Lü, Meiying; Zhang, Zhenliang On the increasing partial quotients of continued fractions of points in the plane. (English) Zbl 07527742 Bull. Aust. Math. Soc. 105, No. 3, 404-411 (2022). MSC: 11K55 28A80 PDF BibTeX XML Cite \textit{M. Lü} and \textit{Z. Zhang}, Bull. Aust. Math. Soc. 105, No. 3, 404--411 (2022; Zbl 07527742) Full Text: DOI OpenURL
Fang, Lulu; Shang, Lei; Wu, Min On upper and lower fast Khintchine spectra of continued fractions. (English) Zbl 07524170 Forum Math. 34, No. 3, 821-830 (2022). MSC: 11K50 37E05 28A80 PDF BibTeX XML Cite \textit{L. Fang} et al., Forum Math. 34, No. 3, 821--830 (2022; Zbl 07524170) Full Text: DOI OpenURL
Jia, Qi; Li, Yuanyuan; Jinag, Kan Irrational self-similar sets. (English) Zbl 07523948 Publ. Math. 100, No. 3-4, 461-472 (2022). MSC: 28A80 11K55 PDF BibTeX XML Cite \textit{Q. Jia} et al., Publ. Math. 100, No. 3--4, 461--472 (2022; Zbl 07523948) Full Text: DOI OpenURL
Hochman, Michael; Rapaport, Ariel Hausdorff dimension of planar self-affine sets and measures with overlaps. (English) Zbl 07523083 J. Eur. Math. Soc. (JEMS) 24, No. 7, 2361-2441 (2022). MSC: 28A80 37C45 PDF BibTeX XML Cite \textit{M. Hochman} and \textit{A. Rapaport}, J. Eur. Math. Soc. (JEMS) 24, No. 7, 2361--2441 (2022; Zbl 07523083) Full Text: DOI OpenURL
Le Gall, Jean-François Geodesic stars in random geometry. (English) Zbl 07523053 Ann. Probab. 50, No. 3, 1013-1058 (2022). MSC: 60D05 PDF BibTeX XML Cite \textit{J.-F. Le Gall}, Ann. Probab. 50, No. 3, 1013--1058 (2022; Zbl 07523053) Full Text: DOI OpenURL
Chen, Haibo; Wang, Yi; Xiao, Yu Metric properties about Banach averages and super simply normal numbers. (English) Zbl 07516735 J. Math. Anal. Appl. 513, No. 2, Article ID 126237, 16 p. (2022). MSC: 11K55 11K16 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Math. Anal. Appl. 513, No. 2, Article ID 126237, 16 p. (2022; Zbl 07516735) Full Text: DOI OpenURL
Ladyzhenskaya, Olga A. Attractors for semigroups and evolution equations (to appear). Reprint of the 1991 edition with a new introduction. (English) Zbl 07516541 Cambridge Mathematical Library. Cambridge: Cambridge University Press (ISBN 978-1-00-922982-1/pbk). (2022). MSC: 47-02 58-02 35-02 01A75 47H20 35B40 47-03 58-03 35-03 47D06 PDF BibTeX XML OpenURL
Bessenyei, Mihály; Pénzes, Evelin Generalized fractals in semimetric spaces. (English) Zbl 07515356 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 220, Article ID 112853, 15 p. (2022). MSC: 47H09 47H10 28A80 PDF BibTeX XML Cite \textit{M. Bessenyei} and \textit{E. Pénzes}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 220, Article ID 112853, 15 p. (2022; Zbl 07515356) Full Text: DOI OpenURL
de Vries, Martijn; Komornik, Vilmos; Loreti, Paola Topology of univoque sets in real base expansions. (English) Zbl 07514749 Topology Appl. 312, Article ID 108085, 36 p. (2022). MSC: 11A63 11K55 11B83 37B10 PDF BibTeX XML Cite \textit{M. de Vries} et al., Topology Appl. 312, Article ID 108085, 36 p. (2022; Zbl 07514749) Full Text: DOI OpenURL
Ishiki, Yoshito Continua in the Gromov-Hausdorff space. (English) Zbl 07514730 Topology Appl. 312, Article ID 108058, 10 p. (2022). MSC: 53C23 51F99 PDF BibTeX XML Cite \textit{Y. Ishiki}, Topology Appl. 312, Article ID 108058, 10 p. (2022; Zbl 07514730) Full Text: DOI OpenURL
Soares, Louis Hecke triangle groups, transfer operators and Hausdorff dimension. (English) Zbl 07511009 Ann. Henri Poincaré 23, No. 4, 1239-1281 (2022). MSC: 11M36 37C30 37D35 11K55 PDF BibTeX XML Cite \textit{L. Soares}, Ann. Henri Poincaré 23, No. 4, 1239--1281 (2022; Zbl 07511009) Full Text: DOI OpenURL
Jiang, Kan Obtaining an explicit interval for a nonlinear Newhouse thickness theorem. (English) Zbl 07507841 Math. Z. 301, No. 1, 1011-1037 (2022). MSC: 28A80 11K55 PDF BibTeX XML Cite \textit{K. Jiang}, Math. Z. 301, No. 1, 1011--1037 (2022; Zbl 07507841) Full Text: DOI OpenURL
Hu, Zhang-nan; Li, Bing; Xiao, Yimin On the intersection of dynamical covering sets with fractals. (English) Zbl 07507825 Math. Z. 301, No. 1, 485-513 (2022). MSC: 37A50 28A80 60A10 PDF BibTeX XML Cite \textit{Z.-n. Hu} et al., Math. Z. 301, No. 1, 485--513 (2022; Zbl 07507825) Full Text: DOI OpenURL
He, YuBin; Xiong, Ying Sets of exact approximation order by complex rational numbers. (English) Zbl 07507814 Math. Z. 301, No. 1, 199-223 (2022). Reviewer: István Gaál (Debrecen) MSC: 11J04 11J70 11J83 28A78 PDF BibTeX XML Cite \textit{Y. He} and \textit{Y. Xiong}, Math. Z. 301, No. 1, 199--223 (2022; Zbl 07507814) Full Text: DOI OpenURL
