Cavezza, Davide G.; Alrajeh, Dalal; György, András A weakness measure for GR(1) formulae. (English) Zbl 07317636 Formal Asp. Comput. 33, No. 1, 27-63 (2021). MSC: 68 PDF BibTeX XML Cite \textit{D. G. Cavezza} et al., Formal Asp. Comput. 33, No. 1, 27--63 (2021; Zbl 07317636) Full Text: DOI
Huang, Liang-yi; Rao, Hui A dimension drop phenomenon of fractal cubes. (English) Zbl 07317503 J. Math. Anal. Appl. 497, No. 2, Article ID 124918, 12 p. (2021). MSC: 28 54 PDF BibTeX XML Cite \textit{L.-y. Huang} and \textit{H. Rao}, J. Math. Anal. Appl. 497, No. 2, Article ID 124918, 12 p. (2021; Zbl 07317503) Full Text: DOI
Troscheit, Sascha Exact Hausdorff and packing measures for random self-similar code-trees with necks. (English) Zbl 07317293 Stud. Math. 257, No. 3, 253-285 (2021). MSC: 28A78 28A80 37C45 60J80 PDF BibTeX XML Cite \textit{S. Troscheit}, Stud. Math. 257, No. 3, 253--285 (2021; Zbl 07317293) Full Text: DOI
Chen, Changhao; Shparlinski, Igor E. Small values of Weyl sums. (English) Zbl 07315633 J. Math. Anal. Appl. 495, No. 2, Article ID 124743, 21 p. (2021). MSC: 11J 11L PDF BibTeX XML Cite \textit{C. Chen} and \textit{I. E. Shparlinski}, J. Math. Anal. Appl. 495, No. 2, Article ID 124743, 21 p. (2021; Zbl 07315633) Full Text: DOI
Xiao, Yuanfen Mean Li-Yorke chaotic set Along polynomial sequence with full Hausdorff dimension for \(\beta\)-transformation. (English) Zbl 07314354 Discrete Contin. Dyn. Syst. 41, No. 2, 525-536 (2021). MSC: 37C45 37D45 37B40 PDF BibTeX XML Cite \textit{Y. Xiao}, Discrete Contin. Dyn. Syst. 41, No. 2, 525--536 (2021; Zbl 07314354) Full Text: DOI
Hertz, Federico Rodriguez; Wang, Zhiren On \(\epsilon\)-escaping trajectories in homogeneous spaces. (English) Zbl 07314167 Discrete Contin. Dyn. Syst. 41, No. 1, 329-357 (2021). MSC: 37A17 37D40 PDF BibTeX XML Cite \textit{F. R. Hertz} and \textit{Z. Wang}, Discrete Contin. Dyn. Syst. 41, No. 1, 329--357 (2021; Zbl 07314167) Full Text: DOI
Liu, Zhenhua The existence of embedded \(G\)-invariant minimal hypersurface. (English) Zbl 07309246 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 36, 21 p. (2021). MSC: 53C42 PDF BibTeX XML Cite \textit{Z. Liu}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 36, 21 p. (2021; Zbl 07309246) Full Text: DOI
Schweinhart, Benjamin Persistent homology and the upper box dimension. (English) Zbl 07308718 Discrete Comput. Geom. 65, No. 2, 331-364 (2021). MSC: 55N31 28A80 05D99 62R40 62R20 60B05 37F35 PDF BibTeX XML Cite \textit{B. Schweinhart}, Discrete Comput. Geom. 65, No. 2, 331--364 (2021; Zbl 07308718) Full Text: DOI
Baker, Simon; Farmer, Michael Quantitative recurrence properties for self-conformal sets. (English) Zbl 07308534 Proc. Am. Math. Soc. 149, No. 3, 1127-1138 (2021). Reviewer: Thomas B. Ward (Leeds) MSC: 28A80 28D05 11K55 PDF BibTeX XML Cite \textit{S. Baker} and \textit{M. Farmer}, Proc. Am. Math. Soc. 149, No. 3, 1127--1138 (2021; Zbl 07308534) Full Text: DOI
Schweiger, Fritz Invariant measures for \(2\)-dimensional maps and associated Rényi maps. (English) Zbl 07306667 Integers 21, Paper A14, 16 p. (2021). MSC: 11K55 11J70 11K16 PDF BibTeX XML Cite \textit{F. Schweiger}, Integers 21, Paper A14, 16 p. (2021; Zbl 07306667) Full Text: Link
Attia, Najmeddine On the multifractal analysis of branching random walk on Galton-Watson tree with random metric. (English) Zbl 07306253 J. Theor. Probab. 34, No. 1, 90-102 (2021). MSC: 60G50 11K55 PDF BibTeX XML Cite \textit{N. Attia}, J. Theor. Probab. 34, No. 1, 90--102 (2021; Zbl 07306253) Full Text: DOI
Dajani, Karma; Jiang, Kan; Kong, Derong; Li, Wenxia; Xi, Lifeng Multiple codings of self-similar sets with overlaps. (English) Zbl 07304635 Adv. Appl. Math. 124, Article ID 102146, 50 p. (2021). MSC: 11A63 37B10 28A78 11K55 PDF BibTeX XML Cite \textit{K. Dajani} et al., Adv. Appl. Math. 124, Article ID 102146, 50 p. (2021; Zbl 07304635) Full Text: DOI
Chirvasitu, Alexandru Quantum isometries and loose embeddings. (English) Zbl 07303910 J. Geom. Phys. 161, Article ID 104089, 9 p. (2021). MSC: 30L05 46L85 PDF BibTeX XML Cite \textit{A. Chirvasitu}, J. Geom. Phys. 161, Article ID 104089, 9 p. (2021; Zbl 07303910) Full Text: DOI
Greenleaf, Allan; Iosevich, Alex; Mkrtchyan, Sevak Existence of similar point configurations in thin subsets of \(\mathbb{R}^d\). (English) Zbl 07303596 Math. Z. 297, No. 1-2, 855-865 (2021). MSC: 52C10 05D05 28A75 42B10 53C10 PDF BibTeX XML Cite \textit{A. Greenleaf} et al., Math. Z. 297, No. 1--2, 855--865 (2021; Zbl 07303596) Full Text: DOI
