×

On the estimation of the mean density of random closed sets. (English) Zbl 1280.62042

Summary: Many real phenomena may be modeled as random closed sets in \(\mathbb R^d\), of different Hausdorff dimensions. Of particular interest are cases in which their Hausdorff dimension, say \(n\), is strictly less than \(d\), such as fiber processes, boundaries of germ-grain models, and \(n\)-facets of random tessellations. A crucial problem is the estimation of pointwise mean densities of absolutely continuous, and spatially inhomogeneous random sets, as defined by the authors in a series of recent papers. While the case \(n = 0\) (random vectors, point processes, etc.) has been, and still is, the subject of extensive literature, in this paper we face the general case of any \(n < d\); pointwise density estimators which extend the notion of kernel density estimators for random vectors are analyzed, together with a previously proposed estimator based on the notion of Minkowski content. In a series of papers, the authors have established the mathematical framework for obtaining suitable approximations of such mean densities. Here they study the unbiasedness and consistency properties, and identify optimal bandwidths for all proposed estimators, under sufficient regularity conditions. We show how some known results in the literature follow as particular cases. A series of examples throughout the paper, both non-stationary, and stationary, are provided to illustrate various relevant situations.

MSC:

62G07 Density estimation
60D05 Geometric probability and stochastic geometry
28A75 Length, area, volume, other geometric measure theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aitchison, J.; Kay, J. W.; Lauder, I. J., Statistical Concepts and Applications in Clinical Medicine (2004), Chapman and Hall/CRC: Chapman and Hall/CRC London
[2] Ambrosio, L.; Capasso, V.; Villa, E., On the approximation of mean densities of random closed sets, Bernoulli, 15, 1222-1242 (2009) · Zbl 1253.60007
[3] Ambrosio, L.; Colesanti, A.; Villa, E., Outer Minkowski content for some classes of closed sets, Math. Ann., 342, 727-748 (2008) · Zbl 1152.28005
[4] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems (2000), Clarendon Press: Clarendon Press Oxford · Zbl 0957.49001
[5] Baddeley, A.; Barany, I.; Schneider, R.; Weil, W., (Stochastic Geometry. Stochastic Geometry, Lecture Notes in Mathematics, vol. 1982 (2007), Springer: Springer Berlin)
[6] Baddeley, A.; Molchanov, I. S., On the expected measure of a random set, (Proceedings of the International Symposium on Advances in Theory and Applications of Random Sets (Fontainebleau, 1996) (1997), World Sci. Publishing: World Sci. Publishing River Edge, NJ), 3-20
[7] Beneš, V.; Rataj, J., Stochastic Geometry: Selected Topics (2004), Kluwer: Kluwer Dordrecht · Zbl 1052.60001
[8] Berman, M.; Diggle, P., Estimating weighted integrals of the second-order intensity of a spatial point process, J. R. Stat. Soc. Ser. B Stat. Methodol., 51, 81-92 (1989) · Zbl 0671.62043
[9] Bosq, D.; Lecoutre, J. P., Theorie De L’estimation Fonctionnelle (1987), Economica: Economica Paris
[10] Botev, Z. I.; Grotowski, J. F.; Kroese, D. P., Kernel density estimation via diffusion, Ann. Statist., 38, 2916-2957 (2010) · Zbl 1200.62029
[11] Burger, M.; Capasso, V.; Pizzocchero, L., Mesoscale averaging of nucleation and growth models, SIAM J. Multiscale Model. Simul., 5, 564-592 (2006) · Zbl 1118.49023