Orponen, Tuomas On arithmetic sums of Ahlfors-regular sets. (English) Zbl 07506902 Geom. Funct. Anal. 32, No. 1, 81-134 (2022). MSC: 11B30 28A80 PDF BibTeX XML Cite \textit{T. Orponen}, Geom. Funct. Anal. 32, No. 1, 81--134 (2022; Zbl 07506902) Full Text: DOI OpenURL
Mayer, Volker; Urbański, Mariusz The exact value of Hausdorff dimension of escaping sets of class \(\mathcal{B}\) meromorphic functions. (English) Zbl 07506901 Geom. Funct. Anal. 32, No. 1, 53-80 (2022). MSC: 37F10 37F35 30D05 PDF BibTeX XML Cite \textit{V. Mayer} and \textit{M. Urbański}, Geom. Funct. Anal. 32, No. 1, 53--80 (2022; Zbl 07506901) Full Text: DOI OpenURL
Priya, M.; Uthayakumar, R. Fractal dimension of graph of Katugampola fractional integral and some general characterizations. (English) Zbl 07506412 J. Anal. 30, No. 1, 175-193 (2022). MSC: 26A33 28A78 28A80 26B30 PDF BibTeX XML Cite \textit{M. Priya} and \textit{R. Uthayakumar}, J. Anal. 30, No. 1, 175--193 (2022; Zbl 07506412) Full Text: DOI OpenURL
Gu, Yifei; Miao, Jun Jie Dimensions of a class of self-affine Moran sets. (English) Zbl 07506396 J. Math. Anal. Appl. 513, No. 1, Article ID 126210, 24 p. (2022). MSC: 28A80 28A78 37C45 37D45 28A75 PDF BibTeX XML Cite \textit{Y. Gu} and \textit{J. J. Miao}, J. Math. Anal. Appl. 513, No. 1, Article ID 126210, 24 p. (2022; Zbl 07506396) Full Text: DOI OpenURL
Zhuravlev, V. G. Universal karyon tilings. (English. Russian original) Zbl 07504075 J. Math. Sci., New York 261, No. 4, 534-564 (2022); translation from Zap. Nauchn. Semin. POMI 490, 49-93 (2020). MSC: 52C22 11K55 PDF BibTeX XML Cite \textit{V. G. Zhuravlev}, J. Math. Sci., New York 261, No. 4, 534--564 (2022; Zbl 07504075); translation from Zap. Nauchn. Semin. POMI 490, 49--93 (2020) Full Text: DOI OpenURL
Selmi, Bilel Slices of Hewitt-Stromberg measures and co-dimensions formula. (English) Zbl 07501871 Analysis, München 42, No. 1, 23-39 (2022). MSC: 28A20 28A80 PDF BibTeX XML Cite \textit{B. Selmi}, Analysis, München 42, No. 1, 23--39 (2022; Zbl 07501871) Full Text: DOI OpenURL
Mihailescu, Eugen; Urbański, Mariusz Geometry of measures in random systems with complete connections. (English) Zbl 07501821 J. Geom. Anal. 32, No. 5, Paper No. 162, 18 p. (2022). MSC: 28A80 37A05 37D35 37C45 37H15 30C35 PDF BibTeX XML Cite \textit{E. Mihailescu} and \textit{M. Urbański}, J. Geom. Anal. 32, No. 5, Paper No. 162, 18 p. (2022; Zbl 07501821) Full Text: DOI OpenURL
Mohan, Manil T. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with “Fading memory”. (English) Zbl 07500372 Evol. Equ. Control Theory 11, No. 1, 125-167 (2022). MSC: 37L30 35Q35 35Q30 35B40 PDF BibTeX XML Cite \textit{M. T. Mohan}, Evol. Equ. Control Theory 11, No. 1, 125--167 (2022; Zbl 07500372) Full Text: DOI OpenURL
Liao, Lingmin; Rams, Michał Big Birkhoff sums in \(d\)-decaying Gauss like iterated function systems. (English) Zbl 07500274 Stud. Math. 264, No. 1, 1-25 (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K50 37E05 28A80 PDF BibTeX XML Cite \textit{L. Liao} and \textit{M. Rams}, Stud. Math. 264, No. 1, 1--25 (2022; Zbl 07500274) Full Text: DOI OpenURL
Marcone, Alberto; Valenti, Manlio On the descriptive complexity of salem sets. (English) Zbl 07499603 Fundam. Math. 257, No. 1, 69-93 (2022). MSC: 03E15 28A75 28A78 03D32 PDF BibTeX XML Cite \textit{A. Marcone} and \textit{M. Valenti}, Fundam. Math. 257, No. 1, 69--93 (2022; Zbl 07499603) Full Text: DOI OpenURL
Héra, Kornélia; Shmerkin, Pablo; Yavicoli, Alexia An improved bound for the dimension of \((\alpha,2\alpha)\)-Furstenberg sets. (English) Zbl 07498317 Rev. Mat. Iberoam. 38, No. 1, 295-322 (2022). MSC: 28A78 05B30 PDF BibTeX XML Cite \textit{K. Héra} et al., Rev. Mat. Iberoam. 38, No. 1, 295--322 (2022; Zbl 07498317) Full Text: DOI OpenURL
Saito, Kota Linear equations with two variables in Piatetski-Shapiro sequences. (English) Zbl 07496902 Acta Arith. 202, No. 2, 161-171 (2022). MSC: 11D04 11K55 PDF BibTeX XML Cite \textit{K. Saito}, Acta Arith. 202, No. 2, 161--171 (2022; Zbl 07496902) Full Text: DOI OpenURL
Wang, Jinfeng; Zhang, Yuan Metric theory of partial quotients of \(N\)-continued fractions. (English) Zbl 07490708 Fractals 30, No. 1, Article ID 2250022, 16 p. (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K50 11K55 11J70 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Y. Zhang}, Fractals 30, No. 1, Article ID 2250022, 16 p. (2022; Zbl 07490708) Full Text: DOI OpenURL