Matheus, Carlos; Palis, Jacob; Yoccoz, Jean-Christophe Stable sets of certain non-uniformly hyperbolic horseshoes have the expected dimension. (English) Zbl 07302694 J. Inst. Math. Jussieu 20, No. 1, 305-329 (2021). MSC: 37C29 37E30 28D20 PDF BibTeX XML Cite \textit{C. Matheus} et al., J. Inst. Math. Jussieu 20, No. 1, 305--329 (2021; Zbl 07302694) Full Text: DOI
Bárány, Balázs; Käenmäki, Antti Super-exponential condensation without exact overlaps. (English) Zbl 07300459 Adv. Math. 379, Article ID 107549, 23 p. (2021). MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{B. Bárány} and \textit{A. Käenmäki}, Adv. Math. 379, Article ID 107549, 23 p. (2021; Zbl 07300459) Full Text: DOI
Schweiger, Fritz Invariant densities for composed piecewise fractional linear maps. (English) Zbl 07300280 Monatsh. Math. 194, No. 1, 181-192 (2021). MSC: 11K55 28D05 37A05 PDF BibTeX XML Cite \textit{F. Schweiger}, Monatsh. Math. 194, No. 1, 181--192 (2021; Zbl 07300280) Full Text: DOI
Drillick, Hindy Every planar set has a conformally removable subset with the same Hausdorff dimension. (English) Zbl 07299118 Proc. Am. Math. Soc. 149, No. 2, 787-791 (2021). MSC: 30C35 PDF BibTeX XML Cite \textit{H. Drillick}, Proc. Am. Math. Soc. 149, No. 2, 787--791 (2021; Zbl 07299118) Full Text: DOI
Freiberg, Uta; Kohl, Stefan Box dimension of fractal attractors and their numerical computation. (English) Zbl 07299019 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105615, 19 p. (2021). Reviewer: George Stoica (Saint John) MSC: 28A80 28A78 37C45 37D45 PDF BibTeX XML Cite \textit{U. Freiberg} and \textit{S. Kohl}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105615, 19 p. (2021; Zbl 07299019) Full Text: DOI
Frolkina, Olga A new simple family of Cantor sets in \(\mathbb{R}^3\) all of whose projections are one-dimensional. (English) Zbl 07298373 Topology Appl. 288, Article ID 107452, 12 p. (2021). MSC: 54F45 57N12 28A80 PDF BibTeX XML Cite \textit{O. Frolkina}, Topology Appl. 288, Article ID 107452, 12 p. (2021; Zbl 07298373) Full Text: DOI
Daw, Lara A uniform result for the dimension of fractional Brownian motion level sets. (English) Zbl 07290527 Stat. Probab. Lett. 169, Article ID 108984, 10 p. (2021). MSC: 60G22 28A80 PDF BibTeX XML Cite \textit{L. Daw}, Stat. Probab. Lett. 169, Article ID 108984, 10 p. (2021; Zbl 07290527) Full Text: DOI
Hu, Zhang-nan; Li, Bing Random covering sets in metric space with exponentially mixing property. (English) Zbl 07290481 Stat. Probab. Lett. 168, Article ID 108922, 7 p. (2021). MSC: 60D05 28A80 PDF BibTeX XML Cite \textit{Z.-n. Hu} and \textit{B. Li}, Stat. Probab. Lett. 168, Article ID 108922, 7 p. (2021; Zbl 07290481) Full Text: DOI
Chen, Changhao; Wang, Xiaohua; Wen, Shengyou On uniform distribution of \(\alpha \beta\)-orbits. (English) Zbl 1453.28004 J. Number Theory 219, 386-403 (2021). Reviewer: Symon Serbenyuk (Kyïv) MSC: 28A80 11L03 54E52 PDF BibTeX XML Cite \textit{C. Chen} et al., J. Number Theory 219, 386--403 (2021; Zbl 1453.28004) Full Text: DOI
Shang, Lei; Wu, Min On the growth speed of digits in Engel expansions. (English) Zbl 07276965 J. Number Theory 219, 368-385 (2021). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 PDF BibTeX XML Cite \textit{L. Shang} and \textit{M. Wu}, J. Number Theory 219, 368--385 (2021; Zbl 07276965) Full Text: DOI
Wang, Zhiqiang; Jiang, Kan; Li, Wenxia; Zhao, Bing On the sum of squares of the middle-third Cantor set. (English) Zbl 1450.28011 J. Number Theory 218, 209-222 (2021). Reviewer: Peter Massopust (München) MSC: 28A80 11K55 PDF BibTeX XML Cite \textit{Z. Wang} et al., J. Number Theory 218, 209--222 (2021; Zbl 1450.28011) Full Text: DOI
Samti, Amal Multifractal formalism of an inhomogeneous multinomial measure with various parameters. (English) Zbl 07309333 Extr. Math. 35, No. 2, 229-252 (2020). MSC: 28A80 28A78 28A12 11K55 PDF BibTeX XML Cite \textit{A. Samti}, Extr. Math. 35, No. 2, 229--252 (2020; Zbl 07309333) Full Text: DOI
Kong, Derong; Li, Wenxia; Lü, Fan; Wang, Zhiqiang; Xu, Jiayi Univoque bases of real numbers: local dimension, Devil’s staircase and isolated points. (English) Zbl 07304611 Adv. Appl. Math. 121, Article ID 102103, 31 p. (2020). MSC: 11A63 37B10 26A30 28A80 68R15 PDF BibTeX XML Cite \textit{D. Kong} et al., Adv. Appl. Math. 121, Article ID 102103, 31 p. (2020; Zbl 07304611) Full Text: DOI
