF BibTeX XML Cite \textit{D. G. Bhimani}, J. Differ. Equations 268, No. 1, 141--159 (2019; Zbl 1428.35484) Full Text: DOI arXiv OpenURL
Watanabe, Michiyuki Time-dependent methods in inverse scattering problems for the Hartree-Fock equation. (English) Zbl 1428.82043 J. Math. Phys. 60, No. 9, 091504, 19 p. (2019). MSC: 82C22 81U20 81U40 37K15 35Q40 PDF BibTeX XML Cite \textit{M. Watanabe}, J. Math. Phys. 60, No. 9, 091504, 19 p. (2019; Zbl 1428.82043) Full Text: DOI arXiv OpenURL
Lafleche, Laurent Propagation of moments and semiclassical limit from Hartree to Vlasov equation. (English) Zbl 1426.82034 J. Stat. Phys. 177, No. 1, 20-60 (2019). MSC: 82C10 35Q41 35Q55 82C05 35Q83 82C22 PDF BibTeX XML Cite \textit{L. Lafleche}, J. Stat. Phys. 177, No. 1, 20--60 (2019; Zbl 1426.82034) Full Text: DOI arXiv OpenURL
Li, Yuan; Zhao, Dun; Wang, Qingxuan Concentration behavior of nonlinear Hartree-type equation with almost mass critical exponent. (English) Zbl 1427.35085 Z. Angew. Math. Phys. 70, No. 4, Paper No. 128, 17 p. (2019). MSC: 35J91 35J20 PDF BibTeX XML Cite \textit{Y. Li} et al., Z. Angew. Math. Phys. 70, No. 4, Paper No. 128, 17 p. (2019; Zbl 1427.35085) Full Text: DOI arXiv OpenURL
Lin, Lin Numerical methods for Hartree-Fock-like equations. (Chinese. English summary) Zbl 1438.65332 Math. Numer. Sin. 41, No. 2, 113-125 (2019). MSC: 65R20 65R15 65Z05 PDF BibTeX XML Cite \textit{L. Lin}, Math. Numer. Sin. 41, No. 2, 113--125 (2019; Zbl 1438.65332) OpenURL
Arora, Anudeep Kumar Scattering of radial data in the focusing NLS and generalized Hartree equations. (English) Zbl 1428.35480 Discrete Contin. Dyn. Syst. 39, No. 11, 6643-6668 (2019). MSC: 35Q55 35Q40 37K40 37K58 PDF BibTeX XML Cite \textit{A. K. Arora}, Discrete Contin. Dyn. Syst. 39, No. 11, 6643--6668 (2019; Zbl 1428.35480) Full Text: DOI arXiv OpenURL
Bhimani, Divyang G. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. (English) Zbl 1428.35483 Discrete Contin. Dyn. Syst. 39, No. 10, 5923-5944 (2019). MSC: 35Q55 35L05 42B35 35A01 PDF BibTeX XML Cite \textit{D. G. Bhimani}, Discrete Contin. Dyn. Syst. 39, No. 10, 5923--5944 (2019; Zbl 1428.35483) Full Text: DOI arXiv OpenURL
Lee, Jinyeop On the time dependence of the rate of convergence towards Hartree dynamics for interacting bosons. (English) Zbl 1419.81044 J. Stat. Phys. 176, No. 2, 358-381 (2019). MSC: 81V70 81Q05 82C22 81T15 PDF BibTeX XML Cite \textit{J. Lee}, J. Stat. Phys. 176, No. 2, 358--381 (2019; Zbl 1419.81044) Full Text: DOI arXiv OpenURL
Manna, Ramesh The Cauchy problem for non-linear higher order Hartree type equation in modulation spaces. (English) Zbl 1420.35368 J. Fourier Anal. Appl. 25, No. 4, 1319-1349 (2019). MSC: 35Q55 35G25 42B35 35A01 35A02 35Q40 PDF BibTeX XML Cite \textit{R. Manna}, J. Fourier Anal. Appl. 25, No. 4, 1319--1349 (2019; Zbl 1420.35368) Full Text: DOI OpenURL
Hyakuna, Ryosuke On the global Cauchy problem for the Hartree equation with rapidly decaying initial data. (English) Zbl 1421.35337 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 4, 1081-1104 (2019). Reviewer: Konstantin Merz (München) MSC: 35Q55 35Q40 35A01 35A02 81Q05 PDF BibTeX XML Cite \textit{R. Hyakuna}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 4, 1081--1104 (2019; Zbl 1421.35337) Full Text: DOI OpenURL