[12] (Capasso, V., Mathematical Modelling for Polymer Processing. Polymerization, Crystallization, Manufacturing. Mathematical Modelling for Polymer Processing. Polymerization, Crystallization, Manufacturing, ECMI Series on Mathematics in Industry, vol. 2 (2003), Springer Verlag: Springer Verlag Heidelberg) · Zbl 1004.00015
[13] Capasso, V.; Dejana, E.; Micheletti, A., Methods of stochastic geometry, and related statistical problems in the analysis and therapy of tumour growth and tumour-driven angiogenesis, (Bellomo, N.; etal., Selected Topics on Cancer Modelling (2008), Birkhauser: Birkhauser Boston), 299-335
[14] Capasso, V.; Micheletti, A., Stochastic geometry and related statistical problems in biomedicine, (Quarteroni, A.; etal., Complex System in Biomedicine (2006), Springer: Springer Milano), 35-69 · Zbl 1387.92047
[15] Capasso, V.; Micheletti, A.; Morale, D., Stochastic geometric models and related statistical issues in tumour-induced angiogenesis, Math. Biosci., 214, 20-31 (2008) · Zbl 1143.92018
[16] Capasso, V.; Morale, D., Stochastic modelling of tumour-induced angiogenesis, J. Math. Biol., 58, 219-233 (2009) · Zbl 1161.92034
[17] Capasso, V.; Villa, E., On the continuity and absolute continuity of random closed sets, Stoch. Anal. Appl., 24, 381-397 (2006) · Zbl 1099.60010
[18] Capasso, V.; Villa, E., On mean densities of inhomogeneous geometric processes arising in material sciences and medicine, Image Anal. Stereol., 26, 23-36 (2007) · Zbl 1154.60304
[19] Capasso, V.; Villa, E., On the geometric densities of random closed sets, Stoch. Anal. Appl., 26, 784-808 (2008) · Zbl 1151.60005
[20] Cressie, N. A.C., Statistics for Spatial Data (1993), John Wiley and Sons: John Wiley and Sons New York, Revised edition
[21] Daley, D. J.; Vere-Jones, D., (An Introduction to the Theory of Point Processes. An Introduction to the Theory of Point Processes, Springer Series in Statistics, New York (1988)) · Zbl 0657.60069
[22] David, G.; Semmes, S., Fractured Fractals and Broken Dreams-Self-Similar Geometry through Metric and Measure (1997), Oxford Univ. Press: Oxford Univ. Press London · Zbl 0887.54001
[23] Deheuvels, P.; Mason, D. M., General asymptotic confidence bands based on kernel-type function estimators, Stat. Inference Stoch. Process., 7, 225-277 (2004) · Zbl 1125.62314
[24] Devroye, L.; Györfi, L.; Lugosi, G., (A Probabilistic Theory of Pattern Recognition. A Probabilistic Theory of Pattern Recognition, Springer Series in Stochastic Modelling and Applied Probability, New York (1996)) · Zbl 0853.68150
[25] Diggle, P. J., Statistical analysis of spatial point patterns, (Mathematics in Biology (1983), Academic Press: Academic Press London) · Zbl 0559.62088
[26] Diggle, P. J., A kernel method for smoothing point process data, Appl. Stat., 34, 138-147 (1985) · Zbl 0584.62140
[27] Falconer, K. J., The Geometry of Fractal Sets (1986), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0587.28004
[28] Falconer, K. J., One-sided multifractal analysis and points of non-differentiability of devil’s staircases, Math. Proc. Cambridge Philos. Soc., 136, 167-174 (2004) · Zbl 1046.28005
[29] Federer, H., Curvature measures, Trans. Amer. Math. Soc., 93, 418-491 (1959) · Zbl 0089.38402
[30] Federer, H., Geometric Measure Theory (1969), Spriger: Spriger Berlin · Zbl 0176.00801
[31] Härdle, W., Smoothing Techniques with Implementation in S (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0716.62040
[32] Helmers, R.; Mangku, I. W.; Zitikis, R., Consistent estimation of the intensity function of a cyclic Poisson process, J. Multivariate Anal., 84, 19-39 (2003) · Zbl 1038.62037