Naber, Aaron Conjectures and open questions on the structure and regularity of spaces with lower Ricci curvature bounds. (English) Zbl 07302809 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 104, 8 p. (2020). MSC: 53-02 53C21 53C23 PDF BibTeX XML Cite \textit{A. Naber}, SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 104, 8 p. (2020; Zbl 07302809) Full Text: DOI
Liehr, Lukas; Massopust, Peter On the mathematical validity of the Higuchi method. (English) Zbl 1453.28003 Physica D 402, Article ID 132265, 9 p. (2020). MSC: 28A78 28A80 26A45 62J05 PDF BibTeX XML Cite \textit{L. Liehr} and \textit{P. Massopust}, Physica D 402, Article ID 132265, 9 p. (2020; Zbl 1453.28003) Full Text: DOI
Li, Y.-Q. Digit frequencies of beta-expansions. (English) Zbl 07301192 Acta Math. Hung. 162, No. 2, 403-418 (2020). MSC: 11A63 11K55 PDF BibTeX XML Cite \textit{Y. Q. Li}, Acta Math. Hung. 162, No. 2, 403--418 (2020; Zbl 07301192) Full Text: DOI
Wu, Yunxi; Tao, Wenjian; Xiao, Cuihui; Yin, Fuqi The Lyapunov function and dimensions of the global attractors for sine-Gordon equations. (English) Zbl 07296096 Nat. Sci. J. Xiangtan Univ. 42, No. 2, 61-75 (2020). MSC: 35B41 35Q53 37L30 PDF BibTeX XML Cite \textit{Y. Wu} et al., Nat. Sci. J. Xiangtan Univ. 42, No. 2, 61--75 (2020; Zbl 07296096) Full Text: DOI
Chen, Zebin Estimates of dimension for a type of special Besicovitch sets in \({\mathbb{R}^3}\). (English) Zbl 07295478 J. Math., Wuhan Univ. 40, No. 4, 493-497 (2020). MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{Z. Chen}, J. Math., Wuhan Univ. 40, No. 4, 493--497 (2020; Zbl 07295478) Full Text: DOI
Zhang, Jingru; Li, Yanzhe; Lou, Manli Upper box dimension of a class of homogeneous Moran sets. (Chinese. English summary) Zbl 07294895 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 3, 676-683 (2020). MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{J. Zhang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 3, 676--683 (2020; Zbl 07294895)
Serbenyuk, S. O. One distribution function on the Moran sets. (English) Zbl 07293029 Azerb. J. Math. 10, No. 2, 12-30 (2020). MSC: 11K55 05D99 11J72 28A80 26A09 PDF BibTeX XML Cite \textit{S. O. Serbenyuk}, Azerb. J. Math. 10, No. 2, 12--30 (2020; Zbl 07293029) Full Text: Link
Falk, Kurt; Matsuzaki, Katsuhiko On horospheric limit sets of Kleinian groups. (English) Zbl 07290137 J. Fractal Geom. 7, No. 4, 329-350 (2020). MSC: 30F40 37F35 PDF BibTeX XML Cite \textit{K. Falk} and \textit{K. Matsuzaki}, J. Fractal Geom. 7, No. 4, 329--350 (2020; Zbl 07290137) Full Text: DOI
He, Weikun Orthogonal projections of discretized sets. (English) Zbl 07290135 J. Fractal Geom. 7, No. 3, 271-317 (2020). Reviewer: Symon Serbenyuk (Kyïv) MSC: 28A80 11B30 PDF BibTeX XML Cite \textit{W. He}, J. Fractal Geom. 7, No. 3, 271--317 (2020; Zbl 07290135) Full Text: DOI
Chen, Zhenlong; Wang, Jun; Wu, Dongsheng On intersections of independent space-time anisotropic Gaussian fields. (English) Zbl 07287569 Stat. Probab. Lett. 166, Article ID 108874, 9 p. (2020). MSC: 60G15 60G17 60G60 PDF BibTeX XML Cite \textit{Z. Chen} et al., Stat. Probab. Lett. 166, Article ID 108874, 9 p. (2020; Zbl 07287569) Full Text: DOI
Ishiki, Yoshito On the Assouad dimension and convergence of metric spaces. (English) Zbl 07285734 Kodai Math. J. 43, No. 3, 573-590 (2020). MSC: 53C23 54E40 PDF BibTeX XML Cite \textit{Y. Ishiki}, Kodai Math. J. 43, No. 3, 573--590 (2020; Zbl 07285734) Full Text: DOI Euclid
Selmi, Bilel Appendix to the paper “On the Billingsley dimension of Birkhoff average in the countable symbolic space”. (English) Zbl 07283174 C. R., Math., Acad. Sci. Paris 358, No. 8, 939 (2020). MSC: 37A30 28A80 37A05 37A35 37B10 37C45 PDF BibTeX XML Cite \textit{B. Selmi}, C. R., Math., Acad. Sci. Paris 358, No. 8, 939 (2020; Zbl 07283174) Full Text: DOI
Matheus, Carlos; Moreira, Carlos Gustavo Fractal geometry of the complement of Lagrange spectrum in Markov spectrum. (English) Zbl 07282501 Comment. Math. Helv. 95, No. 3, 593-633 (2020). MSC: 11J06 37E05 37D05 PDF BibTeX XML Cite \textit{C. Matheus} and \textit{C. G. Moreira}, Comment. Math. Helv. 95, No. 3, 593--633 (2020; Zbl 07282501) Full Text: DOI