Mabrouk, Anouar Ben; Farhat, Adel Mixed multifractal densities for quasi-Ahlfors vector-valued measures. (English) Zbl 07490639 Fractals 30, No. 1, Article ID 2240003, 12 p. (2022). MSC: 28Axx 37Dxx 28-XX PDF BibTeX XML Cite \textit{A. B. Mabrouk} and \textit{A. Farhat}, Fractals 30, No. 1, Article ID 2240003, 12 p. (2022; Zbl 07490639) Full Text: DOI arXiv OpenURL
Ben Mabrouk, Anouar; Farhat, Adel A mixed multifractal analysis for quasi-Ahlfors vector-valued measures. (English) Zbl 07490637 Fractals 30, No. 1, Article ID 2240001, 20 p. (2022). MSC: 28Axx 37Dxx 62Mxx PDF BibTeX XML Cite \textit{A. Ben Mabrouk} and \textit{A. Farhat}, Fractals 30, No. 1, Article ID 2240001, 20 p. (2022; Zbl 07490637) Full Text: DOI arXiv OpenURL
Weighill, Thomas; Yamauchi, Takamitsu; Zava, Nicolò Coarse infinite-dimensionality of hyperspaces of finite subsets. (English) Zbl 07490516 Eur. J. Math. 8, No. 1, 335-355 (2022). Reviewer: Yutaka Iwamoto (Niihama) MSC: 54B20 46B85 54E45 54F45 PDF BibTeX XML Cite \textit{T. Weighill} et al., Eur. J. Math. 8, No. 1, 335--355 (2022; Zbl 07490516) Full Text: DOI OpenURL
Zhou, Qing-Long On the distribution of the digits in Lüroth expansions. (English) Zbl 07488665 Lith. Math. J. 62, No. 1, 123-132 (2022). MSC: 11K55 28A80 11J83 PDF BibTeX XML Cite \textit{Q.-L. Zhou}, Lith. Math. J. 62, No. 1, 123--132 (2022; Zbl 07488665) Full Text: DOI OpenURL
Moreira, Carlos; Zamudio, Alex Erratum: A corrected proof of the scale recurrence lemma from the paper “Stable intersections of regular Cantor sets with large Hausdorff dimensions”. (English) Zbl 07483860 Ann. Math. (2) 195, No. 1, 363-374 (2022). MSC: 37C45 28A78 28A80 37D05 37E30 37G25 PDF BibTeX XML Cite \textit{C. Moreira} and \textit{A. Zamudio}, Ann. Math. (2) 195, No. 1, 363--374 (2022; Zbl 07483860) Full Text: DOI OpenURL
Feng, Yan; Zhong, Wenmin On the relative growth rate of the product of consecutive partial quotients in continued fraction expansions of Laurent series. (English) Zbl 1483.11161 Finite Fields Appl. 79, Article ID 101998, 24 p. (2022). MSC: 11K55 11K16 28A78 PDF BibTeX XML Cite \textit{Y. Feng} and \textit{W. Zhong}, Finite Fields Appl. 79, Article ID 101998, 24 p. (2022; Zbl 1483.11161) Full Text: DOI OpenURL
Austin, Tim A new dynamical proof of the Shmerkin-Wu theorem. (English) Zbl 07478504 J. Mod. Dyn. 18, 1-11 (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A50 28A80 37C45 PDF BibTeX XML Cite \textit{T. Austin}, J. Mod. Dyn. 18, 1--11 (2022; Zbl 07478504) Full Text: DOI arXiv OpenURL
Baker, Roger C.; Chen, Changhao; Shparlinski, Igor E. Large Weyl sums and Hausdorff dimension. (English) Zbl 07474371 J. Math. Anal. Appl. 510, No. 2, Article ID 126030, 46 p. (2022). MSC: 11Lxx 11Kxx 11Jxx PDF BibTeX XML Cite \textit{R. C. Baker} et al., J. Math. Anal. Appl. 510, No. 2, Article ID 126030, 46 p. (2022; Zbl 07474371) Full Text: DOI arXiv OpenURL
Zhou, Qing-long Dimension of exceptional sets arising by the longest block function in Lüroth expansions. (English) Zbl 1483.11165 J. Math. Anal. Appl. 510, No. 2, Article ID 126011, 15 p. (2022). MSC: 11K55 28A80 28A78 PDF BibTeX XML Cite \textit{Q.-l. Zhou}, J. Math. Anal. Appl. 510, No. 2, Article ID 126011, 15 p. (2022; Zbl 1483.11165) Full Text: DOI OpenURL
Mattila, Pertti Hausdorff dimension and projections related to intersections. (English) Zbl 07473088 Publ. Mat., Barc. 66, No. 1, 305-323 (2022). MSC: 28A75 PDF BibTeX XML Cite \textit{P. Mattila}, Publ. Mat., Barc. 66, No. 1, 305--323 (2022; Zbl 07473088) Full Text: DOI arXiv OpenURL
Chen, Haipeng Dimensions and spectra of the \(t\)-popcorn graphs. (English) Zbl 07472973 J. Math. Anal. Appl. 510, No. 1, Article ID 126013, 19 p. (2022). MSC: 28A78 PDF BibTeX XML Cite \textit{H. Chen}, J. Math. Anal. Appl. 510, No. 1, Article ID 126013, 19 p. (2022; Zbl 07472973) Full Text: DOI OpenURL
Bakhtawar, Ayreena Hausdorff dimension for the set of points connected with the generalized Jarník-Besicovitch set. (English) Zbl 07472902 J. Aust. Math. Soc. 112, No. 1, 1-29 (2022). MSC: 11K50 11J70 11J83 28A78 PDF BibTeX XML Cite \textit{A. Bakhtawar}, J. Aust. Math. Soc. 112, No. 1, 1--29 (2022; Zbl 07472902) Full Text: DOI arXiv OpenURL
Jiang, Kan; Kong, Derong; Li, Wenxia How likely can a point be in different Cantor sets. (English) Zbl 07471644 Nonlinearity 35, No. 3, 1402-1430 (2022). MSC: 28A78 28A80 37B10 11A63 PDF BibTeX XML Cite \textit{K. Jiang} et al., Nonlinearity 35, No. 3, 1402--1430 (2022; Zbl 07471644) Full Text: DOI arXiv OpenURL