[33] Helmers, R.; Zitikis, R., On estimation of Poisson intensity functions, Ann. Inst. Statist. Math., 51, 265-280 (1999) · Zbl 0946.62076
[34] Hug, D.; Last, G.; Weil, W., A survey on contact distributions, (Mecke, K.; Stoyan, D., Morphology of Condensed Matter, Physics and Geometry of Spatially Complex Systems. Morphology of Condensed Matter, Physics and Geometry of Spatially Complex Systems, Statistical Physics and Spatial Statistics, Lecture Notes in Physics, vol. 600 (2002), Springer: Springer Berlin), 317-357
[35] Hug, D.; Last, G.; Weil, W., A local Steiner-type formula for general closed sets and applications, Math. Z., 246, 237-272 (2004) · Zbl 1059.53061
[36] Karr, A. F., Point Processes and Their Statistical Inference (1986), Marcel Dekker: Marcel Dekker New York · Zbl 0601.62120
[37] Loader, C. R., Bandwidth selection: classical or plug-in, Ann. Statist., 27, 415-438 (1999) · Zbl 0938.62035
[38] Matheron, G., Random Sets and Integral Geometry (1975), John Wiley & Sons: John Wiley & Sons New York · Zbl 0321.60009
[39] Molchanov, I., Statistics of the Boolean Model for Practitioners and Mathematicians (1997), Wiley: Wiley Chichester · Zbl 0878.62068
[40] Parzen, E., On the estimation of a probability density function and the mode, Ann. Math. Statist., 33, 1065-1076 (1962) · Zbl 0116.11302
[41] Rancoita, P. M.V; Giusti, A.; Micheletti, A., Intensity estimation of stationary fibre processes from digital images with a learned detector, Image Anal. Stereol., 30, 167-178 (2011) · Zbl 1236.62127
[42] Rosenblatt, M., Remarks on some nonparametric estimates of a density function, Ann. Math. Statist., 27, 832-837 (1956) · Zbl 0073.14602
[43] Sheather, S. J., Density estimation, Statist. Sci., 19, 588-597 (2004) · Zbl 1100.62558
[44] Schucany, W. R., Locally optimal window widths for kernel density estimation with large samples, Statist. Probab. Lett., 7, 401-405 (1989)
[45] Silverman, B. W., Density Estimation for Statistics and Data Analysis (1986), Chapman & Hall: Chapman & Hall London · Zbl 0617.62042
[46] Simonoff, J. S., Smoothing Methods in Statistics (1996), Springer: Springer New York · Zbl 0859.62035
[47] Stoyan, D.; Kendall, W. S.; Mecke, J., Stochastic Geometry and its Applications (1995), John Wiley & Sons: John Wiley & Sons Chichcester · Zbl 0838.60002
[48] Szeliski, R., Computer Vision. Algorithms and Applications (2011), Springer-Verlag: Springer-Verlag London · Zbl 1219.68009
[49] van Kerm, P. V., Adaptive kernel density estimation, Stata J., 3, 148-156 (2003)
[50] van Lieshout, M. N.M., On estimation of the intensity function of a point process, Methodol. Comput. Appl. Probab., 14, 567-578 (2012) · Zbl 1274.60157
[51] Villa, E., Mean densities and spherical contact distribution function of inhomogeneous Boolean models, Stoch. Anal. Appl., 28, 480-504 (2010) · Zbl 1228.60023
[52] Villa, E., On the local approximation of mean densities of random closed sets, Bernoulli (2013), in press. Available at http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal-papers
[53] Wand, M. P.; Jones, M. C., Kernel Smoothing (1995), Chapman & Hall: Chapman & Hall London · Zbl 0854.62043
[54] Wertz, W., (Statistical Density Estimation: a Survey, Angewandte Statistik und Ökonometrie. Statistical Density Estimation: a Survey, Angewandte Statistik und Ökonometrie, Applied Statistics and Econometrics, vol. 13 (1978), Vandenhoeck & Ruprecht: Vandenhoeck & Ruprecht Göttingen)
[55] Zähle, M., Random processes of Hausdorff rectifiable closed sets, Math. Nachr., 108, 49-72 (1982) · Zbl 0575.60010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.