Luo, Xiao Normalized standing waves for the Hartree equations. (English) Zbl 1420.35097 J. Differ. Equations 267, No. 7, 4493-4524 (2019). MSC: 35J60 35J92 35J20 PDF BibTeX XML Cite \textit{X. Luo}, J. Differ. Equations 267, No. 7, 4493--4524 (2019; Zbl 1420.35097) Full Text: DOI OpenURL
Yang, Changhun Scattering results for Dirac Hartree-type equations with small initial data. (English) Zbl 1416.35249 Commun. Pure Appl. Anal. 18, No. 4, 1711-1734 (2019). MSC: 35Q55 35Q40 35R25 PDF BibTeX XML Cite \textit{C. Yang}, Commun. Pure Appl. Anal. 18, No. 4, 1711--1734 (2019; Zbl 1416.35249) Full Text: DOI arXiv OpenURL
Chen, Peng; Liu, Xiaochun Ground states for Kirchhoff equation with Hartree-type nonlinearities. (English) Zbl 1414.35076 J. Math. Anal. Appl. 473, No. 1, 587-608 (2019). MSC: 35J60 PDF BibTeX XML Cite \textit{P. Chen} and \textit{X. Liu}, J. Math. Anal. Appl. 473, No. 1, 587--608 (2019; Zbl 1414.35076) Full Text: DOI OpenURL
Androulakis, George; Musulin, Rade Quantum Kac’s chaos. (English) Zbl 1409.81051 Commun. Math. Sci. 16, No. 7, 1801-1825 (2018). MSC: 81Q50 35Q83 37D45 PDF BibTeX XML Cite \textit{G. Androulakis} and \textit{R. Musulin}, Commun. Math. Sci. 16, No. 7, 1801--1825 (2019; Zbl 1409.81051) Full Text: DOI arXiv OpenURL
Li, Yan; Li, Xinfu; Ma, Shiwang Groundstates for Kirchhoff-type equations with Hartree-type nonlinearities. (English) Zbl 1412.35124 Result. Math. 74, No. 1, Paper No. 42, 26 p. (2019). MSC: 35J60 35B09 PDF BibTeX XML Cite \textit{Y. Li} et al., Result. Math. 74, No. 1, Paper No. 42, 26 p. (2019; Zbl 1412.35124) Full Text: DOI OpenURL
Chen, Thomas; Soffer, Avy Mean field dynamics of a quantum tracer particle interacting with a boson gas. (English) Zbl 1414.82026 J. Funct. Anal. 276, No. 3, 971-1006 (2019). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 82C40 81V70 35Q40 82D05 PDF BibTeX XML Cite \textit{T. Chen} and \textit{A. Soffer}, J. Funct. Anal. 276, No. 3, 971--1006 (2019; Zbl 1414.82026) Full Text: DOI arXiv OpenURL
Yang, Changhun Small data scattering of semirelativistic Hartree equation. (English) Zbl 1406.35375 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 178, 41-55 (2019). MSC: 35Q55 35Q53 35P25 PDF BibTeX XML Cite \textit{C. Yang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 178, 41--55 (2019; Zbl 1406.35375) Full Text: DOI arXiv OpenURL
Hoshino, Gaku; Hyakuna, Ryosuke Trilinear \(L^p\) estimates with applications to the Cauchy problem for the Hartree-type equation. (English) Zbl 1404.35415 J. Math. Anal. Appl. 469, No. 1, 321-341 (2019). MSC: 35Q55 35Q41 81Q05 PDF BibTeX XML Cite \textit{G. Hoshino} and \textit{R. Hyakuna}, J. Math. Anal. Appl. 469, No. 1, 321--341 (2019; Zbl 1404.35415) Full Text: DOI OpenURL
Wen, Lixi; Chen, Sitong Ground state solutions for asymptotically periodic Schrödinger-Poisson systems involving Hartree-type nonlinearities. (English) Zbl 1499.35220 Bound. Value Probl. 2018, Paper No. 110, 15 p. (2018). MSC: 35J20 35Q55 35J60 35J10 35J50 PDF BibTeX XML Cite \textit{L. Wen} and \textit{S. Chen}, Bound. Value Probl. 2018, Paper No. 110, 15 p. (2018; Zbl 1499.35220) Full Text: DOI OpenURL
Golse, François The quantum \(N\)-body problem in the mean-field and semiclassical regime. (English) Zbl 1470.82016 Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 376, No. 2118, Article ID 20170229, 12 p. (2018). MSC: 82C10 PDF BibTeX XML Cite \textit{F. Golse}, Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 376, No. 2118, Article ID 20170229, 12 p. (2018; Zbl 1470.82016) Full Text: DOI OpenURL