Lukina, Olga Hausdorff dimension in graph matchbox manifolds. (English) Zbl 07471579 Topology Appl. 308, Article ID 108003, 21 p. (2022). MSC: 37C45 37C85 57R30 37B99 PDF BibTeX XML Cite \textit{O. Lukina}, Topology Appl. 308, Article ID 108003, 21 p. (2022; Zbl 07471579) Full Text: DOI arXiv OpenURL
Dhifaoui, Zouhaier; Bardet, Jean-Marc Local correlation dimension of multidimensional stochastic process. (English) Zbl 1478.60116 Stat. Probab. Lett. 181, Article ID 109262, 7 p. (2022). MSC: 60G17 60G60 60J65 60G15 PDF BibTeX XML Cite \textit{Z. Dhifaoui} and \textit{J.-M. Bardet}, Stat. Probab. Lett. 181, Article ID 109262, 7 p. (2022; Zbl 1478.60116) Full Text: DOI OpenURL
Falconer, Kenneth J. Intermediate dimension of images of sequences under fractional Brownian motion. (English) Zbl 1478.60124 Stat. Probab. Lett. 182, Article ID 109300, 6 p. (2022). MSC: 60G22 60G15 PDF BibTeX XML Cite \textit{K. J. Falconer}, Stat. Probab. Lett. 182, Article ID 109300, 6 p. (2022; Zbl 1478.60124) Full Text: DOI arXiv OpenURL
Feng, Shilin; Gao, Rui; Huang, Wen; Lian, Zeng Local stable and unstable sets for positive entropy \(C^1\) dynamical systems. (English) Zbl 07462119 Sci. China, Math. 65, No. 1, 63-80 (2022). MSC: 37A35 37C45 37D25 28D20 PDF BibTeX XML Cite \textit{S. Feng} et al., Sci. China, Math. 65, No. 1, 63--80 (2022; Zbl 07462119) Full Text: DOI arXiv OpenURL
Hare, Kathryn E.; Mendivil, Franklin Assouad-like dimensions of a class of random Moran measures. (English) Zbl 07461324 J. Math. Anal. Appl. 508, No. 2, Article ID 125912, 25 p. (2022). MSC: 28A78 60G57 PDF BibTeX XML Cite \textit{K. E. Hare} and \textit{F. Mendivil}, J. Math. Anal. Appl. 508, No. 2, Article ID 125912, 25 p. (2022; Zbl 07461324) Full Text: DOI arXiv OpenURL
Kleptsyn, V.; Pollicott, M.; Vytnova, P. Uniform lower bounds on the dimension of Bernoulli convolutions. (English) Zbl 07456618 Adv. Math. 395, Article ID 108090, 55 p. (2022). MSC: 11K55 28A80 PDF BibTeX XML Cite \textit{V. Kleptsyn} et al., Adv. Math. 395, Article ID 108090, 55 p. (2022; Zbl 07456618) Full Text: DOI arXiv OpenURL
Ayoush, Rami; Wojciechowski, Michał Microlocal approach to the Hausdorff dimension of measures. (English) Zbl 07456617 Adv. Math. 395, Article ID 108088, 11 p. (2022). MSC: 28A78 31C10 35A27 42B10 43A85 PDF BibTeX XML Cite \textit{R. Ayoush} and \textit{M. Wojciechowski}, Adv. Math. 395, Article ID 108088, 11 p. (2022; Zbl 07456617) Full Text: DOI arXiv OpenURL
Lu, Hongbin; Qiu, Weiyuan; Yang, Fei Asymptotics of the Hausdorff dimensions of the Julia sets of McMullen maps with error bounds. (English) Zbl 07455614 Nonlinearity 35, No. 1, 787-816 (2022). MSC: 37F35 37F46 37F10 PDF BibTeX XML Cite \textit{H. Lu} et al., Nonlinearity 35, No. 1, 787--816 (2022; Zbl 07455614) Full Text: DOI OpenURL
Kristály, Alexandru; Zhao, Wei On the geometry of irreversible metric-measure spaces: convergence, stability and analytic aspects. (English. French summary) Zbl 07453400 J. Math. Pures Appl. (9) 158, 216-292 (2022). MSC: 53C23 49Q15 PDF BibTeX XML Cite \textit{A. Kristály} and \textit{W. Zhao}, J. Math. Pures Appl. (9) 158, 216--292 (2022; Zbl 07453400) Full Text: DOI arXiv OpenURL
Zou, Yuru; Lu, Jian; Komornik, Vilmos Hausdorff dimension of multiple expansions. (English) Zbl 07452397 J. Number Theory 233, 198-227 (2022). MSC: 11A63 11K55 28A80 37B10 PDF BibTeX XML Cite \textit{Y. Zou} et al., J. Number Theory 233, 198--227 (2022; Zbl 07452397) Full Text: DOI OpenURL
Makarov, B. M.; Podkorytov, A. N. On the sharpness of assumptions in the Federer theorem. (English. Russian original) Zbl 07452249 St. Petersbg. Math. J. 33, No. 1, 85-96 (2022); translation from Algebra Anal. 33, No. 1, 119-135 (2021). MSC: 28A78 PDF BibTeX XML Cite \textit{B. M. Makarov} and \textit{A. N. Podkorytov}, St. Petersbg. Math. J. 33, No. 1, 85--96 (2022; Zbl 07452249); translation from Algebra Anal. 33, No. 1, 119--135 (2021) Full Text: DOI OpenURL
Selmi, Bilel A review on multifractal analysis of Hewitt-Stromberg measures. (English) Zbl 07446086 J. Geom. Anal. 32, No. 1, Paper No. 12, 44 p. (2022). Reviewer: Denis R. Bell (Jacksonville) MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{B. Selmi}, J. Geom. Anal. 32, No. 1, Paper No. 12, 44 p. (2022; Zbl 07446086) Full Text: DOI arXiv OpenURL
Dániel Prokaj, R.; Simon, Károly Piecewise linear iterated function systems on the line of overlapping construction. (English) Zbl 07441041 Nonlinearity 35, No. 1, 245-277 (2022). MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{R. Dániel Prokaj} and \textit{K. Simon}, Nonlinearity 35, No. 1, 245--277 (2022; Zbl 07441041) Full Text: DOI arXiv OpenURL