Falconer, K. J. A capacity approach to box and packing dimensions of projections and other images. (English) Zbl 07279922 Ruiz, Patricia Alonso (ed.) et al., Analysis, probability and mathematical physics on fractals. Based on the presentations at the 6th conference, Cornell University, Ithaca, NY, USA, June 2017. Hackensack, NJ: World Scientific (ISBN 978-981-12-1552-0/hbk; 978-981-12-1554-4/ebook). Fractals and Dynamics in Mathematics, Science, and the Arts: Theory and Applications 5, 1-19 (2020). Reviewer: Ivan Podvigin (Novosibirsk) MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{K. J. Falconer}, Fractals Dyn. Math. Sci. Arts, Theory Appl. 5, 1--19 (2020; Zbl 07279922) Full Text: DOI
Ma, Ji-hua; Zhang, Yan-fang Topological Hausdorff dimension of fractal squares and its application to Lipschitz classification. (English) Zbl 1453.28009 Nonlinearity 33, No. 11, 6053-6071 (2020). Reviewer: Peter Massopust (München) MSC: 28A80 PDF BibTeX XML Cite \textit{J.-h. Ma} and \textit{Y.-f. Zhang}, Nonlinearity 33, No. 11, 6053--6071 (2020; Zbl 1453.28009) Full Text: DOI
Jaksztas, Ludwik On the directional derivative of the Hausdorff dimension of quadratic polynomial Julia sets at 1/4. (English) Zbl 07278297 Nonlinearity 33, No. 11, 5919-5960 (2020). MSC: 37F10 37F46 37F35 PDF BibTeX XML Cite \textit{L. Jaksztas}, Nonlinearity 33, No. 11, 5919--5960 (2020; Zbl 07278297) Full Text: DOI
Duvall, Jason Schmidt’s game and nonuniformly expanding interval maps. (English) Zbl 07278285 Nonlinearity 33, No. 11, 5611-5628 (2020). MSC: 37E05 37D25 11K55 PDF BibTeX XML Cite \textit{J. Duvall}, Nonlinearity 33, No. 11, 5611--5628 (2020; Zbl 07278285) Full Text: DOI
Buczolich, Zoltán; Maga, Balázs; Moore, Ryo Generic Birkhoff spectra. (English) Zbl 07273491 Discrete Contin. Dyn. Syst. 40, No. 12, 6649-6679 (2020). MSC: 37B10 37A30 28A80 37C45 PDF BibTeX XML Cite \textit{Z. Buczolich} et al., Discrete Contin. Dyn. Syst. 40, No. 12, 6649--6679 (2020; Zbl 07273491) Full Text: DOI
Yuan, Zhihui Multifractal formalism for the inverse of random weak Gibbs measures. (English) Zbl 07272804 Stoch. Dyn. 20, No. 4, Article ID 2050024, 45 p. (2020). MSC: 37D35 37C45 28A78 PDF BibTeX XML Cite \textit{Z. Yuan}, Stoch. Dyn. 20, No. 4, Article ID 2050024, 45 p. (2020; Zbl 07272804) Full Text: DOI
Moroz, M. P. Numerical characteristics of a random variable related to the Engel expansions of real numbers. (English. Ukrainian original) Zbl 1451.60020 Ukr. Math. J. 72, No. 5, 759-770 (2020); translation from Ukr. Mat. Zh. 72, No. 5, 658-666 (2020). MSC: 60B99 26A30 11K55 PDF BibTeX XML Cite \textit{M. P. Moroz}, Ukr. Math. J. 72, No. 5, 759--770 (2020; Zbl 1451.60020); translation from Ukr. Mat. Zh. 72, No. 5, 658--666 (2020) Full Text: DOI
Cai, Yi; Li, Wenxia Intersection of Sierpinski gasket with its translation. (English) Zbl 1451.28003 Indag. Math., New Ser. 31, No. 6, 984-996 (2020). Reviewer: George Stoica (Saint John) MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{Y. Cai} and \textit{W. Li}, Indag. Math., New Ser. 31, No. 6, 984--996 (2020; Zbl 1451.28003) Full Text: DOI
Rapaport, Ariel On self-similar measures with absolutely continuous projections and dimension conservation in each direction. (English) Zbl 07270097 Ergodic Theory Dyn. Syst. 40, No. 12, 3438-3456 (2020). Reviewer: Ivan Podvigin (Novosibirsk) MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{A. Rapaport}, Ergodic Theory Dyn. Syst. 40, No. 12, 3438--3456 (2020; Zbl 07270097) Full Text: DOI
Bayart, Frédéric; Buczolich, Zoltán; Heurteaux, Yanick Fast and slow points of Birkhoff sums. (English) Zbl 07270088 Ergodic Theory Dyn. Syst. 40, No. 12, 3236-3256 (2020). Reviewer: George Stoica (Saint John) MSC: 37A30 11K55 28A78 60F15 PDF BibTeX XML Cite \textit{F. Bayart} et al., Ergodic Theory Dyn. Syst. 40, No. 12, 3236--3256 (2020; Zbl 07270088) Full Text: DOI
Bakhtawar, Ayreena; Bos, Philip; Hussain, Mumtaz The sets of Dirichlet non-improvable numbers versus well-approximable numbers. (English) Zbl 07270087 Ergodic Theory Dyn. Syst. 40, No. 12, 3217-3235 (2020). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11K50 11K60 11J70 11J83 PDF BibTeX XML Cite \textit{A. Bakhtawar} et al., Ergodic Theory Dyn. Syst. 40, No. 12, 3217--3235 (2020; Zbl 07270087) Full Text: DOI