Feng, Binhua; Yuan, Xiangxia Global existence for solution of fractional Hartree equation with time-dependent damping/gain. (Chinese. English summary) Zbl 1424.35002 J. Jilin Univ., Sci. 56, No. 3, 475-480 (2018). MSC: 35A01 35R11 PDF BibTeX XML Cite \textit{B. Feng} and \textit{X. Yuan}, J. Jilin Univ., Sci. 56, No. 3, 475--480 (2018; Zbl 1424.35002) Full Text: DOI OpenURL
Grushevskaya, Halina V.; Krylov, George; Gaisyonok, Victor A. Non-abelian currents in quasi-relativistic graphene model: general theory. (English) Zbl 1405.82016 Nonlinear Phenom. Complex Syst., Minsk 21, No. 3, 278-308 (2018). MSC: 82C10 82C70 81V70 PDF BibTeX XML Cite \textit{H. V. Grushevskaya} et al., Nonlinear Phenom. Complex Syst., Minsk 21, No. 3, 278--308 (2018; Zbl 1405.82016) Full Text: Link OpenURL
Hyakuna, Ryosuke Multilinear estimates with applications to nonlinear Schrödinger and Hartree equations in \(\widehat{L^p}\)-spaces. (English) Zbl 1398.35215 J. Evol. Equ. 18, No. 3, 1069-1084 (2018). MSC: 35Q55 PDF BibTeX XML Cite \textit{R. Hyakuna}, J. Evol. Equ. 18, No. 3, 1069--1084 (2018; Zbl 1398.35215) Full Text: DOI OpenURL
Lei, Yutian Liouville theorems and classification results for a nonlocal Schrödinger equation. (English) Zbl 1401.35036 Discrete Contin. Dyn. Syst. 38, No. 11, 5351-5377 (2018). MSC: 35J05 35J47 35Q55 PDF BibTeX XML Cite \textit{Y. Lei}, Discrete Contin. Dyn. Syst. 38, No. 11, 5351--5377 (2018; Zbl 1401.35036) Full Text: DOI OpenURL
Dietler, Elia; Rademacher, Simone; Schlein, Benjamin From Hartree dynamics to the relativistic Vlasov equation. (English) Zbl 1397.35310 J. Stat. Phys. 172, No. 2, 398-433 (2018). MSC: 35Q83 81V70 35Q40 35Q55 35Q75 PDF BibTeX XML Cite \textit{E. Dietler} et al., J. Stat. Phys. 172, No. 2, 398--433 (2018; Zbl 1397.35310) Full Text: DOI arXiv Link OpenURL
Zhao, Yanjun; Feng, Binhua Existence and regularity of global solutions nonlinear Hartree equations with Coulomb potentials and sublinear damping. (English) Zbl 1400.35117 Electron. J. Differ. Equ. 2018, Paper No. 163, 15 p. (2018). MSC: 35J60 35Q55 PDF BibTeX XML Cite \textit{Y. Zhao} and \textit{B. Feng}, Electron. J. Differ. Equ. 2018, Paper No. 163, 15 p. (2018; Zbl 1400.35117) Full Text: Link OpenURL
Golse, François The mean-field limit for the quantum \(N\)-body problem: uniform in \(\hbar\) convergence rate. (English) Zbl 1397.35240 Dogbe, Christian (ed.), Actes du colloque “EDP-Normandie”, Caen, France, Octobre 25–26, 2017. [s.l.]: Fédération Normandie-Mathématiques (ISBN 978-2-9541221-4-4/pbk). Normandie-Mathématiques, 27-33 (2018). MSC: 35Q40 PDF BibTeX XML Cite \textit{F. Golse}, in: Actes du colloque ``EDP-Normandie'', Caen, France, Octobre 25--26, 2017. [s.l.]: Fédération Normandie-Mathématiques. 27--33 (2018; Zbl 1397.35240) OpenURL
Michelangeli, Alessandro; Olgiati, Alessandro; Scandone, Raffaele Singular Hartree equation in fractional perturbed Sobolev spaces. (English) Zbl 1417.35182 J. Nonlinear Math. Phys. 25, No. 4, 558-588 (2018). MSC: 35Q55 81Q05 35Q40 35P25 35B35 PDF BibTeX XML Cite \textit{A. Michelangeli} et al., J. Nonlinear Math. Phys. 25, No. 4, 558--588 (2018; Zbl 1417.35182) Full Text: DOI arXiv OpenURL