Ma, Guanzhong; Shen, Wenqiang; Yao, Xiao Multifractal analysis in non-uniformly hyperbolic interval maps. (English) Zbl 07441039 Nonlinearity 35, No. 1, 110-133 (2022). Reviewer: Martin Sambarino (Montevideo) MSC: 37D25 37B40 37E40 28A80 PDF BibTeX XML Cite \textit{G. Ma} et al., Nonlinearity 35, No. 1, 110--133 (2022; Zbl 07441039) Full Text: DOI arXiv OpenURL
Muentes Acevedo, Jeovanny Genericity of continuous maps with positive metric mean dimension. (English) Zbl 07423449 Result. Math. 77, No. 1, Paper No. 2, 30 p. (2022). Reviewer: Christopher Caruvana (Kokomo) MSC: 37B02 37E05 37B40 37C45 54F45 PDF BibTeX XML Cite \textit{J. Muentes Acevedo}, Result. Math. 77, No. 1, Paper No. 2, 30 p. (2022; Zbl 07423449) Full Text: DOI arXiv OpenURL
Anderson, Theresa C.; Hu, Bingyang A structure theorem on doubling measures with different bases. (English) Zbl 1480.28003 J. Math. Anal. Appl. 505, No. 1, Article ID 125620, 11 p. (2022). MSC: 28A12 11K55 PDF BibTeX XML Cite \textit{T. C. Anderson} and \textit{B. Hu}, J. Math. Anal. Appl. 505, No. 1, Article ID 125620, 11 p. (2022; Zbl 1480.28003) Full Text: DOI arXiv OpenURL
Wang, Wen-Ya; Chen, Hui-Qin; Guo, Zhong-Kai The points with dense orbit under the \(\beta\)-expansions of different bases. (English) Zbl 07526739 Chaos Solitons Fractals 146, Article ID 110840, 6 p. (2021). MSC: 11-XX 41-XX PDF BibTeX XML Cite \textit{W.-Y. Wang} et al., Chaos Solitons Fractals 146, Article ID 110840, 6 p. (2021; Zbl 07526739) Full Text: DOI OpenURL
Milišić, Josipa-Pina; Žubrinić, Darko Maximally singular weak solutions of Laplace equations. (English) Zbl 07524125 Rocky Mt. J. Math. 51, No. 6, 2147-2157 (2021). MSC: 26A30 28A75 28A78 PDF BibTeX XML Cite \textit{J.-P. Milišić} and \textit{D. Žubrinić}, Rocky Mt. J. Math. 51, No. 6, 2147--2157 (2021; Zbl 07524125) Full Text: DOI Link OpenURL
Pratsovytyi, M. V.; Goncharenko, Ya. V.; Lysenko, I. M.; Ratushniak, S. P. Fractal functions of exponential type that is generated by the \(Q_2^*\)-representation of argument. (English) Zbl 07509979 Mat. Stud. 56, No. 2, 133-143 (2021). MSC: 28-XX 28A80 28A78 PDF BibTeX XML Cite \textit{M. V. Pratsovytyi} et al., Mat. Stud. 56, No. 2, 133--143 (2021; Zbl 07509979) Full Text: DOI OpenURL
Zamrii, I. V.; Shkapa, V. V.; Vlasyk, H. M. Fundamentals of metric theory of real numbers in their \(\overline{Q_3} \)-representation. (English) Zbl 07509964 Mat. Stud. 56, No. 1, 3-19 (2021). MSC: 11K55 28A78 PDF BibTeX XML Cite \textit{I. V. Zamrii} et al., Mat. Stud. 56, No. 1, 3--19 (2021; Zbl 07509964) Full Text: DOI OpenURL
Przytycki, Feliks McMullen’s and geometric pressures and approximating the Hausdorff dimension of Julia sets from below. (English) Zbl 07507056 Bull. Pol. Acad. Sci., Math. 69, No. 2, 115-137 (2021). MSC: 37F35 37F10 PDF BibTeX XML Cite \textit{F. Przytycki}, Bull. Pol. Acad. Sci., Math. 69, No. 2, 115--137 (2021; Zbl 07507056) Full Text: DOI OpenURL
Dang, Yungui; Wen, Shengyou Conformal dimension of a class of planar self-similar sets. (Chinese. English summary) Zbl 07494960 Sci. Sin., Math. 51, No. 4, 581-590 (2021). MSC: 28A78 30C35 PDF BibTeX XML Cite \textit{Y. Dang} and \textit{S. Wen}, Sci. Sin., Math. 51, No. 4, 581--590 (2021; Zbl 07494960) Full Text: DOI OpenURL
Fernández-Martínez, Manuel Moran type theorems and irreducible fractal structures. (English) Zbl 07491557 Walczak, Szymon (ed.), Proceedings of the contemporary mathematics in Kielce 2020, Kielce, Poland, February 24–27, 2021. Warsaw: De Gruyter/Sciendo. 85-97 (2021). MSC: 28A80 28A78 37B10 54E40 PDF BibTeX XML Cite \textit{M. Fernández-Martínez}, in: Proceedings of the contemporary mathematics in Kielce 2020, Kielce, Poland, February 24--27, 2021. Warsaw: De Gruyter/Sciendo. 85--97 (2021; Zbl 07491557) Full Text: DOI OpenURL
Biś, Andrzej; Dikranjan, Dikran; Bruno, Anna Giordano; Stoyanov, Luchezar Topological entropy, upper Carathéodory capacity and fractal dimensions of semigroup actions. (English) Zbl 07484033 Colloq. Math. 163, No. 1, 131-151 (2021). MSC: 37B40 37A35 28D20 54H15 28A75 PDF BibTeX XML Cite \textit{A. Biś} et al., Colloq. Math. 163, No. 1, 131--151 (2021; Zbl 07484033) Full Text: DOI OpenURL