Zhang, Tingyu; Jiang, Kan; Li, Wenxia Visibility of cartesian products of Cantor sets. (English) Zbl 1445.28020 Fractals 28, No. 6, Article ID 2050119, 6 p. (2020). MSC: 28A80 PDF BibTeX XML Cite \textit{T. Zhang} et al., Fractals 28, No. 6, Article ID 2050119, 6 p. (2020; Zbl 1445.28020) Full Text: DOI
Tan, Xiaoyan; He, Kangjie A note on the relative growth rate of the maximal digits in Lüroth expansions. (English) Zbl 1445.28015 Fractals 28, No. 6, Article ID 2050116, 8 p. (2020). MSC: 28A80 PDF BibTeX XML Cite \textit{X. Tan} and \textit{K. He}, Fractals 28, No. 6, Article ID 2050116, 8 p. (2020; Zbl 1445.28015) Full Text: DOI
Zhang, Yan-Fang A lower bound of topological Hausdorff dimension of fractal squares. (English) Zbl 1445.28021 Fractals 28, No. 6, Article ID 2050115, 8 p. (2020). MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{Y.-F. Zhang}, Fractals 28, No. 6, Article ID 2050115, 8 p. (2020; Zbl 1445.28021) Full Text: DOI
Chaika, Jon; Masur, Howard The set of non-uniquely ergodic \(d\)-IETs has Hausdorff codimension 1/2. (English) Zbl 07269007 Invent. Math. 222, No. 3, 749-832 (2020). MSC: 37C45 37A25 37E15 37D40 PDF BibTeX XML Cite \textit{J. Chaika} and \textit{H. Masur}, Invent. Math. 222, No. 3, 749--832 (2020; Zbl 07269007) Full Text: DOI
Attia, Najmeddine Hausdorff and packing dimensions of Mandelbrot measure. (English) Zbl 07268552 Int. J. Math. 31, No. 9, Article ID 2050068, 14 p. (2020). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 60G57 PDF BibTeX XML Cite \textit{N. Attia}, Int. J. Math. 31, No. 9, Article ID 2050068, 14 p. (2020; Zbl 07268552) Full Text: DOI
Pérez Pereira, Felipe Dimension of Gibbs measures with infinite entropy. (English) Zbl 07268475 Nonlinearity 33, No. 10, 5355-5382 (2020). Reviewer: Asgar Jamneshan (Istanbul) MSC: 37C45 37D35 37A35 37A40 37A05 PDF BibTeX XML Cite \textit{F. Pérez Pereira}, Nonlinearity 33, No. 10, 5355--5382 (2020; Zbl 07268475) Full Text: DOI
Barański, Krzysztof; Gutman, Yonatan; Śpiewak, Adam A probabilistic Takens theorem. (English) Zbl 1453.28002 Nonlinearity 33, No. 9, 4940-4966 (2020). MSC: 28A78 28A80 37C45 PDF BibTeX XML Cite \textit{K. Barański} et al., Nonlinearity 33, No. 9, 4940--4966 (2020; Zbl 1453.28002) Full Text: DOI
Tan, Xiaoyan; Zhang, Zhenliang The relative growth rate for the digits in Lüroth expansions. (English) Zbl 07267915 C. R., Math., Acad. Sci. Paris 358, No. 5, 557-562 (2020). MSC: 11K55 28A80 PDF BibTeX XML Cite \textit{X. Tan} and \textit{Z. Zhang}, C. R., Math., Acad. Sci. Paris 358, No. 5, 557--562 (2020; Zbl 07267915) Full Text: DOI
Shen, Luming; Lan, Sha; Li, Bixuan Some metric properties in \(\alpha \)-Lüroth expansions. (English) Zbl 07267280 Math. Appl. 33, No. 2, 534-538 (2020). MSC: 11K55 PDF BibTeX XML Cite \textit{L. Shen} et al., Math. Appl. 33, No. 2, 534--538 (2020; Zbl 07267280)
Zhang, Mengjie A remark on big Birkhoff sums in \(d\)-decaying Gauss like iterated function systems. (English) Zbl 1453.37002 J. Math. Anal. Appl. 491, No. 2, Article ID 124350, 10 p. (2020). MSC: 37A05 37E05 37A30 PDF BibTeX XML Cite \textit{M. Zhang}, J. Math. Anal. Appl. 491, No. 2, Article ID 124350, 10 p. (2020; Zbl 1453.37002) Full Text: DOI
George, Sandip V.; Misra, R.; Ambika, G. Fractal measures and nonlinear dynamics of overcontact binaries. (English) Zbl 1451.85003 Commun. Nonlinear Sci. Numer. Simul. 80, Article ID 104988, 15 p. (2020). MSC: 85A05 37N20 37F35 62M10 85A15 85A30 PDF BibTeX XML Cite \textit{S. V. George} et al., Commun. Nonlinear Sci. Numer. Simul. 80, Article ID 104988, 15 p. (2020; Zbl 1451.85003) Full Text: DOI
Jaquette, Jonathan; Schweinhart, Benjamin Fractal dimension estimation with persistent homology: a comparative study. (English) Zbl 1451.62177 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105163, 19 p. (2020). MSC: 62R40 28A80 37F35 PDF BibTeX XML Cite \textit{J. Jaquette} and \textit{B. Schweinhart}, Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105163, 19 p. (2020; Zbl 1451.62177) Full Text: DOI
Yang, Tongou On sets containing an affine copy of bounded decreasing sequences. (English) Zbl 07261228 J. Fourier Anal. Appl. 26, No. 5, Paper No. 73, 30 p. (2020). MSC: 11B05 28A78 28A12 28A80 PDF BibTeX XML Cite \textit{T. Yang}, J. Fourier Anal. Appl. 26, No. 5, Paper No. 73, 30 p. (2020; Zbl 07261228) Full Text: DOI
