×

Hilbert’s tenth problem for function fields of varieties over algebraically closed fields of positive characteristic. (English) Zbl 1270.11126

Let \(K\) be a function field of a variety of dimension \(\geq 2\) over an algebraically closed field \(k\) of characteristic \(p > 2\). It is proved that there exist elements \(z_1, z_2 \in K\) which are algebraically independent over \(k\) such that Hilbert’s Tenth Problem for \(K\) with coefficients in \({\mathbb F}_p[z_1, z_2]\) is undecidable. The proof works by interpreting the ring of endomorphisms of an elliptic curve with division and two special pair relations in the given structure, by existential formulas. Endomorphisms are related to points on twists, and good twists are chosen using a theorem by Moret-Bailly. The result is both a generalisation and a week form of a result by Kim and Roush; week form because by Kim and Roush the two algebaric independent elements were canonic.

MSC:

11U05 Decidability (number-theoretic aspects)
03B25 Decidability of theories and sets of sentences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Conrad, B.: Gross-Zagier revisited. In: Heegner points and Rankin L-series, Math. Sci. Res. Inst. Publ., vol. 49. Cambridge Univ. Press, Cambridge, pp. 67–163 (2004) (with an appendix by W. R. Mann) · Zbl 1072.11040
[2] Denef J.: Hilbert’s tenth problem for quadratic rings. Proc. Am. Math. Soc. 48, 214–220 (1975) · Zbl 0324.02032
[3] Denef J.: The Diophantine problem for polynomial rings and fields of rational functions. Trans. Am. Math. Soc. 242, 391–399 (1978) · Zbl 0399.10048 · doi:10.1090/S0002-9947-1978-0491583-7
[4] Deuring, M.: Lectures on the theory of algebraic functions of one variable. In: Lecture Notes in Mathematics, vol. 314. Springer-Verlag, Berlin (1973) · Zbl 0249.14008
[5] Eisenträger K.: Hilbert’s tenth problem for algebraic function fields of characteristic 2. Pac. J. Math. 210(2), 261–281 (2003) · Zbl 1057.11067 · doi:10.2140/pjm.2003.210.261
[6] Eisenträger, K.: Ph.D. thesis, University of California, Berkeley (2003)
[7] Eisenträger K.: Hilbert’s tenth problem for function fields of varieties over C. Int. Math. Res. Not. 59, 3191–3205 (2004) · Zbl 1109.11061 · doi:10.1155/S1073792804141354
[8] Eisenträger K.: Hilbert’s tenth problem for function fields of varieties over number fields and p-adic fields. J. Algebra 310(2), 775–792 (2007). doi: 10.1016/j.jalgebra.2006.09.032 · Zbl 1152.11050 · doi:10.1016/j.jalgebra.2006.09.032
[9] Kim K.H., Roush F.W.: Diophantine undecidability of C(t 1, t 2). J. Algebra 150(1), 35–44 (1992) · Zbl 0754.11039 · doi:10.1016/S0021-8693(05)80047-X
[10] Kim K.H., Roush F.W.: Diophantine unsolvability for function fields over certain infinite fields of characteristic p. J. Algebra 152(1), 230–239 (1992) · Zbl 0768.12008 · doi:10.1016/0021-8693(92)90097-6
[11] Kim K.H., Roush F.W.: Diophantine unsolvability over p-adic function fields. J. Algebra 176(1), 83–110 (1995) · Zbl 0858.12006 · doi:10.1006/jabr.1995.1234
[12] Lang S.: Algebra. 3rd edn. Springer-Verlag, New York (1993) · Zbl 0848.13001
[13] Matijasevič Y.V.: The Diophantineness of enumerable sets. Dokl. Akad. Nauk SSSR 191, 279–282 (1970)
[14] Moret-Bailly L.: Elliptic curves and Hilbert’s tenth problem for algebraic function fields over real and p-adic fields. J. Reine Angew. Math. 587, 77–143 (2005). doi: 10.1515/crll.2005.2005.587.77 · Zbl 1085.14029 · doi:10.1515/crll.2005.2005.587.77
[15] Pfister, A.: Quadratic forms with applications to algebraic geometry and topology. London Mathematical Society Lecture Note Series, vol. 217. Cambridge University Press, Cambridge (1995) · Zbl 0847.11014
[16] Pheidas T.: Hilbert’s tenth problem for fields of rational functions over finite fields. Invent. Math. 103(1), 1–8 (1991) · Zbl 0696.12022 · doi:10.1007/BF01239506
[17] Pheidas, T., Zahidi, K.: Undecidability of existential theories of rings and fields: a survey. In: Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999). Amer. Math. Soc. Providence, RI, pp. 49–105 (2000) · Zbl 0981.03013
[18] Shlapentokh A.: Diophantine undecidability over algebraic function fields over finite fields of constants. J. Number Theory 58(2), 317–342 (1996) · Zbl 0856.11058 · doi:10.1006/jnth.1996.0080
[19] Shlapentokh A.: Hilbert’s tenth problem for algebraic function fields over infinite fields of constants of positive characteristic. Pac. J. Math. 193(2), 463–500 (2000) · Zbl 1010.12008 · doi:10.2140/pjm.2000.193.463
[20] Shlapentokh A.: Diophantine undecidability of function fields of characteristic greater than 2, finitely generated over fields algebraic over a finite field. Compos. Math. 132(1), 99–120 (2002) · Zbl 1011.03026 · doi:10.1023/A:1016067603451
[21] Shlapentokh, A.: Diophantine undecidability for some function fields of infinite transcendence degree and positive characteristic. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 304 (Teor. Slozhn. Vychisl. 8), 141–167, 171 (2003). doi: 10.1007/s10958-005-0358-x
[22] Silverman, J.H.: The arithmetic of elliptic curves. Graduate Texts in Mathematics, vol. 106. Springer-Verlag, New York (1994) (corrected reprint of the 1986 original) · Zbl 0585.14026
[23] Videla C.R.: Hilbert’s tenth problem for rational function fields in characteristic 2. Proc. Am. Math. Soc. 120(1), 249–253 (1994) · Zbl 0795.03015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.