Glorieux, Olivier; Monclair, Daniel Critical exponent and Hausdorff dimension in pseudo-Riemannian hyperbolic geometry. (English) Zbl 07471391 Int. Math. Res. Not. 2021, No. 16, 12463-12531 (2021). MSC: 53C50 22E15 28A80 37F32 53C24 PDF BibTeX XML Cite \textit{O. Glorieux} and \textit{D. Monclair}, Int. Math. Res. Not. 2021, No. 16, 12463--12531 (2021; Zbl 07471391) Full Text: DOI OpenURL
De Masi, Luigi Rectifiability of the free boundary for varifolds. (English) Zbl 07468289 Indiana Univ. Math. J. 70, No. 6, 2603-2651 (2021). MSC: 49Q15 53A07 PDF BibTeX XML Cite \textit{L. De Masi}, Indiana Univ. Math. J. 70, No. 6, 2603--2651 (2021; Zbl 07468289) Full Text: DOI arXiv OpenURL
Kim, Jinmyong; Kim, Myongjin Construction of some special continuous functions and analysis of their fractional integrals. (English) Zbl 07468118 Fractals 29, No. 7, Article ID 2150234, 9 p. (2021). MSC: 60-XX 28-XX PDF BibTeX XML Cite \textit{J. Kim} and \textit{M. Kim}, Fractals 29, No. 7, Article ID 2150234, 9 p. (2021; Zbl 07468118) Full Text: DOI OpenURL
Lü, Meiying; Xie, Jing On the fast increasing digits in Lüroth expansions. (English) Zbl 07468105 Fractals 29, No. 7, Article ID 2150220, 7 p. (2021). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 PDF BibTeX XML Cite \textit{M. Lü} and \textit{J. Xie}, Fractals 29, No. 7, Article ID 2150220, 7 p. (2021; Zbl 07468105) Full Text: DOI OpenURL
Han, Yan; Ma, Chao Uniform Diophantine approximation to Cantor series expansion. (English) Zbl 07468091 Fractals 29, No. 7, Article ID 2150206, 13 p. (2021). MSC: 41-XX 34-XX PDF BibTeX XML Cite \textit{Y. Han} and \textit{C. Ma}, Fractals 29, No. 7, Article ID 2150206, 13 p. (2021; Zbl 07468091) Full Text: DOI OpenURL
Ruan, Huo-Jun; Xiao, Jian-Ci When does a Bedford-McMullen carpet have equal Hausdorff and topological Hausdorff dimensions? (English) Zbl 07468081 Fractals 29, No. 7, Article ID 2150194, 9 p. (2021). MSC: 28-XX 52-XX PDF BibTeX XML Cite \textit{H.-J. Ruan} and \textit{J.-C. Xiao}, Fractals 29, No. 7, Article ID 2150194, 9 p. (2021; Zbl 07468081) Full Text: DOI OpenURL
He, Yubin; Xiong, Ying The difference between the Hurwitz continued fraction expansions of a complex number and its rational approximations. (English) Zbl 1483.11146 Fractals 29, No. 7, Article ID 2150179, 16 p. (2021). MSC: 11J83 11K55 11K50 PDF BibTeX XML Cite \textit{Y. He} and \textit{Y. Xiong}, Fractals 29, No. 7, Article ID 2150179, 16 p. (2021; Zbl 1483.11146) Full Text: DOI arXiv OpenURL
Tang, Min-Wei; Wu, Zhi-Yi Beurling dimension and self-affine measures. (English) Zbl 07467709 Fractals 29, No. 6, Article ID 2150174, 12 p. (2021). MSC: 28-XX 42-XX PDF BibTeX XML Cite \textit{M.-W. Tang} and \textit{Z.-Y. Wu}, Fractals 29, No. 6, Article ID 2150174, 12 p. (2021; Zbl 07467709) Full Text: DOI OpenURL
Yuan, Na; Li, Bing; Wu, Min Badly approximable and nonrecurrent sets for expanding Markov maps. (English) Zbl 07467705 Fractals 29, No. 6, Article ID 2150170, 17 p. (2021). MSC: 37-XX 54-XX PDF BibTeX XML Cite \textit{N. Yuan} et al., Fractals 29, No. 6, Article ID 2150170, 17 p. (2021; Zbl 07467705) Full Text: DOI OpenURL
Feng, Yan; Tan, Bo; Zhou, Qing-Long Exact dimensions of exceptional sets in Lüroth expansions. (English) Zbl 07467679 Fractals 29, No. 6, Article ID 2150142, 13 p. (2021). MSC: 03-XX 05-XX PDF BibTeX XML Cite \textit{Y. Feng} et al., Fractals 29, No. 6, Article ID 2150142, 13 p. (2021; Zbl 07467679) Full Text: DOI OpenURL
Zhang, Zhenliang; Tan, Xiaoyan The relative convergence speed for Engel expansions and Hausdorff dimension. (English) Zbl 1483.11164 Fractals 29, No. 4, Article ID 2150106, 7 p. (2021). MSC: 11K55 28A80 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{X. Tan}, Fractals 29, No. 4, Article ID 2150106, 7 p. (2021; Zbl 1483.11164) Full Text: DOI OpenURL
Zhu, Zhiyong Assouad dimensions of Moran sets with zero infimum contraction. (English) Zbl 07465606 Fractals 29, No. 4, Article ID 2150104, 11 p. (2021). MSC: 28A78 PDF BibTeX XML Cite \textit{Z. Zhu}, Fractals 29, No. 4, Article ID 2150104, 11 p. (2021; Zbl 07465606) Full Text: DOI OpenURL
Fang, Lulu; Liu, Jian On the largest partial quotients in continued fraction expansions. (English) Zbl 1483.11159 Fractals 29, No. 4, Article ID 2150099, 14 p. (2021). MSC: 11K50 11K16 11J70 PDF BibTeX XML Cite \textit{L. Fang} and \textit{J. Liu}, Fractals 29, No. 4, Article ID 2150099, 14 p. (2021; Zbl 1483.11159) Full Text: DOI OpenURL
Cui, X. X.; Xiao, W. What is the effect of the Weyl fractional integral on the Hölder continuous functions? (English) Zbl 07465357 Fractals 29, No. 1, Article ID 2150026, 7 p. (2021). MSC: 26A33 28A78 PDF BibTeX XML Cite \textit{X. X. Cui} and \textit{W. Xiao}, Fractals 29, No. 1, Article ID 2150026, 7 p. (2021; Zbl 07465357) Full Text: DOI OpenURL