Li, Jian; Lü, Jie; Xiao, Yuanfen The Hausdorff dimension of multiply Xiong chaotic sets. (English) Zbl 07257202 Ergodic Theory Dyn. Syst. 40, No. 11, 3056-3077 (2020). MSC: 37C45 37B10 PDF BibTeX XML Cite \textit{J. Li} et al., Ergodic Theory Dyn. Syst. 40, No. 11, 3056--3077 (2020; Zbl 07257202) Full Text: DOI
Khalil, Osama Bounded and divergent trajectories and expanding curves on homogeneous spaces. (English) Zbl 1450.37003 Trans. Am. Math. Soc. 373, No. 10, 7473-7525 (2020). Reviewer: Thomas B. Ward (Leeds) MSC: 37A17 37C85 37C35 22F30 11J83 11J87 PDF BibTeX XML Cite \textit{O. Khalil}, Trans. Am. Math. Soc. 373, No. 10, 7473--7525 (2020; Zbl 1450.37003) Full Text: DOI
Kapovich, Michael; Liu, Beibei Hausdorff dimension of non-conical limit sets. (English) Zbl 07254278 Trans. Am. Math. Soc. 373, No. 10, 7207-7224 (2020). MSC: 30F40 22E40 53C20 57N16 PDF BibTeX XML Cite \textit{M. Kapovich} and \textit{B. Liu}, Trans. Am. Math. Soc. 373, No. 10, 7207--7224 (2020; Zbl 07254278) Full Text: DOI
Tang, Min-wei; Wu, Zhi-Yi Some results on Poincaré sets. (English) Zbl 07250696 Czech. Math. J. 70, No. 3, 891-903 (2020). MSC: 37B20 11A07 PDF BibTeX XML Cite \textit{M.-w. Tang} and \textit{Z.-Y. Wu}, Czech. Math. J. 70, No. 3, 891--903 (2020; Zbl 07250696) Full Text: DOI
Lü, Meiying The growth rate of the digits in the Lüroth expansions. (English) Zbl 1441.11188 Fractals 28, No. 4, Article ID 2050064, 8 p. (2020). MSC: 11K55 PDF BibTeX XML Cite \textit{M. Lü}, Fractals 28, No. 4, Article ID 2050064, 8 p. (2020; Zbl 1441.11188) Full Text: DOI
Prigent, Martin; Roberts, Matthew I. Noise sensitivity and exceptional times of transience for a simple symmetric random walk in one dimension. (English) Zbl 07250117 Probab. Theory Relat. Fields 178, No. 1-2, 327-367 (2020). MSC: 60G50 82C41 28A78 PDF BibTeX XML Cite \textit{M. Prigent} and \textit{M. I. Roberts}, Probab. Theory Relat. Fields 178, No. 1--2, 327--367 (2020; Zbl 07250117) Full Text: DOI
Gwynne, Ewain Random surfaces and Liouville quantum gravity. (English) Zbl 1448.83009 Notices Am. Math. Soc. 67, No. 4, 484-491 (2020). MSC: 83C45 83C80 81T40 62P35 60D05 60G60 37F35 PDF BibTeX XML Cite \textit{E. Gwynne}, Notices Am. Math. Soc. 67, No. 4, 484--491 (2020; Zbl 1448.83009) Full Text: DOI
Antonelli, Gioacchino; Le Donne, Enrico Pauls rectifiable and purely Pauls unrectifiable smooth hypersurfaces. (English) Zbl 1448.53042 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 111983, 29 p. (2020). Reviewer: Peibiao Zhao (Nanjing) MSC: 53C17 22E25 28A75 49Q15 PDF BibTeX XML Cite \textit{G. Antonelli} and \textit{E. Le Donne}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 111983, 29 p. (2020; Zbl 1448.53042) Full Text: DOI
Huang, Lingling; Wu, Jun; Xu, Jian Metric properties of the product of consecutive partial quotients in continued fractions. (English) Zbl 1452.11095 Isr. J. Math. 238, No. 2, 901-943 (2020). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K50 11J70 11J83 PDF BibTeX XML Cite \textit{L. Huang} et al., Isr. J. Math. 238, No. 2, 901--943 (2020; Zbl 1452.11095) Full Text: DOI
Zhang, Yuhan; Gao, Junyang; Qiao, Jianyong; Wang, Qinghua Dynamics of a family of rational maps concerning renormalization transformation. (English) Zbl 07247154 Front. Math. China 15, No. 4, 807-833 (2020). MSC: 37F25 37F10 28A78 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Front. Math. China 15, No. 4, 807--833 (2020; Zbl 07247154) Full Text: DOI
Adams, Henry; Aminian, Manuchehr; Farnell, Elin; Kirby, Michael; Mirth, Joshua; Neville, Rachel; Peterson, Chris; Shonkwiler, Clayton A fractal dimension for measures via persistent homology. (English) Zbl 1448.62211 Baas, Nils (ed.) et al., Topological data analysis. Proceedings of the Abel symposium 2018, Geiranger, Norway, June 4–8, 2018. Cham: Springer. Abel Symp. 15, 1-31 (2020). MSC: 62R40 62R20 55N31 60B05 37F35 60F15 PDF BibTeX XML Cite \textit{H. Adams} et al., Abel Symp. 15, 1--31 (2020; Zbl 1448.62211) Full Text: DOI
Jiang, Kan; Xi, Lifeng; Xu, Shengnan; Yang, Jinjin Isomorphism and bi-Lipschitz equivalence between the univoque sets. (English) Zbl 1452.37028 Discrete Contin. Dyn. Syst. 40, No. 11, 6089-6114 (2020). Reviewer: Symon Serbenyuk (Kyïv) MSC: 37C45 28A78 28A80 PDF BibTeX XML Cite \textit{K. Jiang} et al., Discrete Contin. Dyn. Syst. 40, No. 11, 6089--6114 (2020; Zbl 1452.37028) Full Text: DOI