Liang, Y. S.; Wang, H. X. Upper box dimension of Riemann-Liouville fractional integral of fractal functions. (English) Zbl 07465348 Fractals 29, No. 1, Article ID 2150015, 8 p. (2021). MSC: 28A78 26A33 PDF BibTeX XML Cite \textit{Y. S. Liang} and \textit{H. X. Wang}, Fractals 29, No. 1, Article ID 2150015, 8 p. (2021; Zbl 07465348) Full Text: DOI OpenURL
Symon, Serbenyuk Certain singular distributions and fractals. (English) Zbl 07460183 Tatra Mt. Math. Publ. 79, 163-198 (2021). MSC: 28A80 11K55 11J72 26A09 PDF BibTeX XML Cite \textit{S. Symon}, Tatra Mt. Math. Publ. 79, 163--198 (2021; Zbl 07460183) Full Text: DOI arXiv OpenURL
Sreeja, K. U.; Vinod Kumar, P. B.; Ramkumar, P. B. Julia set of some graphs using independence polynomials. (English) Zbl 1480.05074 Devaney, Robert L. (ed.) et al., Topological dynamics and topological data analysis. IWCTA 2018. Selected papers based on the presentations at the international workshop and conference on topology & applications, Kochi, India, December 9–11, 2018. Singapore: Springer. Springer Proc. Math. Stat. 350, 193-202 (2021). MSC: 05C31 05C69 28A80 PDF BibTeX XML Cite \textit{K. U. Sreeja} et al., Springer Proc. Math. Stat. 350, 193--202 (2021; Zbl 1480.05074) Full Text: DOI OpenURL
Bárány, Balázs; Rams, Michał; Simon, Károly Dimension theory of some non-Markovian repellers. II: Dynamically defined function graphs. (English) Zbl 1482.28008 Devaney, Robert L. (ed.) et al., Topological dynamics and topological data analysis. IWCTA 2018. Selected papers based on the presentations at the international workshop and conference on topology & applications, Kochi, India, December 9–11, 2018. Singapore: Springer. Springer Proc. Math. Stat. 350, 49-66 (2021). MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{B. Bárány} et al., Springer Proc. Math. Stat. 350, 49--66 (2021; Zbl 1482.28008) Full Text: DOI arXiv OpenURL
Bárány, Balázs; Rams, Michał; Simon, Károly Dimension theory of some non-Markovian repellers. I: A gentle introduction. (English) Zbl 1482.28007 Devaney, Robert L. (ed.) et al., Topological dynamics and topological data analysis. IWCTA 2018. Selected papers based on the presentations at the international workshop and conference on topology & applications, Kochi, India, December 9–11, 2018. Singapore: Springer. Springer Proc. Math. Stat. 350, 15-48 (2021). MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{B. Bárány} et al., Springer Proc. Math. Stat. 350, 15--48 (2021; Zbl 1482.28007) Full Text: DOI arXiv OpenURL
Nowakowski, Piotr The family of central Cantor sets with packing dimension zero. (English) Zbl 07458174 Tatra Mt. Math. Publ. 78, 1-8 (2021). MSC: 28A80 28A78 28A35 54E52 PDF BibTeX XML Cite \textit{P. Nowakowski}, Tatra Mt. Math. Publ. 78, 1--8 (2021; Zbl 07458174) Full Text: DOI OpenURL
Priya, M.; Uthayakumar, R. Analytical properties of \((k,s)\)-Riemann-Liouville fractional integral and its fractal dimension. (English) Zbl 07452036 J. Anal. 29, No. 4, 1391-1402 (2021). MSC: 28A78 26A33 26B30 28A80 PDF BibTeX XML Cite \textit{M. Priya} and \textit{R. Uthayakumar}, J. Anal. 29, No. 4, 1391--1402 (2021; Zbl 07452036) Full Text: DOI OpenURL
Makarchuk, O. P.; Sal’nyk, K. S. Asymptotic behavior of the module of the characteristic Cantor distribution function. (Ukrainian. English summary) Zbl 07450273 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 2, 63-68 (2021). MSC: 60G50 26A30 11K55 PDF BibTeX XML Cite \textit{O. P. Makarchuk} and \textit{K. S. Sal'nyk}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 2, 63--68 (2021; Zbl 07450273) Full Text: DOI OpenURL
Kryvoshyia, R. V. On a generalization of the concept of normal numbers. (Ukrainian. English summary) Zbl 07450272 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 2, 58-62 (2021). MSC: 11K06 11K16 11K55 PDF BibTeX XML Cite \textit{R. V. Kryvoshyia}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 2, 58--62 (2021; Zbl 07450272) Full Text: DOI OpenURL
Liu, Chuntai The continuities of Beurling density and Beurling dimension of frame spectra. (Chinese. English summary) Zbl 07448324 J. Cent. China Norm. Univ., Nat. Sci. 55, No. 4, 522-526 (2021). MSC: 42C15 28A78 28A80 PDF BibTeX XML Cite \textit{C. Liu}, J. Cent. China Norm. Univ., Nat. Sci. 55, No. 4, 522--526 (2021; Zbl 07448324) Full Text: DOI OpenURL
Qu, Congcong; Xu, Lan On the joint continuity of topological pressures for sub-additive singular-valued potentials. (English) Zbl 07447262 Stoch. Dyn. 21, No. 7, Article ID 2150042, 11 p. (2021). MSC: 37D35 37C40 37B40 37D20 PDF BibTeX XML Cite \textit{C. Qu} and \textit{L. Xu}, Stoch. Dyn. 21, No. 7, Article ID 2150042, 11 p. (2021; Zbl 07447262) Full Text: DOI OpenURL
Carvalho, Silas L.; Condori, Alexander Generic properties of invariant measures of full-shift systems over perfect Polish metric spaces. (English) Zbl 07447260 Stoch. Dyn. 21, No. 7, Article ID 2150040, 24 p. (2021). MSC: 37A05 37B02 37B10 28A78 PDF BibTeX XML Cite \textit{S. L. Carvalho} and \textit{A. Condori}, Stoch. Dyn. 21, No. 7, Article ID 2150040, 24 p. (2021; Zbl 07447260) Full Text: DOI arXiv OpenURL
Bárány, Balázs; Simon, Károly; Kolossváry, István; Rams, Michał Hausdorff measure and Assouad dimension of generic self-conformal IFS on the line. (English) Zbl 07446642 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 6, 2051-2081 (2021). Reviewer: Jaroslav Tišer (Praha) MSC: 28A80 28A78 37E05 PDF BibTeX XML Cite \textit{B. Bárány} et al., Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 6, 2051--2081 (2021; Zbl 07446642) Full Text: DOI arXiv OpenURL
Burczak, Jan; Ożański, Wojciech S.; Seregin, Gregory On regularity properties of a surface growth model. (English) Zbl 1479.35166 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 6, 1869-1892 (2021). MSC: 35B65 35K58 35K30 76D03 74K35 35Q35 35Q30 PDF BibTeX XML Cite \textit{J. Burczak} et al., Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 6, 1869--1892 (2021; Zbl 1479.35166) Full Text: DOI arXiv OpenURL
Mattila, Pertti Hausdorff dimension of intersections with planes and general sets. (English) Zbl 07445564 J. Fractal Geom. 8, No. 4, 389-401 (2021). MSC: 28A75 PDF BibTeX XML Cite \textit{P. Mattila}, J. Fractal Geom. 8, No. 4, 389--401 (2021; Zbl 07445564) Full Text: DOI arXiv OpenURL
Ishiki, Yoshito A characterization of metric subspaces of full Assouad dimension. (English) Zbl 07445563 J. Fractal Geom. 8, No. 4, 363-388 (2021). MSC: 28A78 28A80 53C23 PDF BibTeX XML Cite \textit{Y. Ishiki}, J. Fractal Geom. 8, No. 4, 363--388 (2021; Zbl 07445563) Full Text: DOI arXiv OpenURL
Harris, Terence L. J.; Huynh, Chi N. Y.; Román-García, Fernando Dimension distortion by right coset projections in the Heisenberg group. (English) Zbl 07445561 J. Fractal Geom. 8, No. 4, 305-346 (2021). MSC: 28A78 53C17 PDF BibTeX XML Cite \textit{T. L. J. Harris} et al., J. Fractal Geom. 8, No. 4, 305--346 (2021; Zbl 07445561) Full Text: DOI arXiv OpenURL
García, Ignacio; Hare, Kathryn E.; Mendivil, Franklin Intermediate Assouad-like dimensions. (English) Zbl 07445557 J. Fractal Geom. 8, No. 3, 201-245 (2021). MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{I. García} et al., J. Fractal Geom. 8, No. 3, 201--245 (2021; Zbl 07445557) Full Text: DOI arXiv OpenURL
Zou, Yuru; Li, Jiachang; Lu, Jian; Komornik, Vilmos Univoque graphs for non-integer base expansions. (English) Zbl 07445147 Sci. China, Math. 64, No. 12, 2667-2702 (2021). MSC: 11A63 37B10 11K55 PDF BibTeX XML Cite \textit{Y. Zou} et al., Sci. China, Math. 64, No. 12, 2667--2702 (2021; Zbl 07445147) Full Text: DOI OpenURL
Fraser, Jonathan M. Fractal geometry of Bedford-McMullen carpets. (English) Zbl 1483.28006 Pollicott, Mark (ed.) et al., Thermodynamic formalism. CIRM Jean-Morlet chair, fall 2019. Cham: Springer. Lect. Notes Math. 2290, 495-516 (2021). MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{J. M. Fraser}, Lect. Notes Math. 2290, 495--516 (2021; Zbl 1483.28006) Full Text: DOI arXiv OpenURL
Ben Abid, Moez; Ben Slimane, Mourad; Ben Omrane, Ines; Turkawi, Maamoun Multifractal analysis of rectangular pointwise regularity with hyperbolic wavelet bases. (English) Zbl 07441169 J. Fourier Anal. Appl. 27, No. 6, Paper No. 90, 34 p. (2021). Reviewer: Elena Lebedeva (Saint Petersburg) MSC: 42C40 28A78 28A80 94A12 PDF BibTeX XML Cite \textit{M. Ben Abid} et al., J. Fourier Anal. Appl. 27, No. 6, Paper No. 90, 34 p. (2021; Zbl 07441169) Full Text: DOI OpenURL
Hu, Hui; Hussain, Mumtaz; Yu, Yueli Limit theorems for sums of products of consecutive partial quotients of continued fractions. (English) Zbl 07441035 Nonlinearity 34, No. 12, 8143-8173 (2021). Reviewer: Simon Kristensen (Aarhus) MSC: 11K50 28A80 11K55 11J70 PDF BibTeX XML Cite \textit{H. Hu} et al., Nonlinearity 34, No. 12, 8143--8173 (2021; Zbl 07441035) Full Text: DOI arXiv OpenURL