Azzam, Jonas Dimension drop for harmonic measure on Ahlfors regular boundaries. (English) Zbl 1452.31006 Potential Anal. 53, No. 3, 1025-1041 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 31A15 28A75 28A78 31B05 35J25 PDF BibTeX XML Cite \textit{J. Azzam}, Potential Anal. 53, No. 3, 1025--1041 (2020; Zbl 1452.31006) Full Text: DOI
D’Aniello, Emma; Maiuriello, Martina On some generic small Cantor spaces. (English) Zbl 1446.28003 Z. Anal. Anwend. 39, No. 3, 277-288 (2020). MSC: 28A05 28A75 54E52 PDF BibTeX XML Cite \textit{E. D'Aniello} and \textit{M. Maiuriello}, Z. Anal. Anwend. 39, No. 3, 277--288 (2020; Zbl 1446.28003) Full Text: DOI
Olsen, L.; West, M. Average frequencies of digits in infinite IFS’s and applications to continued fractions and Lüroth expansions. (English) Zbl 1448.28011 Monatsh. Math. 193, No. 2, 441-478 (2020). Reviewer: Peter Massopust (München) MSC: 28A80 PDF BibTeX XML Cite \textit{L. Olsen} and \textit{M. West}, Monatsh. Math. 193, No. 2, 441--478 (2020; Zbl 1448.28011) Full Text: DOI
Falconer, Kenneth J.; Fraser, Jonathan M.; Kempton, Tom Intermediate dimensions. (English) Zbl 1448.28009 Math. Z. 296, No. 1-2, 813-830 (2020). Reviewer: Ivan Podvigin (Novosibirsk) MSC: 28A80 28A78 37C45 PDF BibTeX XML Cite \textit{K. J. Falconer} et al., Math. Z. 296, No. 1--2, 813--830 (2020; Zbl 1448.28009) Full Text: DOI
Lü, Fan; Wu, Jun On dichotomy law for beta-dynamical system in parameter space. (English) Zbl 1452.11098 Math. Z. 296, No. 1-2, 661-683 (2020). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 68Q45 68Q99 11A63 PDF BibTeX XML Cite \textit{F. Lü} and \textit{J. Wu}, Math. Z. 296, No. 1--2, 661--683 (2020; Zbl 1452.11098) Full Text: DOI
Fang, Lulu; Wu, Min; Li, Bing Approximation orders of real numbers by \(\beta\)-expansions. (English) Zbl 1452.11097 Math. Z. 296, No. 1-2, 13-40 (2020). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 37B10 37E05 37A25 37A50 28D05 60G10 PDF BibTeX XML Cite \textit{L. Fang} et al., Math. Z. 296, No. 1--2, 13--40 (2020; Zbl 1452.11097) Full Text: DOI
Verma, S.; Viswanathan, P. Parameter identification for a class of bivariate fractal interpolation functions and constrained approximation. (English) Zbl 1447.28013 Numer. Funct. Anal. Optim. 41, No. 9, 1109-1148 (2020). Reviewer: Symon Serbenyuk (Kyiv) MSC: 28A80 41A29 41A30 PDF BibTeX XML Cite \textit{S. Verma} and \textit{P. Viswanathan}, Numer. Funct. Anal. Optim. 41, No. 9, 1109--1148 (2020; Zbl 1447.28013) Full Text: DOI
Trujillo, Frank Hausdorff dimension of invariant measures of multicritical circle maps. (English) Zbl 1450.37036 Ann. Henri Poincaré 21, No. 9, 2861-2875 (2020). MSC: 37E10 37E45 37C25 37C45 PDF BibTeX XML Cite \textit{F. Trujillo}, Ann. Henri Poincaré 21, No. 9, 2861--2875 (2020; Zbl 1450.37036) Full Text: DOI
Bárány, Balázs; Rams, Michal; Simon, Károly Dimension of the repeller for a piecewise expanding affine map. (English) Zbl 1450.28006 Ann. Acad. Sci. Fenn., Math. 45, No. 2, 1135-1169 (2020). Reviewer: Ivan Podvigin (Novosibirsk) MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{B. Bárány} et al., Ann. Acad. Sci. Fenn., Math. 45, No. 2, 1135--1169 (2020; Zbl 1450.28006) Full Text: DOI
Terence, L. J. Harris An a.e. lower bound for Hausdorff dimension under vertical projections in the Heisenberg group. (English) Zbl 1446.28008 Ann. Acad. Sci. Fenn., Math. 45, No. 2, 723-737 (2020). MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{L. J. H. Terence}, Ann. Acad. Sci. Fenn., Math. 45, No. 2, 723--737 (2020; Zbl 1446.28008) Full Text: DOI
Olsen, Lars On the average \(L^q\)-dimensions of typical measures belonging to the Gromov-Hausdorff-Prohoroff space. The limiting cases: \(q = 1\) and \(q = \infty\). (English) Zbl 1446.28007 Ann. Acad. Sci. Fenn., Math. 45, No. 2, 647-672 (2020). MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{L. Olsen}, Ann. Acad. Sci. Fenn., Math. 45, No. 2, 647--672 (2020; Zbl 1446.28007) Full Text: DOI
Song, Teng; Zhou, Qinglong On the longest block function in continued fractions. (English) Zbl 07240607 Bull. Aust. Math. Soc. 102, No. 2, 196-206 (2020). MSC: 11K55 11J83 28A80 PDF BibTeX XML Cite \textit{T. Song} and \textit{Q. Zhou}, Bull. Aust. Math. Soc. 102, No. 2, 196--206 (2020; Zbl 07240607) Full Text: DOI
Wang, Weiliang; Li, Lu Simultaneous dynamical Diophantine approximation in beta expansions. (English) Zbl 07240606 Bull. Aust. Math. Soc. 102, No. 2, 186-195 (2020). MSC: 11K55 28A80 PDF BibTeX XML Cite \textit{W. Wang} and \textit{L. Li}, Bull. Aust. Math. Soc. 102, No. 2, 186--195 (2020; Zbl 07240606) Full Text: DOI
Fuhrmann, Gabriel; Gröger, Maik Constant length substitutions, iterated function systems and amorphic complexity. (English) Zbl 1453.37015 Math. Z. 295, No. 3-4, 1385-1404 (2020). Reviewer: Bilel Selmi (Monastir) MSC: 37B10 37B40 37C45 28A78 28A80 PDF BibTeX XML Cite \textit{G. Fuhrmann} and \textit{M. Gröger}, Math. Z. 295, No. 3--4, 1385--1404 (2020; Zbl 1453.37015) Full Text: DOI
Kleinbock, Dmitry; Mirzadeh, Shahriar Dimension estimates for the set of points with non-dense orbit in homogeneous spaces. (English) Zbl 1450.37004 Math. Z. 295, No. 3-4, 1355-1383 (2020). Reviewer: Thomas B. Ward (Leeds) MSC: 37A17 37A25 37C85 37D35 11J13 PDF BibTeX XML Cite \textit{D. Kleinbock} and \textit{S. Mirzadeh}, Math. Z. 295, No. 3--4, 1355--1383 (2020; Zbl 1450.37004) Full Text: DOI
Huang, Xiaojie; Qiu, Weiyuan The dimension paradox in parameter space of cosine family. (English) Zbl 1450.37046 Chin. Ann. Math., Ser. B 41, No. 4, 645-656 (2020). MSC: 37F35 37F10 37C45 28A78 PDF BibTeX XML Cite \textit{X. Huang} and \textit{W. Qiu}, Chin. Ann. Math., Ser. B 41, No. 4, 645--656 (2020; Zbl 1450.37046) Full Text: DOI
Zheng, Lixuan; Wu, Min Uniform recurrence properties for beta-transformation. (English) Zbl 07228300 Nonlinearity 33, No. 9, 4590-4612 (2020). MSC: 11A63 11K55 28A80 PDF BibTeX XML Cite \textit{L. Zheng} and \textit{M. Wu}, Nonlinearity 33, No. 9, 4590--4612 (2020; Zbl 07228300) Full Text: DOI
Kalle, Charlene; Kong, Derong; Langeveld, Niels; Li, Wenxia The \(\beta\)-transformation with a hole at 0. (English) Zbl 1448.11153 Ergodic Theory Dyn. Syst. 40, No. 9, 2482-2514 (2020). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 26A30 37B10 37E05 37E15 11A63 68R15 28D05 PDF BibTeX XML Cite \textit{C. Kalle} et al., Ergodic Theory Dyn. Syst. 40, No. 9, 2482--2514 (2020; Zbl 1448.11153) Full Text: DOI
Matheus, Carlos The beginning of the Lagrange spectrum of certain origamis of genus two. (English) Zbl 1448.37042 C. R., Math., Acad. Sci. Paris 358, No. 4, 475-479 (2020). MSC: 37D40 37C45 11J06 32G15 PDF BibTeX XML Cite \textit{C. Matheus}, C. R., Math., Acad. Sci. Paris 358, No. 4, 475--479 (2020; Zbl 1448.37042) Full Text: DOI
Gutierrez-Romo, Rodolfo; Matheus, Carlos Lower bounds on the dimension of the Rauzy gasket. (English) Zbl 1451.37029 Bull. Soc. Math. Fr. 148, No. 2, 321-327 (2020). Reviewer: Ivan Podvigin (Novosibirsk) MSC: 37C45 37D35 37B40 28A78 28A80 PDF BibTeX XML Cite \textit{R. Gutierrez-Romo} and \textit{C. Matheus}, Bull. Soc. Math. Fr. 148, No. 2, 321--327 (2020; Zbl 1451.37029) Full Text: DOI
Hong, Jieliang; Mytnik, Leonid; Perkins, Edwin On the topological boundary of the range of super-Brownian motion. (English) Zbl 07226357 Ann. Probab. 48, No. 3, 1168-1201 (2020). MSC: 60G57 60J68 60H30 35J75 60J80 PDF BibTeX XML Cite \textit{J. Hong} et al., Ann. Probab. 48, No. 3, 1168--1201 (2020; Zbl 07226357) Full Text: DOI Euclid
Protasov, Vladimir Yu. Surface dimension, tiles, and synchronizing automata. (English) Zbl 1444.42036 SIAM J. Math. Anal. 52, No. 4, 3463-3486 (2020). MSC: 42C40 28A75 39A99 11K55 68Q45 PDF BibTeX XML Cite \textit{V. Yu. Protasov}, SIAM J. Math. Anal. 52, No. 4, 3463--3486 (2020; Zbl 1444.42036) Full Text: DOI
Chousionis, Vasilis; Tyson, Jeremy; Urbański, Mariusz Conformal graph directed Markov systems on Carnot groups. (English) Zbl 07224318 Memoirs of the American Mathematical Society 1291. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4215-6/pbk; 978-1-4704-6245-1/ebook). viii, 155 p. (2020). MSC: 37-02 37E05 37E25 37B10 37C30 37D35 37D40 37C35 28A78 PDF BibTeX XML Cite \textit{V. Chousionis} et al., Conformal graph directed Markov systems on Carnot groups. Providence, RI: American Mathematical Society (AMS) (2020; Zbl 07224318) Full Text: DOI
Ekström, Fredrik; Järvenpää, Esa; Järvenpää, Maarit Hausdorff dimension of limsup sets of rectangles in the Heisenberg group. (English) Zbl 07224190 Math. Scand. 126, No. 2, 229-255 (2020). Reviewer: George Stoica (Saint John) MSC: 60D05 22E30 28A80 60B15 PDF BibTeX XML Cite \textit{F. Ekström} et al., Math. Scand. 126, No. 2, 229--255 (2020; Zbl 07224190) Full Text: DOI